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Abstract

Background: Because common complex diseases are affected by multiple genes and environmental factors, it is
essential to investigate gene-gene and/or gene-environment interactions to understand genetic architecture of
complex diseases. After the great success of large scale genome-wide association (GWA) studies using the high
density single nucleotide polymorphism (SNP) chips, the study of gene-gene interaction becomes a next challenge.
Multifactor dimensionality reduction (MDR) analysis has been widely used for the gene-gene interaction analysis. In
practice, however, it is not easy to perform high order gene-gene interaction analyses via MDR in genome-wide
level because it requires exploring a huge search space and suffers from a computational burden due to high
dimensionality.

Results: We propose dimensional reduction analysis, Gene-MDR analysis for the fast and efficient high order gene-
gene interaction analysis. The proposed Gene-MDR method is composed of two-step applications of MDR: within-
and between-gene MDR analyses. First, within-gene MDR analysis summarizes each gene effect via MDR analysis by
combining multiple SNPs from the same gene. Second, between-gene MDR analysis then performs interaction
analysis using the summarized gene effects from within-gene MDR analysis. We apply the Gene-MDR method to
bipolar disorder (BD) GWA data from Wellcome Trust Case Control Consortium (WTCCC). The results demonstrate
that Gene-MDR is capable of detecting high order gene-gene interactions associated with BD.

Conclusion: By reducing the dimension of genome-wide data from SNP level to gene level, Gene-MDR efficiently
identifies high order gene-gene interactions. Therefore, Gene-MDR can provide the key to understand complex
disease etiology.

Background
With the development of high-throughput genotyping
technologies, a genome-wide association (GWA) study
has become a standard approach for testing association
between a single nucleotide polymorphism (SNP) and a
complex disease of interest such as diabetes, hyperten-
sion, schizophrenia, and bipolar disorder (BD) [1-4].
There have been many successful results from GWA
studies, however, only a small number of genetic factors
have passed the genome-wide significance and have

been shown to explain only a small fraction of disease
etiology due to ignoring relatedness between complex
diseases and multiple genes and/or their interactions [5].
If a genetic factor functions primarily through a com-
plex mechanism that involves multiple genes and envir-
onmental factors, the effect might be missed when the
gene is examined in isolation without allowing for its
potential interactions with other unknown factors [6].
Therefore, it is essential to investigate the gene-gene
and/or gene-environment interactions in order to
understand the etiology of common complex diseases
thoroughly.* Correspondence: tspark@stats.snu.ac.kr
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Several methods have been proposed to identify the
gene-gene and/or gene-environment interactions.
Among them, logistic regression is a most commonly
used method to analyze the gene-gene interaction in
genetic association studies [7-10]. However, when the
SNPs are in linkage disequilibrium (LD), logistic regres-
sion encounters a multicollinearity problem. In addition,
when there are empty or sparse cells, logistic regression
has some possibilities of misleading inference. Thus, a
large sample size is required for estimating logistic
regression parameters to avoid sparseness problems for
modeling high-order interactions.
To address the sparseness problem, the multifactor

dimensionality reduction (MDR) method was proposed
by Ritchie et al. [11]. The MDR method, as a non-para-
metric and model free method, has been widely used for
detecting gene-gene interaction because it does not
require any assumption of genetic mode of inheritance
[11-14]. Besides, it has provided good performances for
the small samples and in the presence of LD between
genetic factors. MDR analysis identifies gene-gene inter-
action based on k-fold cross-validation (CV) to avoid
overfitting problem and presents which genotype combi-
nations are either high or low risk on disease of interest.
Many research groups have investigated the extensions
of MDR method [15-19]. For example, generalized MDR
was proposed to handle quantitative traits and adjust
covariates such as clinical and demographic variables
[15]. While MDR is very powerful in detecting the gene-
gene interactions for the datasets with a small number
of SNPs, however, it is believed that MDR is inefficient
in handling large scale GWA data because MDR
employs exhaustive searching strategy.
Alternatively, Bayesian and regularization approaches

have been proposed for gene-gene interaction analysis
such as Bayesian epistasis association mapping (BEAM)
[20] and penalized logistic regression models [21].
BEAM is a Bayesian marker partition model to select an
optimal marker partition with the highest posterior
probability via a Markov Chain Monte Carlo method
[20]. Although BEAM was proposed for detecting gene-
gene interaction in large scale genetic data, it is not easy
to handle high-dimensional data with more than
500,000 SNPS due to its computational complexity [6].
Park and Hastie [21] proposed a stepwise penalized
logistic regression (stepPLR) method for detecting gene-
gene interactions. In stepPLR, L2 penalization is utilized,
because it provides stable parameter estimates as the
dimensionality increases, even if the number of variables
is greater than the sample size. Although stepPLR
adopted forward selection and penalization to choose
the causal SNPs, it suffers from a heavy computational
burden when estimating parameters.

Note that all these previous methods for gene-gene
interaction analysis are SNP level approaches. That is,
gene-gene interaction analysis is performed in SNP level
by focusing on SNP-SNP interaction. Unfortunately,
these SNP level analyses are not appropriate for hand-
ling 500 K to one million SNPs available in GWA stu-
dies, because performing gene-gene interaction analysis
in SNP level requires huge search spaces and suffers
from heavy computational burdens. In the current large
scale genome-wide framework, high-order interaction
analysis for the SNPs is thus practically impossible.
To overcome such practical issues, two stage proce-

dures have been proposed, in which SNPs that meet
some threshold in a test at the first stage analysis are
subsequently followed up for modeling interactions at
the second stage [22-24]. Although this approach is
computationally feasible, there are high possibilities of
losing genuine interactions occurring in the absence of
marginal SNP effects.
In this paper, we propose a novel gene-based gene-

gene interaction method for GWA studies based on
MDR analysis scheme. We call our proposed method
Gene-MDR analysis. In order to find interacting genetic
factors in GWA studies, our Gene-MDR method is
composed of two-step applications of MDR analysis:
within- and between-gene MDR analyses. Within-gene
MDR analysis summarizes each gene’s effect from multi-
ple SNPs within the same gene. Between-gene MDR
analysis performs the interaction analysis using the sum-
marized gene effects derived from the within-gene MDR
analysis step. Furthermore, Gene-MDR has some addi-
tional features for the GWA studies. For example,
Gene-MDR provides multiple susceptible gene-gene
combinations, while other MDR methods report only
one combination as the best one.
The proposed Gene-MDR analysis is applied to the

GWA study of bipolar disorder (BD) from Wellcome
Trust Case Control Consortium (WTCCC). BD is a psy-
chiatric disorder characterized by extreme mood
changes experiencing alternating episodes of depression
and mania interspersed with periods of normal function
[25]. BD is chronic, severely disabling, and life-threaten-
ing, with increased risk of suicide and estimated lifetime
prevalence of ~1% [25]. In family studies, monozygotic
twin concordance rate estimates ranged from 45 to 70%
and sibling recurrence risk estimates from 5 to 10 [26].
While this implies strong genetic inheritance, the identi-
fication of specific genetic factors related with BD has
been difficult [25,27]. Numerous linkage and candidate
gene studies have investigated BD linked regions and
associated genes, but their results showed highly diver-
gent and inconsistent results, which is due to genetic
heterogeneity and substantial polygenic components on
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BD [25-27]. Recently, several groups have conducted
GWA studies and reported genetic factors associated
with BD using a conventional single SNP association
tests and meta analysis [2,25,28-30].
In this study, in order to understand genetic architec-

ture and identify polygenic components on BD we
investigated the gene-gene interaction via Gene-MDR.
Application of Gene-MDR to BD GWA data identified
several novel high order gene-gene interaction results
which cannot be detected by the previous methods.

Methods
WTCCC bipolar disorder data
We applied our proposed Gene-MDR method to gen-
ome-wide data from the WTCCC, which was the first
successful large comprehensive GWA study which
included seven complex diseases: BD, cardiovascular dis-
ease, hypertension, rheumatoid arthritis, Crohn’s disease,
type 1 diabetes, and type 2 diabetes, with 2,000 cases for
each of the diseases and 3,000 shared common controls
[2]. The majority of subjects were of European ancestry.
All the individuals were genotyped using Affymetrix
GeneChip 500 K arrays. We used the genotype data
called by the algorithm CHIAMO for BD and the shared
controls, which consisted of the 1958 Birth Cohort
(58C) and UK Blood Service sample (NBS) from the
WTCCC website.
Prior to analysis, quality control (QC) processes were

conducted as follows. (1) Hardy-Weinberg Equilibrium
test P-value < 5.7 ×10-7 in controls; (2) allelic and/or
genotypic association test P-value < 5.7 ×10-7 between
58C and NBS; (3) SNPs with minor allele frequency
(MAF) < 5% and missing genotype proportion > 5%.
Additionally, in order to correct population stratifica-
tion, we further conducted the principal component
analysis using SNPs chosen to reduce inter-locus linkage
disequilibrium via EIGENSTRAT [31]. Imputation of
missing genotypes was also performed via fastPHASE
using options -T 10, -K 20, and -C 30 [32]. After QC
process, 354,022 SNPs were remained.
Before performing interaction analysis, we tested the

single SNP association with adjustments for sex, age,
and first two principal components. From the results,
three SNPs, rs1048194, rs12050604, and rs9508846,
reached genome-wide significance (P < 5 × 10-8). How-
ever, these SNPs have not been reported in any pre-
vious studies using WTCCC data. We guess that these
SNPs had been removed in the analysis due to the
unreported genotype calling errors. Thus, we excluded
these SNPs and then conducted the interaction ana-
lyses to detect interacting genetic factors with 354,019
SNPs from 4,806 participants (1868 BD and 2938
controls).

Gene-MDR method
The proposed Gene-MDR method is composed of two-
step applications of MDR: within- and between-gene
MDR analyses. First, within-gene MDR analysis sum-
marizes each gene effect via MDR analysis by combining
multiple SNPs from the same gene. Second, between-
gene MDR analysis then performs the interaction analy-
sis using the summarized gene effects from within-gene
MDR analysis. We describe our proposed method via
generalized MDR method. Figure 1 summarizes the
detailed procedure of Gene-MDR analysis.
Within-gene MDR analysis
The within-gene MDR analysis step is for SNP level
analysis. Prior to this analysis, all SNPs in the GWA
dataset are allocated to the nearest gene on a basis of
annotation information. MDR analysis is then performed
for each gene and provides the summarized gene effects
in accordance with the best SNP combination.
Since MDR is an exhaustive searching strategy, all the

SNP combinations are evaluated for their ability to clas-
sify the disease status in the training dataset based on
10-fold CV. For choosing the best SNP combination for
each gene, two selection criteria are used. One is the
cross validation consistency (CVC) defined as the num-
ber of times a particular SNP combination is identified
across the 10-fold CV. The other is the average of test
balanced accuracy (BA), which is the measure of average
of sensitivity and specificity. Therefore, the selected best
SNP combination has the highest CVC in each gene. If
there are several SNP combinations with the same CVC,
SNP combination with a higher test BA value is selected
as the best SNP combination. Consequently, the chosen
SNP combination has the highest CVC and/or test BA
for each gene. For the chosen SNP combination, MDR
method classifies each level of SNP combination into
the binary class of high/low risk. We call this binary
classifier the gene predictor. This gene predictor sum-
marizes the individual gene effect for each gene.
Between-gene MDR analysis
The second step is the between-gene MDR analysis step.
In this step, the gene predictors with CVC and test BA
smaller than the threshold value are excluded because
these genes tend to have a low chance of being strongly
associated with the disease. MDR analysis for the gene
predictors is then performed. The best gene-level com-
binations are selected using 10-fold CV, similarly as in
within-gene MDR analysis.

Results
Results of within-gene MDR analysis
Based on the annotation information from Affymetrix,
all SNPs were assigned to the nearest gene within 100
kb. If there are no genes within this range, the SNPs
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were treated as non-annotated and were excluded from
the analysis. Finally, 234,748 SNPs located in 17,359
genes on autosomal chromosomes were used in our
analysis. Each gene has the different number of SNPs
from one to 779 SNPs.
Firstly, we conducted within-gene MDR analysis using

generalized MDR in order to adjust for the covariate
effects of sex, age, and first two principal components.
For simplicity, we considered the interaction up to the
fourth order. We selected the best SNP combination in
each gene through 10-fold CV using CVC and test BA.
Table 1 shows the results of top 10 genes based on

test BA in the within-gene MDR analysis step. For
example, the top ranked gene is spleen tyrosine kinase
(SYK) gene in which 67 SNPs were annotated. Among
67 SNPs, the combination with four SNPs was selected
as the best SNP combination with the highest value of
test BA. It is remarkable that the selected SNPs are not
in LD, even though they are in the same gene (Figure

2). All these best combinations showed the similar test
BAs (> 0.56). This within-gene MDR analysis step pro-
vided the best predictor for each gene.

Results of between-gene analysis
Next, we performed the between-gene MDR analysis step
for the gene-gene interactions by using the gene predic-
tors defined in the within-gene MDR step. Before con-
ducting between-gene MDR analysis, we excluded 979
gene predictors with CVC < 5 and/or test BA < 0.5,
which had a low chance of being associated with BD.
Finally, we performed the MDR analysis for the 16,380
gene predictors via generalized MDR in order to adjust
for the covariates in the similar manner as in the within-
gene MDR analysis step. We performed all possible two-
way interactions and selected the best gene predictor
combinations based on the 10-fold CV. Table 2 shows
the top 10 two-way gene predictor combinations. The
test BA values of all gene combinations were similar.

Figure 1 Flow chart of Gene-MDR analysis.
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Gene predictors in Table 2 are composed of five to
eight SNPs combinations. Thus, these two-way gene
predictor combinations correspond to the much higher
order interaction in SNP combinations. Practically, it is
hard to identify such higher order SNP interactions in
current GWA studies. For instance, to identify the 8th
order interaction with 500 K SNPs, 500 KC8 = 9.69 ×
1040 SNPs combinations have to be tested. However,
our Gene-MDR analysis could identify such high order
interactions very fast and efficiently.

Gene-gene interaction analysis in SNP level
In order to examine how well these gene predictors esti-
mate the BD status, we performed the MDR analysis for
SNP levels up to the 8th order SNP interactions. Table
2 also shows the SNP level interaction results for the
gene predictor interactions.
As shown in Table 2 the test BAs in the SNP level ana-

lysis are relatively higher than those from the gene pre-
dictor analysis. The hightest value of the test BA is 0.67,

which is pretty high rarely found in the usual MDR ana-
lysis. The main reason why these test BAs are higher
than those from gene level MDR analyses is that the gene
level analysis used gene effects summarized from the
chosen SNPs. In fact, dichotomization of MDR analysis
could lead loss of information [33,34]. For example, v-ets
erythroblastosis virus E26 oncogene homolog (ERG) and
nebulette (NEBL) gene combination has the maximum
value of test BA in gene level, 0.5833, while the maxi-
mum test BA value in SNP level is 0.6674. Despite some
possibility of the loss of information in the within-gene
MDR step, however, our Gene-MDR is capable of detect-
ing high order of SNP level interactions associated with
common complex traits in GWA studies.

The network plot of gene-gene interaction
Figure 3 shows the network plot of top 500 gene-gene
interactions from the BD application result. This net-
work plot shows which gene combinations are highly
associated with BD, and which genes play the role of

Table 1 Top 10 gene predictors from the within-gene MDR analysis step

Gene # of SNPs Genotype combinations CVC Test BA

SYK 67 rs4744513, rs1755991, rs290253, rs10991725 8 0.5680

KATNAL1 40 rs586392, rs641545, rs4572240, rs9551866 6 0.5679

NIBP 96 rs10875446, rs6578061, rs7387053, rs11779587 8 0.5677

ERG 78 rs1537105, rs2836480, rs743446, rs2836631 9 0.5662

ZNF385B 102 rs2138879, rs868273, rs194674, rs260059 9 0.5657

ZADH2 25 rs679230, rs9958993, rs1132845, rs2639982 10 0.5652

NEBL 101 rs4748697, rs10764274, rs788992, rs631361 9 0.5643

SYT6 53 rs611514, rs12027327, rs148210, rs6671620 9 0.5641

PTPRS 16 rs8113371, rs11085118, rs11878779, rs3948683 9 0.5640

KCNIP1 101 rs1553532, rs6555904, rs329470, rs4868027 8 0.5637

Figure 2 The LD block of SYK gene.
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hub genes. In the network plot, a node (point) repre-
sents a gene, and a line represents the interaction
between two nodes. The size of node represents the
degree of interactions with other genes.
We marked five genes with different colors in Figure

3: ERG, NEBL, Ca2+-dependent secretion activator
(CADPS), gamma-aminobutyric acid (GABA) B receptor,

2 (GABBR2), histone deacetylase 9 (HDAC9), respec-
tively. These genes could be considered as the hub
genes in two-way interactions. For example, among
them, the largest node is ERG gene, which is interacting
with 100 genes. The other genes, NEBL, CADPS,
GABBR2, HDAC9, are also interacting with 50, 34, 27,
and 27 genes, respectively.

Table 2 Top 10 two-way gene predctor interaction results of the between-gene MDR analysis step and SNP level
interaction results

Rank Gene combinations Number of SNPs Test BA SNP level

Interaction order Test BA

1 ERG, NEBL 4, 4 0.5833 8 0.6674

2 ERG, GABBR2 4, 4 0.5832 8 0.6558

3 CHST11, ERG 1, 4 0.5821 5 0.6004

4 CHST11, KATNAL1 1, 4 0.5820 5 0.5910

5 TIAM2, ERG 4, 4 0.5812 8 0.6585

6 COLEC12, STARD13 4, 4 0.5809 8 0.6532

7 SHANK2, MUC16 4, 4 0.5808 8 0.6536

8 KLHL29, GRIN2B 4, 4 0.5808 8 0.6483

9 CHST11, KLHL29 1, 4 0.5807 5 0.5947

10 CHST11, NIBP 1, 4 0.5805 5 0.5948

Figure 3 The network plot of 500 gene-gene interactions.
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Discussion
We proposed a dimensional reduction analysis for the
fast and efficient high order gene-gene interaction analy-
sis via MDR analysis. Our proposed method has the fol-
lowing advantages; (1) it reduces a search space from
SNP level to gene level, (2) it is computationally feasible,
(3) its results can be directly interpretable in gene level,
and (4) its results involve the high-order SNP interac-
tions, which might not be easily identified by other SNP
level gene-gene interaction analysis.
Our application of Gene-MDR method to BD data

detected many novel susceptible high order gene-gene
interactions efficiently. In previous SNP level analyses,
ERG, NEBL, CADPS2, GABBR2, and HDAC9 genes have
been reported to be related with neuropsychiatric dis-
eases such as BD, depression disorder, and schizophre-
nia [35-44]. ERG gene is located on 21q22.3, which is
one of widely studied regions for BD. Since Straub et al.
first reported the evidence of linkage in a large multige-
nerational pedigree with a maximum lod score of 3.41
with the PFKL locus on 21q22.3 [35], several other
groups have reported the evidence of linkage for BD
and 21q22 [36]. Recently, ERG gene was reported to be
very close to the markers in positive linkage with BD
[37]. NEBL gene is located on 10p12, which encodes a
nebulin like protein that is abundantly expressed in car-
diac muscle. While the relatedness between this gene
and cardiomyopathy is reported from many groups,
NEBL is also associated with depression disorder. In a
genome-wide analysis of suicidal thoughts and behavior
in major depression from the RADIANT study, minor
allele of one variant in NEBL gene is reported to be
associated with suicide attempt [38].
The remained CADPS2, GABBR2, and DHAC9 genes

are related with schizophrenia. In the study of brains of
schizophrenia patients, Hattori et al. examined the
expression of CADPS2 mRNA in the postmortem brains
(BA6) of psychiatric patients (schizophrenia, major
depression, and BD) and controls. A significant increase
in CADPS2 expression was detected in the brains of the
schizophrenia group, compared to the control group
[39]. GABBR2 on 9q22.1-q22.3 is a well-known gene, as
a susceptibility locus for schizophrenia [40] and another
gene in this locus is reported to be associated with cog-
nitive test measure [41]. HDAC9 on 7p21.1 is highly
expressed in brain and skeletal muscle [42]. Tam et al.
reported that HDAC9 gene was found to contain single
schizophrenia-specific deletions in copy number varia-
tion study [43]. A decrease in the expression of this
gene has been associated with increased neuronal apop-
tosis [43,44].
Interestingly, while these five genes were shown to

play the role of hub genes in our study, they could not

be detected from the current genome-wide approaches,
because no SNPs in these genes were marginally asso-
ciated with BD in genome-wide significance level. All P-
values were greater than 1 × 10-4. However, Gene-MDR
method detected such many susceptible and candidate
gene-gene interactions efficiently in genome-wide scale.
While several methods have been proposed for identi-

fying gene-gene interaction in GWA studies, all of these
methods are SNP level analysis and cannot be practically
applied to the GWA data, because huge search spaces
and heavy computing are required. Especially, the
exhaustive search methods such as the MDR method
cannot identify high order gene-gene interaction from
GWA data. In order to address these challenges, we
propose the Gene-MDR approach which is an efficient
and fast gene-based gene-gene interaction analysis
method for GWA data. By compromising between an
exhaustive search method and the two-stage analysis
method, Gene-MDR can easily conduct interaction ana-
lysis in gene level and detect high order interactions in
SNP level.
Even though Gene-MDR is quite efficient for GWA

analysis, it needs some further investigations regarding
the following issues. First, Gene-MDR uses SNP-gene
annotated information. While Gene-MDR can consider
wide mapping region such as between 200 kb and 500
kb, we chose the 100 kb mapping region in order to
avoid overlap between two adjacent genes and to have a
better interpretation of the gene function by restricting
mapping range. As a result, about 1/3 SNPs in WTCCC
dataset were not annotated and excluded in the analysis.
The loss of genetic information depending on the choice
of mapping ranges needs to be investigated for the gene-
based approach. Second, Gene-MDR may not provide
the globally best gene-gene interactions, because it is
based on the summarized gene-level information. There-
fore, the genuine epistatic factors could be missed.
Third, each gene has a different number of SNPs. Thus,
the use of the same fixed number of SNPs may not be
optimal. Since in our BD analysis we summarized the
gene effects using up to four SNPs, the gene predictors
might have insufficient information about SNPs.
Although our Gene-MDR can easily handle the higher
order interaction greater than four, we think the 8th
order interaction in SNP levels would be high enough to
represent high order interaction of SNPs.
In this study, we did not compare the performance of

Gene-MDR with other commonly used gene-gene inter-
action methods. Since our Gene-MDR is the gene level
approach and others are the SNP level approaches, how-
ever, it is difficult to perform a direct comparison.
Furthermore, other methods based on the SNP levels
cannot handle the 8th order interaction.
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Conclusion
Gene-gene interaction analysis is important in that it
can provide the clue to understand the etiology of com-
plex diseases. In this respect, our proposed method has
the following advantages in applications to GWA stu-
dies. First by reducing high dimensional data from SNPs
to gene, Gene-MDR can analyze the gene-gene interac-
tion with a relatively small number of gene predictors in
GWA studies. Additionally, Gene-MDR can reduce
computation time severely for conducting gene-gene
interaction analysis. As a simple example, assume that
there are 500 K SNPs from 5,000 samples, and each
gene has 10 SNPs. When we conduct gene-gene interac-
tion analysis using 10-fold CV with 2-GHz Dual Core
AMD Opteron(tm) processor (8 GB RAM) in Linux sys-
tem, a computing time of the 2nd order SNP level MDR
analysis was 38,749,922.5 seconds. On the other hand,
our Gene-MDR took 393,492.2 seconds while consider-
ing the 8th order SNP interactions. Hence, Gene-MDR
used 1/100 computation time than SNP level MDR
analysis.
Second, it is possible to detect high-order interaction

using gene predictors. From the results of Gene-MDR,
we can trace the high order interaction in SNP level
from the results of the between-gene MDR step. As
shown in our BD application, when a two-way interac-
tion between gene predictors is identified via our Gene-
MDR method, it may correspond to the 5th to 8th SNP
order interaction.
Finally, the idea of our method can be applied to other

gene-gene interaction approaches. Various statistical
methods such as a principal component analysis and a
factor analysis can be applied by using the summarized
gene predictors. We will investigate the performance of
the summarized gene predictors in other gene-gene
interaction methods in the near future.
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