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Abstract

Background: Given genetic networks derived from two genomes, it may be difficult to decide if their local
structures are similar enough in both genomes to infer some ancestral configuration or some conserved functional
relationships. Current methods all depend on searching for identical substructures.

Methods: We explore a generalized vertex proximity criterion, and present analytic and probability results for the
comparison of random lattice networks.

Results: We apply this criterion to the comparison of the genetic networks of two evolutionarily divergent yeasts,
Saccharomyces cerevisiae and Schizosaccharomyces pombe, derived using the Synthetic Genetic Array screen. We
show that the overlapping parts of the networks of the two yeasts share a common structure beyond the shared
edges. This may be due to their conservation of redundant pathways containing many synthetic lethal pairs of
genes.

Conclusions: Detecting the shared generalized adjacency clusters in the genetic networks of the two yeasts show
that this analytical construct can be a useful tool in probing conserved network structure across divergent
genomes.

Introduction
As two related organisms diverge through evolutionary
time, functional relationships among genes may alter.
Some relationships may weaken, others strengthen,
some may disappear while new ones appear. New genes
or variants of genes may take on specific functions,
while other genes may be inactivated or lost. And these
changes proceed independently in the two evolving spe-
cies. Even if most changes are local, affecting one or
two relationships and two or three genes, after a long
enough period of time the inventory of relationships in
each of the species may reflect relatively little of the ori-
ginal pattern in the common ancestor, and may be quite
different from each other.

Given two graphs representing functional genetic net-
works of two organisms, then, it may be difficult to
decide if the local structures are similar enough in both
graphs to infer some ancestral configuration or some
conserved functional relationships. Current methods all
depend on searching for identical substructures [1]. We
have recently explored the notion of generalized adja-
cency to compare chromosomal gene ordering in two or
more genomes [2-4] as way of parametrizing the relative
importance of conserved gene order versus total gene
content within a cluster. However, this concept is not
tied to the physical nature of chromosomes; it has a
graph-theoretical definition based solely on the adja-
cency of pairs of genes as a consequence their linear
order along the chromosome. As such it is applicable to
more general graphs. In this paper we will use general-
ized adjacency to compare the genetic networks of two* Correspondence: sankoff@uottawa.ca
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species, representing the functional interaction between
their genes.
Our work falls in the tradition of situating small world

networks between regular lattice structures, with their
dense local connections throughout, and completely
random graphs with their short characteristic path
lengths. Small world networks tend to have both proper-
ties, as discussed by Goldberg and Roth [5]. In the next
section we define generalized vertex adjacency in a
graph, and generalized adjacency clusters. Since these
definitions involve a parameter, we invoke our previous
work on finding a “natural” value for this parameter,
and discuss its application to networks. We then sketch
some analytic results on the distribution of the number
of generalized adjacencies in the comparison of two ran-
domly labelled regular lattices, and propose a general
result for the comparison of two arbitrary graphs on the
same set of vertices.
We apply our concepts to the comparison of genetic

networks of Saccharomyces cerevisiae and Schizosacchar-
omyces pombe. The networks were obtained using Syn-
thetic Genetic Array screens for “synthetic lethals”
among virtually all pairs of genes whose individual inac-
tivation is not lethal [6-8]. Typically, these pairs are
organized in two parallel pathways that converge on a
common endpoint, as illustrated in Figure 1. These
pathways buffer each other so that the inactivation of
one or more genes on a single one of the pathways will
not affect survival, but inactivating at least one gene on
both pathways is lethal.
We discover a pattern of local clustering in the edges

common to both networks beyond what is defined by
vertex adjacency alone. We suggest this is a conse-
quence of the synthetic lethals methodology for building
the networks.

Methods
Generalized vertex adjacency
Let S be a gene network with a gene set V = {1,..., n}.
Two genes g and h are i-adjacent, and the pair (g, h) is
an i-adjacency, in the gene network S, written in g

i∼ h
in S, if there are i - 1 genes between them in S along a
shortest path from one gene to the other. We define
genes g and h to be (i, j)-adjacent, and the pair (g, h) is
called an (i, j)-adjacency, in two gene networks S and T,
if they are i-adjacent in either one of the gene networks
and j-adjacent in the other. We say g is an i-adjacent
neighbor of the gene h in a gene network S, if g and h
are i-adjacent in S.
We denote E�

M the set of all i adjacencies in a net-
work M , where 1 ≤ i ≤ Θ For two networks S and T
with the same vertex set V = {1,..., n}, we define a subset
of C ⊆ V to be a (θ, ψ) generalized adjacency cluster, or
(θ, ψ) cluster, if all vertices in the subset C are also the
whole vertices of a connected component of the graph
Gθψ

ST = (V, (Eθ
S ∩ Eψ

T ) ∪ (Eψ

S ∩ Eθ
T)).

To obtain (θ, ψ) clusters of two gene networks, S and
T, the new network Gθψ

ST need to be created first. The
network Gθψ

ST can be constructed by connecting two
genes of gene networks S and T if they are i-adjacent in
S and j-adjacent in T, where max(i, j) ≤ max (θ, ψ) and
min(i, j) ≤ min (θ, ψ). Figure 2 illustrates how the grid
networks S and T determine the (1, 2) clusters
{2,3,4,5,7,9,10,12,13,14,15,19,20},{11,17,18,22} and
{16,21,23,24}. Figures 3 and 4 depict the same process
for triangular graphs and hexagonal graphs, respectively.

Weight function
The definition of generalized adjacency cluster in the
previous section does not discriminate among pairs of
(i, j)-adjacent genes as long as i and j are less than some

Figure 1 Synthetic lethal. Parallel pathways, indicated by arrows, converging at a single gene in a genetic network. Genes represented by dots.
Synthetic lethal pairs of genes connected by red lines.
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cut-off values. However, it seems reasonable to think
that (i, j) with smaller i and j should be weighted more
heavily in defining clusters. To explore this, consider
two networks S and T with the same vertices. Let wij be
the weight on two vertices that are (i, j)-adjacent, i.e., i-
adjacent in one of the networks and j-adjacent in the
other, such that
1. 0 ≤ ωij = ωji, i, j Î {1, 2,..., n-1}

2.
∑n−1

i=1

∑n−1

j=1
ωij = 1

3. ωi, j ≥ ωk, l if

(a) max(i, j) <max(k, l) or
(b) max(i, j) = max(k, l) and min(i, j) <min(k, l)

This is a very general class of weights with reasonable
monotonicity and total weight conditions. We define the
dissimilarity between two gene networks S and T as

d(S,T) = 2P −
l∑

i=1

⎛
⎝niiωii +

l∑
j=1

nijωij

⎞
⎠ . (1)

where P is the number of pairs (x, y) that are (1, 1)-
adjacent in two identical gene networks. nij is the total
number of pairs (x, y) that are i-adjacent in S and j-adja-
cent in T. l is the diameter of the network. We have

argued elsewhere [4] that the “natural” way of finding
weights is to minimize d and we proved the following
surprising
Theorem 1. Let αk =

⌊√
1+8(k−1)+1

2

⌋
.The weight ω

that minimizes d(S, T) has

ωij =

⎧⎨
⎩

1
k∗ , if i < αk∗ , j ≤ i,

or i = ak∗ , j ≤ k∗ − i(i−1)
2

0, otherwise
(2)

where k* is an integer and maximizes the function

f (k) = 1
k

⎡
⎢⎣

αk−1∑
i=1

i∑
j=1

(nij + nji) +

k−1
2αk(αk−1)∑

j=1

(nα k j + njα
k
)

⎤
⎥⎦ , (3)

where nij is the number of gene pairs i-adjacent on S
and j-adjacent on T.
This suggests that uniform weights are appropriate for

all (i, j) adjacencies up to a certain cutoff. Empirical
work indicates that k* is of the order of

√
n,where n is

the number of vertices in the network and so the cutoff
would be for i and j to be less than some value α ≈ n

1
4 .

E.g., for a network with 100 vertices, it should suffice to
consider 2- and 3-adjacencies, but 4-adjacencies need
not be considered.

Figure 2 Square grid. Determination of (1, 2) clusters (or (2, 1) clusters) in square grid graphs and the clusters are {2, 3, 4, 5, 7, 9, 10, 12, 13, 14,
15, 19, 20}, {11, 17, 18, 22} and {16, 21, 23, 24}.
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The expected number of (i, j) adjacencies in two random
networks
An essential step in studying gene clusters is to verify
their significance. Random networks are often used to
estimate the significance of clusters. In this section, we
represent some characteristics of the expected number
of (i, j) adjacencies in two random networks, which can
then be used in evaluating cluster significance.
Theorem 2. Let M be a randomly labelled square grid

network with N vertices. Then the number of i adjacen-
cies, ni, in the network M converges in distribution to the
Poisson with parameter

E(ni) = 2i +O
(
1
N

)
, (4)

the expected number of i adjacencies in the network M.
Proof. Because M is a random square grid network, we

can use a coordinate system to represent it. Vertices in
the network correspond to the points in the plane with
integer coordinates, x-coordinates being in the range

1,..., m, y-coordinates being in the range 1,..., n, where N
= mn. Without loss of generality, we set m ≤ n. Two
vertices in the network are i-adjacent if the L1 distance
between them in the integer coordinates is i.
Let Yi

M(u, v)be 1 if vertices u, v are i-adjacent in the
network M and 0 for otherwise. Then ni =∑

(u,v) Y
i
M(u, v).Since most vertices have 4i i-adjacent

neighbors, we can show that

P(v,Yi
M(u, v) = 1|u) =

4i
mn − 1

+O
(

1

(mn)2

)
, (5)

where the error term is due to edge effects [9]. Since
N = mn,

P(Yi
M(u, v) = 1|(u, v))

=P(v,Yi
M(u, v) = 1|u)P(u)

=
4i

N(N − 1)
+O

(
1
N3

) (6)

Figure 3 Triangular grid. Determination of (1, 2) clusters (or (2,1) clusters) in triangular grid graphs and the clusters are {1, 2, 3, 4}, {6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20} and {21, 22, 23, 24}.
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where the error term includes the edge effects detailed
in equation(5). Then

E(ni) =
∑
(u,v)

P(Yi
M(u, v) = 1|(u, v))

=
∑
(u,v)

[
4i

N(N − 1)
+O

(
1
N3

)]

=
N(N − 1)

2
.

[
4i

N(N − 1)
+O

(
1
N3

)]

= 2i +O
(
1
N

)

(7)

Therefore, based on the proof of Theorem 2 in [10],
we can conclude that ni converges in distribution to the
Poisson with parameter E(ni) the expected number of i
adjacencies in the network M.
Theorem 3. For S and T two random square grid net-

works with the same N vertices, the number of pairs of
vertices nij that are i-adjacent in S and j-adjacent in T
converges in distribution to the Poisson with parameter

E(nij) = 8ij +O
(
1
N

)
, (8)

the expected number of (i, j) adjacencies in networks S
and T.

Proof. Let Yi
S(g, h)be 1 if vertices g, h are i-adjacent in

the random square grid network S and 0 otherwise.
Similarly, defineYj

T(g, h) to be 1 if vertices g, h are j-adja-
cent in the random square grid network T and 0 other-
wise. Let Y(i,j)

(S,T)(g, h)be 1 if vertices g, h are i-adjacent in
S and j-adjacent in T. Otherwise Y(i,j)

(S,T)(g, h) = 0.
Because of the independence of g, h being i-adjacent in
S and j-adjacent in T, the probability that g and h are (i,
j)-adjacent in S and T is

P
(
Y(i,j)
(S,T)(g, h) = 1|(g, h)

)

= P(Yi
S(g, h) = 1|(g, h) .P

(
Yj
T(g, h) = 1|(g, h)

)

=
16ij

N2(N − 1)2
+O

(
1
N5

) (9)

So the expected number of (i, j)-adjacencies in the two
networks S and T is

E(nij) =
∑

(g,h)in S,T

P
(
Y(i,j)
(S,T)(g, h) = 1|(g, h)

)

=
[

16ij

N2(N − 1)2
+O

(
1
N5

)]
.

∑
(g,h) in S,T

1
(10)

The term
∑

(g,h) in S,T 1 in equation (10) represents the
total number of (g, h) combinations in two networks S

Figure 4 Hexagonal grid. Determination of (1, 2) clusters (or (2, 1) clusters) in hexagon grid graphs and the clusters are {1, 2, 8}, {6, 12, 13}, {27,
34, 40, 41}, {7, 14, 21, 28}, {15, 16, 22, 29}, {43, 44, 49}, {3, 4, 9, 10, 11, 17, 18, 19, 20, 24, 25, 26, 32, 33, 38} and {23, 30, 31, 36, 37, 44, 45, 46, 47, 48,
50, 51, 52, 53, 54}.
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and T based on pairs of location of (g, h) in S and T.
There are 1

2N(N − 1) pairs of location possible for (g,
h) in each of two networks and 2 alternatives for each
gene pair (g, h) in S and T. So∑

(g,h) in S,T 1 = 1
2N

2(N − 1)2. Hence, the expected num-
ber of (i, j)-adjacencies in the two networks S and T is

E(nij) =
[

16ij

N2(N − 1)2
+O

(
1
N5

)]
.
N2(N − 1)2

2

= 8ij +O
(
1
N

) (11)

Therefore, based on the proof of Theorem 2 in [10],
we can conclude that nij converges in distribution to the
Poisson with parameter E(nij), the expected number of
(i, j) adjacencies in networks S and T.
More generally we can use the same techniques to

prove Theorems 4 and 5:
Theorem 4. Let D be the degree of a gene in the ran-

dom genetic grid network, i.e. the number of 1-adjacent
neighbors of this gene in the network. For two random
genetic lattice networks S and T with same genes, the
number of pairs of genes nij that are i-adjacent in S and
j-adjacent in T converges in distribution to the Poisson
with parameter

E(nij) =
D2ij
2

+O
(
1
N

)
(12)

Even for networks as small as 400, simulations indi-
cate that the distribution of nij is close to the Poisson in
Theorem 4, for square (D = 4), hexagonal (D = 3), trian-
gular (D = 6) grids as well as linear networks (D = 2).
Looking beyond regular networks:
Theorem 5. Let Dk(M) be the number of k-adjacent

gene pairs in the random network M. For two random
networks S and T with same vertices, the number of
pairs of vertices nij that are i-adjacent in S and j-adja-
cent in T converges in distribution to the Poisson with
parameter

E(nij) =
Di(S)Dj(T)

2
+O

(
1
N

)
(13)

Results: genetic networks in S. cerevisiae and S.
pombe
Dixon et al. [8] presented an extraordinary comparison
of the genetic networks of Saccharomyces cerevisiae and
Schizosaccharomyces pombe, two rather distant yeast
genomes. Their results are summarized in their Figure
2, which we reproduce here as Figure 5. We separated
the two overlapping networks based on the colours in
this diagram, as depicted in Figure 6.
We compiled the graph-theoretical characteristics of

these networks: number of vertices, average vertex
degree, number of edges, and present them in Table 1.

Figure 5 Overlapping S. cerevisiae and S. pombe genetic networks. Green edges: S. cerevisiae interactions only, blue edges: S. pombe only.
Red edges: common to both networks. From [8]. ©2008 PNAS, S. Dixon et al.
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The details of the vertex degree distributions are given
in Figure 7.
We then carried out a number of simulations. First,

we simulated random networks having the same statisti-
cal characteristics as in Table 1 and Figure 7. This
showed the random networks to be deficient in (2,2)-,
(3,3)- and (4,4)-clusters of genes compared to the yeast
networks, under all of the (1,1)-, (2,2)- or (3,3)-adja-
cency criteria (see Table 2). In passing, we mention that
the analysis of regular grid networks 7 earlier in this
paper predicts very much smaller numbers of clusters
than the random networks. Second, we fixed the com-
mon edges in both yeasts to initialize the random net-
works, and then generated the rest of the edges in
conformity with Table 1 and Figure 7. This assured the
(1,1)-adjacency results would be the same or close to
the yeast results (see Table 2), but again the yeast net-
works showed a significant excess of clusters under
(2,2)-adjacency. (The significance can be verified in Fig-
ure 8.)
One of the factors responsible for the increase in clus-

ters under 2-adjacency is the incidence of parallel

buffering pathways in the genetic organization of these
yeasts. Figure 9 illustrates how such pathways determine
subgraphs in the network that are essentially bipartite.
There are no 1-adjacencies among the genes in a single
pathway, but the back-and-forth pattern of edges
between the two sides of the bipartite structure ensures

Figure 6 Separate networks. S. cerevisiae (left) and S. pombe (right) genetic networks. Red edges are common to both.

Table 1 Characteristics of comparative graph

yeast vertices average degree edges

S. cerevisiae 89 4.36 194

S. pombe 85 3.34 142

in common 72 54

Number of vertices, their average degree and number of edges pertinent to
each of the two yeasts.

Figure 7 Network characteristics. Distribution of vertex degrees in
yeast networks.
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that under 2-adjacency, the genes in both pathways par-
ticipate in clusters of various sizes.
As for the observation that 3-adjacency does not

increase the number of clusters over random networks
more than is achieved by fixing the common edges, this
is partly explained by the fact that the yeast show only
about 50% more clusters of each size than the random
network, compared to the 250% -600% under 2-

adjacency. Increasing the adjacency parameter in these
networks simply results in large numbers of random
clusters that swamp any subtle distinction between the
fixed edge simulation and the yeast network.

Conclusions
Generalized adjacency is a flexible but rigorous concept
in the search for patterns of similarity among genetic
networks. Although we analytically calculate properties
of regular grid networks, e.g., linear, triangular, square
and hexagonal grids, and though the average vertex
degree of the empirically derived networks is in the
same range as the hexagonal and square grids, the pre-
dicted number of clusters is much higher in the real
data. This can be attributed in large part to the disper-
sion of the degree distribution, which is non-existent for
the grids.
Of greater interest is the inability of random networks

with the same characteristics as the real network to gen-
erate the same number of clusters. This is largely due to
the small number of common adjacencies in the random
networks, but even when this is forced to be the same,
the yeast data showed an unexpected pattern of
increased clustering under (2, 2)-adjacency, for all sizes

Table 2 Characteristics of comparative graph

cluster size graph adjacency parameter*

1-adj. 2-adj. 3-adj.

2 genes yeast 54 253 746

random 4.5 99 581

fixed common edges 53 217 767

3 genes yeast 104 1,668 12,321

random 1.2 442 8,909

fixed common edges 101 1,292 12,185

4 genes yeast 136 10,417 159,167

random 0.3 1,741 104,339

fixed common edges 132 7,567 160,821

Simulations showing heightened numbers of common 2-gene, 3-gene clusters
4-gene clusters under (2,2)-adjacency in the yeast network compared to
random graphs.

Figure 8 Test of cluster frequencies. Number of clusters containing three and four 2-adjacent genes in common, in 500 pairs of simulated
networks with the same common 1-adjacencies as the two yeast networks.
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of cluster (see Table 2). This was partly explicable in the
way the networks were constructed using the synthetic
lethals screen.
In conclusion, generalized adjacency is potentially a

useful tool in exploring the special combinatorial struc-
ture of genetic networks.
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