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Abstract

Background: High Content Screening (HCS) has become an important tool for toxicity assessment, partly due to
its advantage of handling multiple measurements simultaneously. This approach has provided insight and
contributed to the understanding of systems biology at cellular level. To fully realize this potential, the
simultaneously measured multiple endpoints from a live cell should be considered in a probabilistic relationship to
assess the cell's condition to response stress from a treatment, which poses a great challenge to extract hidden
knowledge and relationships from these measurements.

Method: In this work, we applied a text mining method of Latent Dirichlet Allocation (LDA) to analyze cellular
endpoints from in vitro HCS assays and related to the findings to in vivo histopathological observations. We
measured multiple HCS assay endpoints for 122 drugs. Since LDA requires the data to be represented in
document-term format, we first converted the continuous value of the measurements to the word frequency that
can processed by the text mining tool. For each of the drugs, we generated a document for each of the 4 time
points. Thus, we ended with 488 documents (drug-hour) each having different values for the 10 endpoints which
are treated as words. We extracted three topics using LDA and examined these to identify diagnostic topics for 45
common drugs located in vivo experiments from the Japanese Toxicogenomics Project (TGP) observing their
necrosis findings at 6 and 24 hours after treatment.

Results: We found that assay endpoints assigned to particular topics were in concordance with the histopathology
observed. Drugs showing necrosis at 6 hour were linked to severe damage events such as Steatosis, DNA
Fragmentation, Mitochondrial Potential, and Lysosome Mass. DNA Damage and Apoptosis were associated with
drugs causing necrosis at 24 hours, suggesting an interplay of the two pathways in these drugs. Drugs with no
sign of necrosis we related to the Cell Loss and Nuclear Size assays, which is suggestive of hepatocyte
regeneration.

Conclusions: The evidence from this study suggests that topic modeling with LDA can enable us to interpret

relationships of endpoints of in vitro assays along with an in vivo histological finding, necrosis. Effectiveness of this
approach may add substantially to our understanding of systems biology.
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Background

Toxicity screening is an essential step in drug develop-
ment since safety concerns have been one of the main
causes of bottlenecks before drug approval [1,2]. In vitro
assays, such as High Content Screening (HCS) methods,
have become an important tool for safety screening.
HCS has been actively evaluated for use in drug discov-
ery due to the advantages of being high-throughput and
requiring less physical material for testing.

Unlike conventional cytotoxicity assays, HCS offers the
promise of understanding the biological functions under-
lying toxicity by simultaneously testing various cellular
activities in live cells [3]. Providing temporal and spatial
measurements of relations within the cell, HCS has
gained acceptance in the research community and it has
been actively applied over the past decade for the assess-
ment of drug toxicity and study of mechanisms [4-11].
This so-called systems cell biology has also generated
positive effects in the drug discovery process [12].

HCS has notable advantages over traditional cytotoxicity
assays because it measures multiple cellular endpoints
simultaneously so that it captures a more complete and
dynamic picture of cellular response to an insult. We
hypothesized that these endpoints together indicate
the cell’s condition under stress responding to a treatment
in a probabilistic relationship. Such a characteristic can
not be accurately described by most of the common
approaches such as clustering or PCA and should be mod-
eled with a Bayesian relationship. Unfortunately, most, if
not all, post-experiment analysis often involves building
discriminative models that use each read-out assay (i.e.,
endpoint) as an independent feature. Specifically, these
data analyses treat individual endpoints as independent
features rather than observing their interdependencies in a
probabilistic relationship [13]. For example, O’Brien et al.
reported an HCS assay based on the HepG2 cell line and
paired the HCS endpoints with the conventional in vitro
cytotoxicity assay in a one-to-one comparison to assess
the human hepatotoxicity of the tested drugs [3]. Likewise,
Xu et al. generated eight cellular measurements in
an HCS assay based on rat primary hepatocytes and
employed a Boolean logical OR to indentify individual
endpoints with high predictivity for clinical drug-induced
liver injury [14]. As promising as these results are, this
practice does not take full advantage of interdependencies
among these cellular endpoints indicated by the systems
biology of the cell.

In order to best use the multi-parameter measurements
of live cells that HCS assays provide, a statistical analysis
method must have the capability to extract hidden
knowledge and relationships from these measurements.
The best way to address this issue is to adapt a systems
approach that would not only model relations between
endpoints, but also link such a relationship to elucidate
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the cellular events leading to toxicity [15]. For this rea-
son, we investigated a statistical model which attempts to
both summarize cellular events reflected in the endpoints
measured in a parallel fashion in HCS and establish a glo-
bal understanding of their relations in the cell.

We used Latent Dirichlet Allocation (LDA) [16] for
topic modeling, which has primarily been applied to pro-
blems in text mining [17-22], to analyze the data from
the HCS assays. LDA assumes that the expression of the
HCS endpoints follow a probabilistic distribution and
can be modeled by the mathematic expression of “topics”
that consist of these endpoints. The topic model allows
endpoints to be linked to multiple topics with different
strength levels. Similarly, it builds probabilistic associa-
tions between topics and drugs, which we treat as docu-
ments containing occurrences of endpoint measurements
(i.e., words). Thus, LDA acts as more than a classification
or clustering approach and instead aids in the interpreta-
tion of the topics.

In this work, we built a topic model using LDA for rat
primary hepatocyte-based HCS assays to investigate the
relationship of the cellular level response to the drug treat-
ment observed in this assay and the liver injury related
necrosis observed in the whole animal (in vivo) study. Our
study demonstrated the utility of topic modeling, including
the innate properties of the assay, to interpret the HCS
results and thus reach a better understanding of the toxic
response. The results indicate that endpoints under signifi-
cant topics corresponded to the cellular mechanisms
involved in the progression of hepatocellular necrosis
in vivo as well as recovery from liver injury. This proof-of-
concept study demonstrates that topic modeling has the
potential to model biological data beyond simply text
documents to exploit the relationships of assay endpoints.

Materials and methods

HCS assays

A set of compounds with a wide range of known
mechanisms of action was chosen to test the range of
detection of the mechanistic profiling assays applying the
cellular systems biology (CSB™) approach (CellCiphr®
profile). Eight endpoints, Cell loss, Nuclear Size, DNA
Damage, Apoptosis, Lysosomal Mass, DNA Fragmenta-
tion, Mitochondrial Potential, and Steatosis were mea-
sured simultaneously in populations of cultured rat
primary hepatocytes at multiple time points to profile
both the potency and specificity of the cellular toxicologi-
cal responses [23]. Briefly, rat primary hepatocytes were
prepared using the method reported by Berry et al. [24].
Cell viability obtained from this method ranged from
85% to 95%. Diluted test compound solutions were
added to each well at identical final concentrations. The
maximal concentration of treatment was 200 uM with
10-point titrations for each compound using a 2-fold
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dilution series and tested up to 48 hours. The final con-
centration of DMSO in each well was 1% (v/v). For all
assays, cells were analyzed using an ArrayScan VTI HCS
Reader in the high-resolution mode with a 10x/0.45 NA
objective and a 0.63 x coupler.

In Vivo data from animal experimental study

The necrosis data used in this study was obtained from the
Japanese Toxicogenomics Project (TGP). Details regarding
the animal study protocol are available elsewhere [25,26].
Briefly, male Sprague-Dawley rats were purchased from
Charles River Japan, Inc. (Kanagawa, Japan). The TGP
selected a set of compounds to test. Each group of animals
was administered at low, middle and high doses with the
concurrent control group. The maximum tolerated dose
(MTD) of each compound was determined by one week
dose range finding (DRF) study and set as the high dose.
Low and middle doses were 1/10 and 1/3 of high dose,
respectively. Animals were administered a single dose and
then sacrificed at 3, 6, 9, and 24 hours after dosing. Liver
samples were immediately collected from the left lateral
lobe of the livers and processed through dehydration and
embedded in paraffin block for slide preparation and
observation of histopathology. Histopathological changes
were examined at four well recognized institutions in
Japan by certified pathologists. Alterations of histology
were described using the standard terminology unified by
“the Japan Toxicology Society of Pathology” which can be
found at (http://www.nihs.go.jp/center/yougo/15.pdf).

Data preprocessing

The HCS assays included 8 endpoints (Steatosis, DNA
Fragmentation, Mitochondrial Potential, Lysosome Mass,
DNA Damage, Apoptosis, Cell Loss, and Nuclear Size)
that were observed for 1, 6, 24, and 48 hours after treat-
ment of 122 drugs (Additional file 1). These endpoints
were measured in two plates with DNA Damage, Apop-
tosis, Lysosome Mass, and DNA Fragmentation at the
first plate and Mitochondrial Potential and Steatosis at
the second plate, while Cell Loss and Nuclear Size were
measured at both plates. In order to incorporate all the
assay measurements into our model, we treated Cell Loss
and Nuclear Size in the second plate as two different
endpoints. This resulted in 10 endpoints in total. Differ-
ent dose levels were imposed which constituted a dose-
response curve for each endpoint at the time of measure.
We normalized each dose-response curve by its corre-
sponding curve obtained through Dimethyl Sulfoxide
(DMSO) solvent (control). The normalization step was
followed by quantifying these cellular responses where
area under the dose-response curve (AUC) was calcu-
lated by using a numerical integration approach. Subse-
quently, for each drug we produced a data table where
every column represented a time point of an endpoint
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(left matrix in Figure 1A). Including the replicated plates
for Cell Loss and Nuclear Size, 40 AUC values were
obtained for each drug.
Since the topic modeling approach assumes all the
entries of data are generated by a multinomial distribu-
tion, continuous AUC values were converted into inte-
gers (middle matrix in Figure 1A) by a discretization
method [27] that uses a binning approach. Entries from
each column were divided into 100 bins and mapped to
the corresponding integer. In this new numerical repre-
sentation, each cell provided approximate information
on the frequency of the corresponding column variable.
In order to observe the endpoint behavior over time,
we changed the orientation of the data so that rows
became the drug-hour combinations. Therefore, number
of columns shrank to number of endpoints which was
10 including the replicates. This perspective provided a
temporal observation which could be exploited by topic
modeling. In other words, each drug-hour stood for a
document and values in the corresponding row quanti-
fied the number of occurrences of endpoints (words) in
that document. The analogy we carried out here allowed
us to use 10 endpoints as a vocabulary and construct
different profiles (documents) for every time step of
each compound (right matrix in Figure 1A).

Topic modeling

In this study, we used Latent Dirichlet Allocation (LDA) as
a topic modeling tool, which is an improved version of ear-
lier models [28,29] and allows multiple topic assignments
[16]. LDA assumes that every document is a mixture of dif-
ferent topics which govern the allocation of words across
documents. The model formalizes this principle by posing
a multinomial distribution of topics, z, over words, i.e.,
z~Mult(0) with parameter 6. To make the likelihood esti-
mations computationally tractable, 6 is assumed to follow a
Dirichlet distribution which is the conjugate prior of multi-
nomial distribution. Therefore a hyperparameter, ¢, is
introduced and 6 is sampled from Dir(c). Similarly, word
distributions are also controlled by another multinomial
distribution for given topics and parameters having Dirich-
let distribution which takes f3 as another hyperparameter.
For a document which has N words, this generative process
can be concisely presented as follows [16]:

1. Choose 6 ~ Dir(c).

2. For each of the words w,, where n € {1,...,N}
a. Choose a topic z, ~ Mult(6)
b. Choose a word w,, from another multinomial
distribution that is conditioned on the topic z,
and a prior B. ie., p(w,| z,, B)

A distinguishing feature of LDA is that it can assign
an unseen document to discovered topics. Furthermore,
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Figure 1 Flow chart of the procedure of this study, from data processing to topic diagnosis. (A) steps include discretization and change
in the orientation of the input matrix for LDA. (B) steps developed parameters for different class definitions in Settings |, Il, and Il (Table 1), and
identified diagnostic topics for the 45 drugs in the in vivo histopathology dataset.

it provides interpretable conditional probability tables
(CPT) for aforementioned associations such as docu-
ment-topic (p(topic|document)) and word-topic (p
(word|topic)). CPTs not only give the mixture weights
of topics for given documents, but also tell how likely it
is that a word comes from a given topic.

Diagnostic topic

CPTs can be used to measure the document-topic associa-
tions. These probabilistic values can also be used to rank
the most probable topics. However, there is a need to
measure diagnostic topics [30] for a class of documents
instead of an individual treatment. Griffiths and Steyvers
introduced this term to link a class of documents to their
statistically significant topic or diagnostic (indicator) topic
[30]. The methodology first requires calculation of the
mean probabilities of each category for a given topic k.
Secondly, each class (¢) mean for topic &, Kk, is divided by
the sum of all class means for topic k. If there are C

categories, the following expression gives the significance
score of topic k, for a class c.

Mck

Seie = c
Z Mk
c=1

1)

Finally, we have a CxK matrix in which rows are the
scores for topics and we declare k* as the diagnostic
topic for a group c if Jex = a}fg max S,

Results

Study design

One of the goals in toxicogenomics is to link in vitro
findings with in vivo study in order to better understand
the mechanisms underlying toxic insult. Importantly,
the concordance of the in vivo and in vitro results is a
key indicator of potential to replace and reduce the ani-
mal uses in assessing risk of a broad range of medical
and pharmaceutical products. Implementation of the



Bisgin et al. BMC Bioinformatics 2013, 14(Suppl 14):511
http://www.biomedcentral.com/1471-2105/14/S14/511

model on HCS data was followed by analyzing 45 com-
pounds whose histopathological data and HCA data
available for this study, where the histopathological data
was obtained from the TGP database while the HCS
study was conducted by a commercial vendor (Addi-
tional file 2). We split drugs into groups based on
whether they caused necrosis at 6 or 24 hour after treat-
ment. This split resulted in three groups: 22 drugs with
no necrosis finding at either time point, 15 drugs show-
ing necrosis at 6 hours, and 13 drugs showing necrosis
at 24 hours (Additional file 3). Corresponding settings
in Table 1 were used to detect diagnostic topics, a con-
cept which was originally developed for detecting topics
that match with documents that share a commonality.
Similarly, we extend this notion to identifying topics to
observe their agreement with necrosis vs. non-necrosis
findings at either 6 or 24 hours. Figure 1B illustrates
how the settings below were incorporated with CPT
(p(topic|drug-hour)) of 45 common drugs.

In order to see whether the model can distinguish three
groups (6hr necrosis, 24hr necrosis, and non-necrosis),
we set the number of topics equal to three for the voca-
bulary of 10 endpoints (terms). Next, using the imple-
mentation by Blei et al. [31], we developed the model for
488 drug-hour combinations (four time points each for
the 122 compounds). The resulting conditional probabil-
ity tables (CPTs) were used in three analyses: i) grouping
and ranking endpoints within topics, ii) diagnostic topic
identification, and iii) linking endpoints to cellular
processes.

Groupings and ranking of endpoints

The topics () not only grouped the endpoints based on
their distribution across drugs, but also provided an
importance measure with the probability scores of end-
points (e) for given topics, p(e|t). More specifically, p(e|t)
indicates which endpoints are more important for that
particular topic. In Table 2, the endpoints for each topic
are listed with the endpoints ordered based on the
strength of the relation. Notice that replicated endpoints
are distinguished with indices in parentheses.

Each topic contains a ranked list of 10 endpoints, but
these can be separated into disjoint groups by comparing
p(e|t) values. Namely, we compared three probabilities
p(e|Topic 1), p(e| Topic 2), and p(e|Topic 3) for each e
and assigned it to the topic with the highest probability.
In doing so, we identified groups of terms with the

Table 1 Settings for diagnostic topics
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highest association to their topics and underlined them
in Table 2. Steatosis, DNA Fragmentation, Mitochodrial
Potential, and Lysosome Mass were highly significant for
Topic 1. Similarly, DNA Damage and Apoptosis were the
most highly associated endpoint terms for Topic 2. The
remaining terms, Cell Loss and Nuclear Size fell under
Topic 3.

Diagnostic topics for necrosis vs. non-necrosis

The identification of diagnostic topics requires at least
binary class labels so that the score Sz can be calcu-
lated. In this case, we used histopathological data for 45
drugs generated by the TGP database to establish the
Settings I, II, and III corresponding to temporal observa-
tion of necrosis and non-necrosis drugs. In each setting,
necrosis observations determined two classes, i.e., necro-
sis vs. non-necrosis. Plugging CPTs (p(topic|drug-hour))
generated by LDA into Eq. 1, which also uses the class
label, we obtained scores for each topic. In Table 3, we
summarize all settings with their diagnostic topics. For
instance, Setting I consistently favors Topic 1 because
its score is always the greatest among the three topics.
This implies that Topic 1 is the diagnostic topic for drugs
causing necrosis in rats at 6 hours. Similarly, Topic 2
appears to be the diagnostic topic for the drug group
associated with necrosis at 24 hours in Setting II below.
On the other hand, Setting III presents a clear cut design
where the classes were defined for the drugs that were
never involved in necrosis at 6 and 24 hours. For the 1*
hour in the non-necrosis group, Topic 1 gives the highest
score. However, Topic 3 becomes the diagnostic topic for
these drugs, representing an agreement between in vivo
and in vitro data for non-necrosis behavior at 6 and
24 hours. Finally, Topic 3 can be claimed as the represen-
tative topic for non-necrosis drugs.

Topics as bridging components

We assigned the endpoints to topics to form disjoint clus-
ters and determined diagnostic topics to represent drug
groups for different settings. In both analyses, we used
topics as auxiliary variables. By means of topics, we further
linked endpoint groups from HCS data to drug groups
defined in the three necrosis conditions. We followed this
process to demonstrate that topics could be also used to
bridge in vitro HCS data and in vivo histopatholocal find-
ings as illustrated in Figure 2. For instance, Steatosis, DNA
Fragmentation, Mitochondrial Potential, and Lysosome

Necrosis (# of drugs)

Non-Necrosis (# of drugs)

Necrosis finding at 6™ hour (15)
Necrosis finding at 24" hour (13)
Necrosis at 6™ or 24™ hour (23)

Setting |
Setting Il
Setting Il

No necrosis finding at 6" hour (30)
No necrosis finding at 24" hour (32)
No necrosis at either 6™ or 24™ hour (22)
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Table 2 Endpoint rankings for topics
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Topic 1 P(e|t) Topic 2 P(elt) Topic 3 Pelt)
Steatosis 0221 DNA Damage 0251 Cell Loss (2) 0.191
DNA Fragmentation 0192 Apoptosis 0191 Cell Loss (1) 0.190
Mitochondrial Potential 0.175 DNA Fragmentation 0.129 Nuclear Size (2) 0.179
Lysosome Mass 0.122 Mitochondrial Potential 0124 Nuclear Size (1) 0171
Cell Loss (1) 0.109 Nuclear Size (2) 0.103 Mitochondrial Potential 0.144
Cell Loss (2) 0.094 Nuclear Size (1) 0.095 Lysosome Mass 0.086
Apoptosis 0.033 Lysosome Mass 0.029 DNA Fragmentation 0.020
DNA Damage 0.025 Cell Loss (1) 0.026 Steatosis 0.010
Nuclear Size (2) 0.021 Steatosis 0.026 Apoptosis 0.004
Nuclear Size (1) 0.009 Cell Loss (2) 0.025 DNA Damage 0.004

Mass are listed under Topic 1, which corresponds to 6™
hour necrosis drugs from TGP. Drugs with necrosis
appearing in the 24™ hour from the in vivo study are asso-
ciated with Topic 2, which contains DNA Damage and
Apoptosis. Lastly, Topic 3 both indicates non-necrosis and
consists of the remaining endpoints, Cell Loss and Nuclear
Size. These links, finally, enable us to build transitive rela-
tionships between endpoints from the in vitro HCS data
and necrosis findings in vivo.

Discussion

HCS offers impressive throughput because of its parallel
read outs for multiple endpoints. This approach has
recently been favored as a new technology in cell systems
biology [4-11] and has been demonstrated in various
applications. However, this approach can further benefit
from an improved bioinformatics approach, considering
the interdependencies of endpoints, which is an innate
property of HCS. Although methods like HCA, PCA,
k-means, and SOM are commonly used to identify

Table 3 Scores for diagnostic topics

natural groupings of samples, topic modeling offers
different aspect of results, which use conditional prob-
abilities to highlight importance of any component
we studied (time points, assay types, and endpoints).
Furthermore, its probabilistic nature allows samples to
be assigned to multiple clusters, even though we used
these conditional probabilities to obtain mutually-exclu-
sive endpoint clusters. A limitation of this methodology
is the assumption that the data values are governed by a
multinomial distribution which may not be fully appro-
priate for continuous data. Since a continuous probability
function in such a setting is not computationally tract-
able, biological data were often discretized in earlier stu-
dies [32,33]. Similarly, we have demonstrated the
application of Latent Dirichlet Allocation (LDA) to HCS
data.

As a proof-of-concept study, we introduced a metho-
dology that is rooted in text mining, but by analogy
could be efficiently carried out in the analysis of HCS
data. Similar to the fact that a text is a mixture of

in vitro Time points (HCS Assay) Topic 1 Topic 2 Topic 3
In vivo
6™ hr. necrosis 1*" Hour 0.553 0477 0481
(Setting 1)
6" Hour 0.564 0.552 0490
24" Hour 0.612 0462 0487
48" Hour 0.571 0277 0499
24™ hr. necrosis 1*" Hour 041 0.58 0.52
(Setting 1I)
6™ Hour 045 0.57 050
24" Hour 048 0.66 049
48™ Hour 047 0.89 048
Non-necrosis drugs for 6™ and 24™ hrs 1" Hour 0.521 0450 0.502
(Setting Il
6™ Hour 0459 0404 0.513
24" Hour 0.398 0.371 0.522
48™ Hour 0439 0.187 0.520
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Figure 2 Transitive relations from in vitro assays and in vitro histopathological observations over topics

topics; the measurement of endpoints for a given drug
can be considered as a consequence of multiple cellular
interactions. Thus, cellular responses to each compound
at a particular time point were considered as a document
for topic modeling. Once we applied LDA to the docu-
ment-term representation for topic modeling, we obtained
two probability measures in which topics played an inter-
mediate role. That is to say, an ordered list of endpoints
for given topics was generated along with topic probabil-
ities of each drug.

In this study, topic-based probabilistic associations were
interpreted in the context of necrosis findings observed by
histopathological examinations from rats. In particular,
necrosis was used as a criterion to determine the diagnos-
tic topics, and drugs were categorized into those causing
necrosis at 6 hours, causing necrosis at 24 hours, or not
causing necrosis at either 6 or 24 hours. The purpose of
this process was to match a group of cellular events caused
by these groups of drugs to the progression of necrosis
found in in vivo experiments. Results demonstrated a one-
to-one correspondence between diagnostic topics and
groups of drugs with similar necrosis profiles.

Acquisition of topics by LDA has the advantage of
associating each term (endpoint) to multiple topics

where they can be sorted based on probabilities. In other
words, every topic consists of the same endpoints with
different orders and endpoints are not forced to be
assigned to a single cluster as it happens in k-means and
hierarchical clustering methods. This is reasonable since
none of the biological events occur independently rather
in order by probabilistic significance. However, we split
the endpoints into disjoint sets after showing their
importance for given topics. For this reason, endpoints
were assigned to their most probable topics regarding
their rankings providing potentially important clues as to
the cellular processes underlying a necrotic response to
toxic agents. We illustrated how topics could link end-
points to a group of drugs in Figure 2 where different cel-
lular events might be related to histopathological
observations. Applying this methodology to the data here
we observed the utility of the approach to interpreting
HCS results.

Topic 1 was assigned as the diagnostic topic for necro-
sis at 6 hours, and was associated with the endpoints
Steatosis, DNA Fragmentation, Mitochondrial Potential,
and Lysosome Mass. Changes in DNA Fragmentation are
characteristic of necrotic cell death, where the presence
of 5" overhangs are seen, and changes in Lysosome Mass
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and Mitochondrial Potential are consistent with the
changes to cell ion permeability that eventually lead to
cell rupture [34,35]. Steatosis may either be evidence of
the dysregulation of cellular transport or may itself be
the cause of necrosis if large amounts of lipid distort the
cell to the point of rupture [36].

Topic 2 was associated with DNA Damage and Apop-
tosis, which were diagnostic for necrosis at 24 hours.
The longer time after exposure reveals the difference
between more and less rapid-acting compounds. These
results are somewhat perplexing given the differing
pathological mechanisms underlying necrosis and apop-
tosis, although they do share common features such as
membrane potential dysregulation [36,37]. However, it
may be possible that the initial round of necrosis leads
to a round of apoptosis in the remaining cells due to
changes in the extracellular environment or that the
length of exposure necessary to initiate the apoptotic
response in those conditions is longer than the six hour
time point.

Cell Loss and Nuclear Size showed a highly significant
connection with Topic 3, which was an indicator of non-
necrosis drugs as shown in Table 3. This could be con-
sidered as a biological confirmation of less-toxic events
and indication of hepatocyte regeneration. Cell growth
(increase in cell mass) and cell proliferation (increase in
cell number) are usually coordinated to ensure that cell
size is properly maintained. Hepatocytes are unique
among differentiated parenchymal cells because they
retain a stem cell-like ability to proliferate. This property
remains in rat hepatocytes in primary culture and under-
lies the remarkable capacity of the liver to regenerate
following acute injuries that diminish hepatic mass [38].
Hepatocyte regeneration proceeds along a sequence of
distinctive phases and requires priming of hepatocytes to
achieve competence for proliferation, such as increasing
synthesis of RNA and proteins. Thus, hepatocytes
increase in size at the early stage of the cell cycle, and the
change of nuclear size is proportional to the change of
cellular size [39]. Generally, the nucleus increases in size
from the time of its formation [40]. In addition, it is
reported that hypertrophy precedes proliferation in liver
regeneration, suggesting that the first response to liver
injury is an enlargement in hepatocyte size [41].

All endpoints measured in the HCS assay here are
essential for toxicity assessments. In that sense, besides an
independent analysis or a pair-wise comparison, it is
important to interpret how these events lead to toxicity.
For this reason, we not only used LDA to retrieve prob-
abilistic associations of each endpoint to topics, but also
incorporated a histopathological assessment of necrosis to
test whether there is any biological meaning hidden
behind these topics. For example, the drugs that caused
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necrosis in rats after 6 hours of treatment were also
observed with significant changes of in vitro measurement
in some pre-lethal endpoints including Steatosis, DNA
Fragmentation, Mitochondrial Potential and Lysosome
Mass, while the drugs that caused necrosis after 24 hours
were associated with the cellular events in DNA Damage
and Apoptosis. Obviously, the former observation in the
cellular assay seems to reveal more acute injury, while the
latter one reflects the cell death that might correlate the
necrosis in rats observed even after 24 hour treatment. In
other words, our incorporation of in vivo histopathology
data over time with data from HCS agreed with the con-
ventional wisdom regarding the cause of toxic necrosis.

Although they involve different practices and mean-
ings, in vitro and in vivo data should be considered
complements of each other. One of the goals here was
to make use of these two data types to reveal biological
facts. Besides using a novel computational tool to ana-
lyze HCS, we provide an example of a way to efficiently
bridge in vivo and in vitro data by means of topic. By
using this intermediate variable, we were able to corre-
late histopathological findings with the results from the
HCS assays. The ability of the model to discover pat-
terns with an unsupervised nature indicates its potential
to be an alternative approach for analyzing HCS data.
Hence, one direct application of this methodology for us
is the early detection of drug-induced liver injury by
interpreting the HCS content under probabilistic mea-
sures for drugs and endpoints. We intend to apply this
method to predict the DILI potential of drugs by not
only considering a single endpoint, but relying on the
full set of data generated by HCS.

Conclusion

We have presented here a systems approach that is cap-
able of integration of multiple measurements from High
Content Screening (HCS) by considering the interdepen-
dencies across endpoints. By analogy with text mining,
endpoint distributions and proportions across topics
were used to gain insight into the content of in vitro
data. Further, discovered relations were analyzed along
with corresponding in vivo data. The results showed
that Latent Dirichlet Allocation (LDA) could improve
the interpretation of HCS data for use in systems biol-
ogy. The agreement we observed between in vitro and
in vivo data through topics obtained by LDA provide
early evidence for the effectiveness of this strategy.

Disclaimer

The findings and conclusions in this article have not
been formally disseminated by the US Food and Drug
Administration (FDA) and should not be construed to
represent the FDA determination or policy.
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