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Abstract

datasets.

is also fast.

Background: In drug discovery and development, it is crucial to determine which conformers (instances) of a
given molecule are responsible for its observed biological activity and at the same time to recognize the most
representative subset of features (molecular descriptors). Due to experimental difficulty in obtaining the bioactive
conformers, computational approaches such as machine learning techniques are much needed. Multiple Instance
Learning (MIL) is a machine learning method capable of tackling this type of problem. In the MIL framework, each
instance is represented as a feature vector, which usually resides in a high-dimensional feature space. The high
dimensionality may provide significant information for learning tasks, but at the same time it may also include a
large number of irrelevant or redundant features that might negatively affect learning performance. Reducing the
dimensionality of data will hence facilitate the classification task and improve the interpretability of the model.
Results: In this work we propose a novel approach, named multiple instance learning via joint instance and
feature selection. The iterative joint instance and feature selection is achieved using an instance-based feature
mapping and 1-norm regularized optimization. The proposed approach was tested on four biological activity

Conclusions: The empirical results demonstrate that the selected instances (prototype conformers) and features
(pharmacophore fingerprints) have competitive discriminative power and the convergence of the selection process

Background

In drug discovery and development, researchers are not
only interested in detecting which molecules are active,
but also in determining which conformers of a given
molecule are responsible for its observed biological
activity. At the same time it is helpful to recognize the
most representative subset of molecular descriptors to
help in identifying desired properties to include in drug
design. A molecule may adopt a wide range of confor-
mers because of its structural flexibility. In order to
understand the recognition mechanism between small
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flexible molecules and proteins, which is crucial in drug
discovery and development, identification of the bioac-
tive conformers becomes extremely important. However,
the number of such structures is limited because of the
experimental difficulty in obtaining the crystal struc-
tures, especially for transmembrane proteins, such as G
protein-coupled receptors (GPCR) [1,2] and membrane
transporters, even though the X-ray crystal structure of
a ligand-protein complex is the most reliable way to
obtain the bioactive conformer. Machine learning tech-
niques are a good alternative to the traditional experi-
mental approach. Machine learning is widely adopted in
virtual screening to help prioritize candidate molecules
for experimental molecule screening. Previously, Fu
et al. [3] applied multiple-instance learning via
embedded instance selection (MILES) to study the
biological activity of several sets of molecules interacting
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with different receptor targets including glycogen
synthase kinase-3 (GSK-3) [4], cannabinoid receptors
(CBrs) [5], and P-glycoprotein (P-gp) [6]. MILES was
shown to be highly competitive with classical quantitative
structure-activity relationship (QSAR) approaches in
terms of predictive abilities. During the work, Fu et al.
observed that conformer and pharmacophore fingerprint
features both reside in high dimensional spaces, which
motivates us to extend the MILES framework with joint
instance and feature selection. The selected prototype
conformers and pharmacophore fingerprints may facili-
tate understanding of the interaction mechanism
between small flexible molecules and proteins, and influ-
ence the design of a new molecule with desired proper-
ties, which is the goal in drug discovery and development.

Multiple-instance learning

Multiple-instance learning is a variant of inductive
machine learning. MIL was first introduced by Dietterich
et al. [7] in the context of drug activity prediction. A mul-
tiple-instance problem involves a scenario as follows: A
single example (bag) is a set of instances, a label is
attached to the example, but not to the individual
instances, each instance is represented by a feature vector
respectively. One or more instances are responsible for
the example’s label, but labels for each instance are
unknown. In the context of drug activity prediction, the
observed activity (label) is associated with a molecule
(bag), and the conformers (instances) of the molecule are
responsible for its observed activity (label), but we do not
know which conformers are bioactive (positive instances).
Besides the drug activity prediction problem [7,8], MIL
has been applied to a variety of challenging learning pro-
blems, including image categorization [9], natural scene
classification [10], and text categorization [11].

Many techniques involving MIL can be found in the lit-
erature. We refer readers to the review of MIL [12].
MILES is a competitive and powerful multiple instance
learning technique [13]. MILES assumes instances in the
training set are representative, and maps each bag into
the instance-embedded space represented by instances in
the training set via a mapping function, which measures
the similarity between a bag and a concept target
(instance). Hence, MILES converts a MIL problem to a
standard supervised learning problem, which can be
solved by any standard supervised machine learning tech-
nique. However, the instance-embedded feature space
often contains a large number of redundant or irrelevant
features. Therefore 1-norm SVM is applied to eliminate
redundant and irrelevant features to build a classifier.

Feature selection
Feature selection is a machine learning technique of
finding an “optimal” representative subset of features
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that has competitive discriminative power. Feature selec-
tion is much desired in scenarios where samples are
represented in high-dimensional feature space, which
hinders further analysis. In drug development, the most
representative subset of prototype conformers and sub-
set of molecule descriptors is crucial to facilitate under-
standing the principle of binding and designing a new
molecule with the desired properties.

Methods of feature selection in supervised learning
can be roughly categorized into three approaches
[14,15]: filter, wrapper and embedded methods. A filter
technique is a pre-processing method. The method
ranks each feature individually and selects a subset of
features; the selection is independent of the chosen
learning predictor. A wrapper method uses some metric
to search feature space to give a subset of features that
produces the best prediction accuracy for a chosen
learning machine, which is treated as a blackbox. An
embedded method combines the feature subset selection
and the learning algorithm together; the feature selec-
tion is performed during training. The learning proce-
dure guides the feature selection, which tries to balance
prediction performance and feature elimination. Some
of the most successful feature selection algorithms
belong to the embedded category. To the best of our
knowledge, we are not aware of any embedded feature
selection for MIL in the literature. Filter methods can
be directly applied to MIL as it is classifier independent.
For readers who are interested in more detail about fea-
ture selection in bioinformatics, please see [15-17].

A search technique for proposing new feature subsets
is probably the most important component of a feature
selection method. Search approaches in feature selection
include [14,18]: exhaustive, best first, divide and con-
quer, greedy method, genetic algorithm, and simulated
annealing. The greedy method, e.g. greedy forward
selection or greedy backward selection, is the most pop-
ular search strategy, since it is typically robust to overfit-
ness and has low variance [15].

Recently applying sparsity regularization in dimension-
ality reduction for feature selection has been widely
investigated. For example, 1-norm regularization tends
to give sparse solutions and was proposed to perform
feature selection, e.g. 1-norm SVM [19,20].

Our contribution

In this work, we propose a framework, multiple instance
learning via joint instance and feature selection. The goal
of the proposed approach is to produce a highly predictive
model, and at the same time, provide the most representa-
tive subsets of prototype instances and features. Feature
selection is embedded in the optimization procedure by 1-
norm regularization, and zero-weighted features are elimi-
nated iteratively, and a greedy backward elimination is
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also performed (optionally). First, standard MILES is
applied on the training set. Instances in the training set
are then classified and k top ranked positive and negative
instances are selected respectively from the positive and
negative training bags to compose a new data set which
resides in the original feature space. Finally a new classifier
is trained in the original feature space. In the framework,
both classifiers are trained using 1-norm regularization,
and sparse weight vectors are obtained. Those instances
and features with zero weights are removed in the next
iteration. The process repeats until there are no zero-
weight features. Finally, an optional backward elimination
is taken to find the best feature subset which gives the
highest cross validation accuracy.

Methods
In this section, in the first part we describe the proposed
method: First we review instance-based mapping in
MILES; then we describe instance classification and
selection. Finally, we present our algorithm. In the sec-
ond part we describe the method of generating data
sets, data sets, and experimental setup.

For convenience of discussion in the second part, the
same symbol notations as [13] are used in the paper. We

denote the ith positive bag as B}, where i = 1, ..., {7,
and the jth instance in the bag as X,;-, where j=1,...,n].
Similarly B; (i=1,...,£7) and X;(] =1,...,n;) repre-

sent the ith negative bag and the jth instance in the nega-
tive bag, respectively. All instances are represented in the
feature space X. We line up instances in all bags and
reindex them as x* (k = 1, . . . , n, where

L+ l—
n= E ‘ lnlf' + E ‘ 1ni’). The superscripts + and - are
i= i=

omitted when the label of a bag does not matter.

Instance-based feature mapping

Multiple-instance learning via embedded instance selection
(MILES) converts a MIL problem to a standard supervised
learning problem via instance-embedded feature mapping.
MILES assumes each instance in the training set corre-
sponds to a possible concept target (C = {x* : k= 1,. . .,n}).
These concept targets (instances from the training bags)
compose a new space, known as instance-embedded space,
denoted as F. A bag B; is embedded in the space F. The
coordinates of B; can be defined as

m(B;) = [s(x!, B), s(x% By), ..., s(x", B)|", 1)

where s(x*, B;) can be a measure of similarity between
the concept point and a bag B;. In MILES, this is
defined as

)
Xji — X
s(xk,Bi)=m;1xexp(— I3 ) I ),

i o
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where o is a parameter that has to be optimized dur-
ing training of a classifier. In our drug activity predic-
tion experiments, we use a simple formula,

S(Xk, B;) = mind(xy;, Xk)r (2)
1

where d is a distance function, which measures the
dissimilarity of two vectors. Hamming distance is used
in our experiments since the pharmacophore fingerprint
is a binary string.

After defining the instance-based feature mapping
function, we can apply the function to a given training
set to yield a matrix representation M in F:

m(B7),..., m(B;:), m(By),..., m(B, )]
s(x!, BY) ... s(x', B)
s(x%,B}) ...s(x%, B,) (3)

’

s(x",B7) ... s(x",B,.)

where each row represents a possible concept target in
F, each column represents a bag B,.

For example, if a concept target x* achieves high simi-
larity with some positive bags and low similarity with
some negative bags via s(xk, -), where

s(x*,-) = [m(B}),..., m(B:), m(B;), ..., m(B;)],
the concept target x* is useful, because s(x*, -) provides
some useful information to separate the positive bags
and negative bags. These possible concept targets in F
usually are redundant and many of them are irrelevant.
Feature selection is a necessary step to achieve high pre-
diction performance. In MILES, instance (concept)
selection is embedded in the classifier optimization via
1-norm regularization. An optimal classifier is learned
and a subset of representative concepts is selected.
Recursive instance selection is also possible.

After a learning iteration, an optimal sparse weight
vector w and the corresponding intercept vector b" are
obtained. The magnitude of w}, determines the contribu-
tion of the kth concept in F to the learned classifier.
The set of selected concepts is given as {xk kel
where 7 = {k: |wj;| > 0}, which are indices of non-zero
weight entries in w'. A concept target is named as a
positive prototype if its corresponding weight is positive,
or named as a negative prototype if its corresponding
weight is negative. A bag B; is classified as

y = sign(y_ wis(x', By) +b°), @)
ke

which is computed solely using the positive and nega-
tive prototype concept targets. Void prototype concepts
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(see below) are irrelevant features which make no con-
tribution to bag classification, because their correspond-
ing weights are zero.

Instance classification and selection

Instance classification in MIL is also important in some
multiple instance learning problems. For example, find-
ing the representative subset of molecule descriptors is
as important as determining which molecules are active.
We have to define a metric to label instances in a bag
after a classifier for MIL is learned.

Labels of instances in a bag are unknown, and there is
no ground truth. But we still can develop a formula to
label instances after a multiple instance learner is
trained: classifying instances in a bag according to their
contributions to the bag classification.

Instances in a bag are classified into three categories:
positive class, negative class, and void class, according to
their contribution to Y, .;wis(x", B;). If an instance of a
bag makes no contribution to classification of the bag, it
is assigned to the void class. An instance in a bag is
assigned to the positive class if its contribution is greater
than some threshold; otherwise it is assigned to the
negative class. The threshold has to be determined.
Obviously, only instances of a bag which belong to the
positive or negative class contribute to the classification
of the bag. Instances of the void class can be safely
dropped in equation (4).

For example, Figure 1 shows a bag B; with four
instances, x;; j = 1, 2, 3, 4, represented in columns. Five
concept target points selected by a learning algorithm,
T =1{1,2,3,4,5}, where x, x%, x> are positive prototype
points, x*, x* are negative prototype points, indicated by
a plus or minus sign in parentheses, represented in
rows. Each cell is filled with 1 or 0, where 1 (0) indicates
the instance x;; is (is not) the nearest neighbor to a con-
cept target point k € 7.

We observe that a concept target has at least one
instance that is its nearest neighbor. An instance of B;
could be the nearest neighbor of multiple concept target

Xi2 Xi3 X4
0 0 0
1 0 1
0 0 1
0 0 1
0 0 1

Figure 1 A toy example for illustrating instance classification.
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points, e.g., X;; is the nearest neighbor of x* and x°. An
instance can be the nearest neighbor of no x* s, e.g., x;.
X;; can be classified as a positive instance since it is the
nearest neighbor of positive concept target points only,
X;» can be classified as a negative instance since it is the
nearest neighbor of only negative concept target points.
X;3 can be classified as a void instance since it is not the
nearest neighbor of any concept target points. x;; has to
be determined using a metric (see later), because it is
the nearest neighbor of positive and negative concept
points. The nearest neighbors of all concept targets
together contribute to a bag classification.

Given a bag B; with instances x;;, j = 1, ..., n; we
can define a minimal set of instances I/ responsible for
classifying B, as

U=1{*:j" =argmind (x,'j,xk) , kel
j

which removes the instances of void class from the
list, and the remaining instances j*,j* € U, of B;, contri-
bute to classifying B;, e.g. U = 1,2,4 for the above
example (assuming xi, is not classified as void class
using (5)). Also given a k € Z, there could be multiple
instances in B, that are nearest neighbors of x* . The
number of instances for x* is denoted as m* . For the
above example, m ,k=1,2,3,45is1,2,1,1and 2
respectively. Also an instance Xijx, j* € U could be one
of the nearest neighbors for different x “k ¢ 7. We
introduce

T ={k:k €Z,j* =argmin d(xij,xk)},
j

for j* € U. And we define a new function,

wjs (x*, xi5¢)

g(Xij* ) = Z ’ (5)

keT mk
which defines the contribution of x;;- in a bag B; to the
classification of B,. And the equation (4) is written as

Y= sign(z g(xi) +b*).

jreld

Instances x;;- in a bag B; can be classified using the
criteria if g(x;;+) is greater than a threshold J. The
threshold ¢ is domain specific. In experiments of
MILES, it was — ‘Z‘. In our experiments, we can avoid
determining the threshold ¢ via ranking the decision
values. Also it is arguable whether in equation (5), the
factor of miy is necessary.

After the instances in the training set are classified,
the instances and their predicted labels form a new
learning problem and feature selection can be applied
again. It is not difficult to apply the same learning
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algorithm on the instance data set, i.e., 1-norm regulari-
zation. An optimal sparse weight vector wy and the cor-
responding intercept vector b} are learned after the
training process. The zero-weighted entries can be safely
eliminated.

An algorithmic view

We propose our approach based on the above discus-
sion. The overall diagram of the method is illustrated
in the Figure 2. The set of labeled bags is denoted as
B. The collection of instances from B is denoted as

C-= [xk k=1, - ~,nc}, which resides in the feature

space X. The pseudo code in Algorithm 1 details
the overall procedure to learn a classifier that itera-
tively selects the most representative instance and
feature sets.

Data sets

We tested our approach on four cheminformatics data
sets [3]. Data set I includes all molecules exhibiting inhi-
bitory activities for human glycogen synthase kinase-3
(GSK-3). Data sets II and III contain molecules modu-
lating the intracellular activities of human Cannabinoid
receptors (CBr). Since there are two identified CBr sub-
types, CB1 and CB2, two different data sets were pre-
pared to study the protein-small molecule interactions
of the receptors separately. Some of the molecules
which have reported binding affinities for both CB
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Table 1 Some statistics of data sets.
Data set  No. of molecules No. of molecules Total No. of
in training set in test set molecules
Positive Negative Positive Negative
| 199 188 67 70 524
Il 191 210 62 74 537
] 247 131 60 57 495
v 94 93 28 35 250

subtypes were included in both data sets II and IIIL
Data set IV contained compounds which had been
tested as substrates of P-glycoprotein (P-gp). The mole-
cules in each data set were classified as positive or nega-
tive using cutoffs. For each data set, the molecules were
partitioned into training and test set using a split around
3:1 respectively (see Table 1).

Algorithm 1 Pseudo code of MIL via joint instance
and feature selection.

Input:

A set of labeled bags B

Initial feature set X

Output:

Selected Instances Cy

Selected Features Xy

1:n9?1,CO=(2),]-'0=V),C1=C,]:1=]:

2: repeat

3:  for every bag Bi=(x;:j=1,- - -, n} in B do
4: for every instance x* in C, do

Initialize the target points to
all instances in the training bags

Instance-based feature mapping
using the surviving target points

Train a classifier
by 1-norm regularization

Obtain w*, b*

Instance classification and selection ’—

Eliminate zero-weight targ

et
points & zero-weight attributes ‘

Figure 2 Flowchart of MIL via joint instance and feature selection.

zero-weight

Use w*, 0%, wy, b _
attributes

|

Obtain wf, by

Train a predictor
by 1-norm regularization
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5: calculate My, in (3) using (2)

6: end for

7:  end for

8:  apply 1-norm regularization to the problem, get
w, b, Err,

9 Iy < {k:|wpl > 8}
10: Cpy < (' keT}

11:  for every bag Bi = {x;; :j=1,- - -, n;} in Bdo

12: U= argmjind(xij,xk), kel

13: m K0 for every k e T

14 XRS,yR D

15: for every j in {/do

16: Z* < {k:k eI, j* = argmind(x;, x")}

j

17: myg K my + 1 for every k in T,

18: end for

19: for every x;; with j in Udo

20: compute g(x;;=)

21: zi" < g(xi,) > Tyl

22: end for

23: sort {g(x;™) *z;",j* € U} ascendingly to
obtain corresponding indices of g(x;)

24 add the first k instances to X and corre-
sponding labels to y

25:  end for

26:  apply 1-norm regularization to X, get wy, b}
27:  index I index of [wj| > 0

28: Xpy1 < Xy(index)

29: nd{n+1

30:until X, — X, _; =0

31: if no backward elimination then > Method 1: Nat-

ural stop
32: Cf = Cn
3% F=F,
34: else > Method 2: Backward elimination
35.  n* = arg min, Err,
36 Cr=Cp
37: Ff = Fnae
38: end if

The conformers of each molecule were generated
using Macromodel module from Schrédinger Suite
2011. The average number of conformers for each mole-
cule varies due to the molecules in the data sets having
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various conformational flexibilities (see Table 2). The
pharmacophore fingerprints of each data sets were
enumerated using Canvas 1.4 from Schrédinger Suite
2011. The pharmacophore fingerprint is a measure of
molecular similarity based on 3D pharmacophoric
shape. Each pharmacophore fingerprint is represented
by a binary string, where each bit indicates the presence
or absence of a match to a single pharmacophore
model. The length of pharmacophore fingerprint for
each data set is listed in Table 2.

Data set generation

Generation of the pharmacophore hypothesis

We utilized Canvas version 1.5 [21-23] to convert the
selected fingerprints into pharmacophore models. The
pharmacophore fingerprints output was set to the bit code
option for pharmacophore mapping. The bit code was
then converted into a Phase [24-26] hypothesis (model).
3D shape construction

The xyz-coordinates generated from the fingerprint-to-
hypothesis step were then used to construct a 3D shape
around the pharmacophoric elements. We used ROCS
version 3.1.2 [27,28], to create a query (the pharmaco-
phore model) from the xyz-coordinates, to align the
query with the conformer generating the pharmaco-
phore fingerprint, and to construct the 3D shape from
the aligned query and its conformer.

Receptor grid preparation

We downloaded a set of 20 PDB structural files of GSK-
3B from the RCSB Protein DataBank (PDB) [29] (PDB
IDs: 1HSE, 109U, 1Q3D, 1Q3W, 1Q4L, 1Q5K, 1Q41,
1ROE, 1UV5, 205K, 20W3, 3DUS, 3F7Z, 3F88, 3GB2,
314B, 3Q3B, 3ZRK, 3ZRL, and 3ZRM). We defined the
protein and the complexed native ligand. A cubic box
was constructed of dimension 8 A around the ligand
with a volume of an average of 6000 A based on the
ligand size in each case. A negative image with balanced
extension towards the protein and solvent was created.
The outer contour of the negative image was enabled
for comparison with the docked poses [30].

Docking

We used Hybrid version 3.0.1 [31] to dock the confor-
mers into all receptor grids. The selected conformers

Table 2 Number of conformers and length of pharmacophore fingerprint of data sets.

Data set No. of conformers Length of pharmacophore fingerprint
Training Test
Total Average Total Average
| 17429 446 5399 394 2979
Il 35434 884 12333 90.7 14002
1 32528 86.1 9942 85.0 1542
v 41960 2244 10746 1706 3467
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Table 3 Test error rates for each data set.
Error rate (%) R1 R2 R3 R4 R5 Average
Method 1 Data set | 18.25 14.60 1752 10.95 19.71 16.20 + 348 (11.82 + 1.20)
Data set Il 1838 16.18 17.65 19.85 1544 1750 £ 1.76 (1691 + 0.74)
Data set 16.24 14.53 1538 16.24 17.95 16.07 £ 1.27 (1538 + 1.05)
Data set IV 2857 23.81 3492 2857 30.16 2921 + 398 (26.35 + 0.87)
Method 2 Data set | 1533 16.06 19.71 2190 19.71 1854 + 2.76 (11.82 + 1.20)
Data set Il 18.38 13.24 13.24 16.18 18.38 15.88 + 2.58 (1691 + 0.74)
Data set I 16.24 17.09 17.52 17.09 15.38 16.67 + 0.85 (15.38 £ 1.05)
Data set IV 37.30 34.92 26.98 2857 36.51 32.86 + 4.75 (26.35 + 0.87)

R1-R5: from the first to the fifth repeat.

Note: numbers in parentheses are average error rates of the original MILES method.

from the described approach were kept rigid during the
docking step. The docked poses were compared with
the native ligands and scored based on their shape
fitting.

Experimental setup

We implemented our approach in MATLAB, the 1-
norm optimization problem was solved using IBM
CPLEX LP solver [32]. The parameter A was chosen
using 10-fold cross validation (20-fold cross validation
on Dataset IV). After a standard MILES learning step,
two positive (negative) instances were selected from
each positive (negative) training bag to form a new
training data set in the original feature space. Each
experiment was repeated five times. The run that gave
the maximum cross validation accuracy was presented
in the results that follow.

Results and discussion

In this section, we present detailed results and discus-
sion. Results of methods with and without backward
elimination (denoted as Method 1 and Method 2,
respectively) were both collected and presented below.
The cross validation error, training error, test error,
number of surviving instances and number of surviving

Table 4 Results of data set |

features were collected and presented in Tables 3 to 7.
The error rate Err is defined as the percent of falsely
predicted bags, which equals one minus accuracy. We
also present further analysis for data set I including a
comparison with experimental evidence from co-crystal-
lized binding conformations.

Results

We applied our approach on all four data sets. Tables 4
to 7 show the detailed results using our method with
(without) backward elimination. The number of itera-
tions in all four data sets is less than six, which suggests
fast convergence of our method. In all of the tests, the
first iteration always achieves the largest feature elimina-
tion. The error rates after joint instance and feature
elimination are still competitive, and small subsets of
representative instances and features are selected, which
have good discriminative power. The error rates for
each data set in five repeats are shown in Table 3.
Method 1 (with backward elimination) performed
slightly better than Method 2 (without backward elimi-
nation) in general. The numbers in parentheses repre-
sent the error rates of the original MILES method
without instance and feature selection. The error rates
for Method 1 and Method 2 are slightly higher than the

Iteration 1 2 3 4
Method 1 Error rate (%) cv 19.23 14.10 11.67 - -
Training 3.88 7.24 543 - -
Test 13.14 13.14 17.52 - -
Number of instances 17249 153 80 - -
Number of features 2979 298 168 - -
Method 2 Error rate (%) v 1947 15.79 15.39 16.67 14.27
Training 0.46 7.24 6.72 11.89 853
Test 10.95 16.79 18.98 18.25 19.71
Number of instances 17249 125 79 70 48
Number of features 2979 284 158 117 111

Note: Iteration 0 is the original MILES method without instance and feature selection.
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Table 5 Results of data set Il.
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Iteration 0 1 2 3 4 5
Method 1 Error rate (%) (@Y% 12.50 10.00 10.00 11.10 8.63 -
Training 6.73 6.23 9.23 8.73 748 -
Test 16.18 1544 14.71 14.71 1544 -
Number of instances 35434 58 40 26 23 -
Number of features 14002 106 43 35 19 -
Method 2 Error rate (%) v 12.50 875 10.00 10.00 12.50 12.50
Training 499 6.98 11.97 1147 13.72 13.72
Test 1691 19.85 14.71 15.81 16.18 16.18
Number of instances 35434 62 37 10 7 1
Number of features 14002 92 36 20 10 6
Note: Iteration 0 is the original MILES method without instance and feature selection.
original MILES method. However, our method elimi-  Data set Il

nated most of the irrelevant and redundant features, and
a small number of interesting instances were also
selected at the same time. Each result is discussed
below.

Data set |

Table 4 shows the results for data set I using the two
methods. The feature elimination only took two itera-
tions using Method 1. The initial sizes of instance-based
and pharmacophore fingerprint feature space were
17249 and 2979, respectively. After applying Method 1,
the final selected instances and fingerprints were 80 and
168, respectively. The first iteration eliminated the lar-
gest number of instances and features. The final accu-
racy was still competitive, although the error rate
increased from 13.14% (the original MILES method,
Iteration 0) to 17.52% (proposed method). Note that
Iteration O is the original MILES method, which is with-
out instance and feature selection. Without applying
backward elimination (Method 2), the final error rate
was higher (19.71% vs. 17.52%), however, the selected
number of conformers and features are lower, 48 and
111, respectively.

Table 6 Results of data set Ill.

Data set II has the largest number of features and
the second largest number of instances (see Table 2).
Table 5 shows the results for data set II. Feature elimina-
tion worked very well and only took four iterations using
Method 1. The final accuracy was slightly better, the
error rate decreased from 16.18% to 15.44%. The initial
sizes of instance-based and pharmacophore fingerprint
feature space were 35434 and 14002, respectively. The
final selected conformers and fingerprints were 23 and
19, respectively. The first iteration eliminated the largest
number of instances and features. Method 2 also took
four iterations and selected only one conformer and six
pharmacophore fingerprints. The final error rate
decreased slightly from 16.91% to 16.18%.

Data set Ill

Again, the same tendency was observed for data set III
(see Table 6). The final error rate was slightly better
after feature elimination using Method 1 (17.09% vs.
16.24%). The initial number of instances and finger-
prints were 32528 and 1542 respectively, the final
selected instances and fingerprints were 22 and 36,
respectively. It only took one iteration. Method 2 took

Iteration 0 1 2 3
Method 1 Error rate (%) (@Y 5.26 526 - -
Training 6.08 6.88
Test 17.09 16.24
Number of instances 32528 22 - -
Number of features 1542 36 - -
Method 2 Error rate (%) (@Y 533 6.69 921 7.89
Training 556 582 873 873
Test 14.53 15.39 17.09 17.09
Number of instances 32528 48 14 5
Number of features 1542 55 8 2

Note: Iteration 0 is the original MILES method without instance and feature selection.
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Table 7 Results of data set |V.
Iteration 0 1 2 3 4 5
Method 1 Error rate (%) v 30.00 2222 2222 2222 2222 2222
Training 17.65 2246 2246 24.60 24.06 2513
Test 2540 20.64 23.81 20.64 2222 23.81
Number of instances 41960 40 15 8 8 8
Number of features 3467 142 56 50 48 27
Method 2 Error rate (%) (@Y% 2222 22.22 2222 - - -
Training 19.79 2567 2513 - - -
Test 26.98 30.16 2857 - - -
Number of instances 41960 27 13 - - -
Number of features 3467 90 54 - - -

Note: Iteration 0 is the original MILES method without instance and feature selection.

three iterations and selected five conformers and two
pharmacophore fingerprints. However, the error rate
increased from 14.53% to 17.09%.

Data set IV

Data set IV has the largest number of instances, and the
average number of instances per molecule was 224,
which indicates molecules in the data set are highly flex-
ible. The data set size was also smaller, compared with
the other data sets. Table 7 shows the results for data
set IV. The final error rate was slightly improved after
feature elimination using Method 1, going from 25.40%
to 23.81%. The selected number of instances was
decreased from 41960 to 8, and the selected number of
fingerprints were decreased from 3467 to 27. Method 2
only took two iterations and selected 13 conformers and
54 pharmacophore fingerprints. The final error rate
slightly increased from 26.98% to 28.57%.

Interpretation of results for dataset |

The results of data set I using Method 1 led to selection
of 80 conformers and more than 168 pharmacophore
fingerprints. All the selected conformers came from
molecules that have less than 12 nM inhibitory activity.
Due to the large number of selected conformers, we
analyzed a representative set consisting of the 17 with
the best biological activities. For interpretation of the
vast quantity of data, we considered only the pharmaco-
phore fingerprint which matched the greatest number of
conformers, and call it P1. P1 consists of four pharma-
cophore features: a hydrogen bond acceptor/donor, two
hydrophobes and a positively ionizable group. The 3D
shape surrounding these pharmacophoric elements was
generated using ROCKS in OpenEye to provide the gen-
eral structural features of the pharmacophore model.
The 17 selected conformers fit well with the 3D shape
and with the four pharmacophoric elements. To under-
stand how the pharmacophore models correlate with
inhibition of the protein, we compared the selected con-
formers with receptor grid shapes (as defined in

OpenEye). When using rigid docking to the 20 receptor
grids, some of the grids could not dock any of the con-
formers. The selected conformers are clustered into
eight groups based on their shape complementarity to
the receptor grids (PDB IDs: 1Q3W, 1Q4L, 1ROE,
1UV5, 20W3, F88, 3GB2, 3ZRM). In order not to bias
the conformer pose into the receptor, we considered the
rigid fitting approach in Hybrid version 3.0.1, and then
compared the poses with that of the native ligand in
each receptor. The conformers fit well inside the recep-
tors and showed high correlation with native ligands
(Figures 3 to 6).

We can conclude that:

1. The approach we are presenting is capable of pre-
dicting active ligands and the correct poses or in other
words, the bioactive conformers of each ligand.

2. The pharmacophore models fit well with the recep-
tor shapes.

Figure 3 The four pharmacophoric elements selected by our
approach: blue solid sphere (positive ionizable group), cyan
and red small spheres (hydrophobes), and mixed red and cyan
meshed sphere (hydrogen bond acceptor/donor). The 3D shape
is constructed to provide the main skeleton of possible hits.
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Figure 4 Conformers fitting inside the receptor grid. AK-4 (left) and DPAP-4 (right) show a perfect fit with the 1Q4L.pdb grid.

3. This approach will simplify the drug design process.
We can depend on the described technique to find the
suitable bioactive conformers for each hit instead of
using an ensemble of receptors or multiple receptors
(such a large amount of structural data often is not
available). In the current case, one pharmacophore
model showed a good fit with eight different GSK-3f3
structures, and can be used in virtual screening instead
of having to use the eight protein structures.

Conclusions

In this paper, we have proposed a new method which
extends a multiple-instance learning (MIL) framework,
multiple-instance learning via embedded instance selec-
tion (MILES), with joint instance and feature selection.
The method formulates the classification problem as an
optimization problem using 1-norm regularization. The
embedded feature elimination is automatically achieved
because of the intrinsic property of 1-norm regularization

-

into 1ROE.pdb grid (right).

Figure 5 Different conformers fit well into different grids. Only one fit perfectly into1Q3W.pdb grid (left) while four conformers fit perfectly

~N
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N
Figure 6 Comparison of native ligand conformation and one of a very closely related molecule. Receptor grid based alignment (left),
native ligand in green, selected conformer in grey. Pharmacophore based alignment (right), native ligand cyan, selected conformer in orange.
Perfect alignments are found in both cases, repesenting the ability of this approach to find the bioactive conformer.

J

that it tends to give a sparsity-favoring solution. The
method identifies a very small subset of representative
instances and features effectively and quickly through
iterative instance and feature eliminations. The experi-
mental results on four data sets show that the iterative
elimination process typically completes in just a few
iterations and eliminates the largest number of instances
and features in the first iteration. Compared with MILES,
which does not perform feature elimination, our method
achieves a competitive classification accuracy and selects
very small discriminative subsets of instances and fea-
tures at the same time.

In the future, we will continue to experimentally
investigate biological significance of the selected proto-
type conformers and pharmacophore fingerprints to
validate our method. We also would like to investigate
instance classification further, which plays a critical role
in our method. Due to limited publicly available data
sets, we have to find and collect more data sets to evalu-
ate our proposed method more extensively.
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