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Abstract

Analysis of population structures and genome local ancestry hasbecome increasingly important in population and
disease genetics. With the advance of next generation sequencing technologies, complete genetic variants in
individuals’ genomes are quickly generated, providing unprecedented opportunities for learning population
evolution histories and identifying local genetic signatures at the SNP resolution. The successes of those studies
critically rely on accurate and powerful computational tools that can fully utilize the sequencing information.
Although many algorithms have been developed for population structure inference and admixture mapping, many
of them only work for independent SNPs in genotype or haplotype format, and require a large panel of reference
individuals. In this paper, we propose a novel probabilistic method for detecting population structure and local
admixture. The method takes input of sequencing data, genotype data and haplotype data. The method
characterizes the dependence of genetic variants via haplotype segmentation, such that all variants detected in a
sequencing study can be fully utilized for inference. The method further utilizes a infinite-state Bayesian Markov
model to perform de novo stratification and admixture inference. Using simulated datasets from HapMapll and
1000Genomes, we show that our method performs superior than several existing algorithms, particularly when
limited or no reference individuals are available. Our method is applicable to not only human studies but also
studies of other species of interests, for which little reference information is available.

Software Availability: http://stat.psu.edu/~yuzhang/software/dbm.tar

Introduction

Recent advance in high-throughput sequencing technol-
ogies [1-3] has enabled genome-wide identification of
genetic variants at the individual level. Particularly, sin-
gle nucleosome polymorphism (SNP) is the most com-
mon and the easiest genetic information detected by
sequencing. SNPs not only contain rich information
about the evolution of individuals, but also can be used
as markers to pinpoint phenotype-causative loci in phe-
notype-ascertained samples. Sequencing technologies
can detect all mutations genome-wide. The complete
genetic landscape thus provides us with unprecedented
opportunities to learn the evolution history of indivi-
duals and identify functional regions with phenotypic
consequences at the SNP resolution. The complexity
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and the scale of sequencing data, however, impose new
computational and statistical challenges that require
development of new methodologies.

In this paper, we introduce a new method for identifying
population stratification (or population structure) and
local admixture for sequencing studies. Sensitive popula-
tion structure detection and high-resolution inference of
local ancestry have wide applications in disease genetics
[4-8]. Population stratification refers to non-random mat-
ing between groups of individuals (often due to physical
separation), such that there is a systematic difference in
the SNP allele frequencies between groups. One can detect
population stratification by clustering analysis, where indi-
viduals within clusters have similar allele frequencies
across SNPs, and individuals between groups have differ-
ent allele frequencies. STRUCTURE [9] is based on this
idea, yet STRUCTURE and many other approaches
[10-13] require independent SNPs for de novo structure
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detection, i.e., identifying unknown numbers of popula-
tions in a sample. To analyze all SNPs from sequencing
studies, methods that can handle linkage disequilibrium
(LD) among SNPs are needed.

Population admixture is a reverse process of stratifica-
tion, where two or more previously separated populations
begin interbreeding. The genomes of admixed individuals
therefore contain genetic information from multiple
lineages as a mosaic combination. If the history of admix-
ing is relatively recent, we can trace back the ancestry of
each genomic region in admixed individuals by comparing
the region to that of non-admixed individuals with known
ancestry. Many methods [14-22] have been developed for
local ancestry inference in admixed populations, but again
many of them require independent SNPs and thus cannot
be applied to sequencing data. In addition, ancestry infor-
mation is hard to obtain except for human studies, such
that existing methods cannot be used.

We introduce a new method called DBM-Admix
(Dynamic Bayesian Markov model for Admixture map-
ping) for detecting population stratification and mapping
local admixtures in sequencing studies. Compared to
existing methods, DBM-Admix has several advantages. 1)
The method can perform de novo inference of stratifica-
tion and admixture, i.e., without requiring reference ances-
try information. 2) The method can accommodate
switching errors in haplotype phasing. Several existing
methods infer admixture in each haplotype separately,
assuming that the input haplotypes have no switch errors,
which is unrealistic and can loose power. 3) As opposed to
modeling individuals separately and/or utilizing sliding
windows, our method makes inference of all individuals
simultaneously, and uses Markov chains to infer local
admixture at the SNP resolution.

DBM-Admix is the first algorithm for de novo mapping
of local admixtures using all SNPs without pre-screening
independent and/or ancestry informative (AIM) SNPs.
The main difficulty of de novo mapping lies in that, with-
out knowing the dependence structure of SNPs, there are
no standard criteria to determine the number of popula-
tions and admixtures. Our method tackles this problem by
first learning the SNP dependence structure using an infi-
nite-state hidden Markov model. It then uses the learned
SNP dependence and combines all individuals to detect
unknown population structures and local admixtures via a
Bayesian probabilistic model. An advantage of Bayesian
approaches is that model uncertainties and regularization
are naturally taken into account by Bayesian priors. As a
result, DBM-Admix works well even if little and possibly
unreliable reference information is available.

Our method dynamically partitions individuals’ genomes
into states (the number of states is unknown if ancestral
information is unavailable). Our approach has two layers
of hierarchies: 1) one layer of hidden Markov model
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(HMM) for characterizing SNP dependence in haplotypes,
where sequencing data are converted into haplotype seg-
ments; and then 2) another layer of HMM for population
admixture, where the haplotype segments are clustered
into populations. Transitions between haplotype segments
and populations are allowed to represent haplotype
recombination and population admixture, respectively. For
computational efficiency and also for practical interests,
we separate the two layers of HMMs into two programs.
We first infer haplotype structures (haplotypes and their
segmentations) from sequencing data using our previously
developed method DBM-Hap [23], and then we run
DBM-Admix to further identify population stratification
and local admixture.

For de novo mapping of stratification, we compare
DBM-Admix to fineSSTRUCTURE [24], which is currently
the only other program that can do de novo stratification
detection on dependent SNPs. For local admixture map-
ping, we compare DBM-Admix to three benchmark meth-
ods: HAPMIX [18], PCADMIX [21], and LAMP-LD [22].
These methods have very different mechanisms for admix-
ture inference and can all handle LD between SNPs
(PCADMIX automatically filters SNPs in strong LD and
thus serves as a benchmark of independent SNP method).
None of the above methods directly take sequencing data
as inputs, but they can be applied after converting sequen-
cing reads into genotypes/haplotypes.

Results

Simulated datasets

We downloaded the phased haplotypes of individuals
from the HapMap project [25] and the 1000 Genomes
project [26], respectively. Using these haplotypes, we
simulated new individuals by randomly recombining hap-
lotypes within and across populations (while the latter is
admixing) according to pre-specified proportions. The
frequency of recombing haplotypes within a population is
1 per 200 kb. The probability of admixing across popula-
tions at each SNP j is 1-exp(-Ad;), where Adenotes the
number of generations of admixture, and d; denotes
probability of crossover between SNPs (j-1) and j in one
generation. For HapMapll samples, d; is given by the
HapMap genetic map in centimorgan (1% probability of
recombination per generation). For 1000Genome sam-
ples, we used linear interpolation to calculate d; from the
HapMap genetic map. We further simulated stratified
individuals as a special case when A = 0. The benchmark-
ing programs fineSTRUCTURE, HAPMIX, LAMPLD
and PCADMIX require input of either haplotypes
(PCADMIX) or genotypes (HAPMIX and LAMPLD), and
if reference individuals are used, they all require haplo-
type format of reference individuals. Although genotypes
and haplotypes are already given in the simulated sample,
they serve as the “truth” in this study and thus cannot be
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directly used as the input to each program. Instead, we
simulated sequencing data (with a Poisson distribution)
at 8x coverage from the true genotypes and re-called
genotypes and re-phased haplotypes from the simulated
sequencing data by DBM-Hap [23]. We then removed
“non-polymorphic” SNPs from the reconstructed data
and input the inferred genotypes and haplotypes to each
program. The simulated sequencing coverage is large
enough so that the genotyping error rate is <1% and the
haplotype phasing error rate is <5%, representing realistic
errors encountered in practice. Some previous methods
did not do this additional step and thus their results are
over-optimistic.

De novo inference of population stratification

We first evaluated DBM-Admix for de novo inference of
population stratification. Because of the strong LD among
SNPs, the only method we can compare to is fineSTRUC-
TURE [24], while all other de novo stratification algo-
rithms work for independent SNPs only, and cannot
identify the correct number of populations on dependent
SNPs. We simulated datasets containing K = 2, 3 and 4
populations from the HapMaplI data and the 1000Gen-
omes data, respectively. Particularly, for the HapMaplI
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data, the populations are (CEU, YRI), (CEU, YRI, JPT
+CHB), and (CEU, YRI, JPT+CHB, GIH), respectively. For
the 1000Genomes data, the populations are (CEU, YRI),
(CEU, YR, JPT), and (CEU, YRI, JPT, MXL), respectively.
In each dataset, we simulated 20 diploid individuals per
population, and each individual contained 10,000 HapMa-
pII SNPs and 30,000 1000Genomes SNPs, respectively,
which covered ~8 Mb region randomly chosen in the gen-
ome. We ran DBM-Admix and fineSTRUCTURE on these
datasets in default settings. Figure 1 shows the results of
the HapMapllI datasets, where DBM-Admix identified all
individuals’ origins perfectly and also inferred the correct
number of populations in each dataset. In contrast, fineS-
TRUCTURE consistently over-estimated the true number
of populations in all datasets, and the detected population
structures were inaccurate. We measured the accuracy of
the inferred population structures by the adjusted rand
index (aRI) [27], by which aRI = 1 means 100% correct
and aRI = 0 means random guessing. The adjusted rand
index can measure consistency between two clustering
results even if their numbers of clusters are different. It
is seen that fineSTRUCTURE split the individuals within
the same populations into subpopulations. This appeared
to be positively correlated with the total number of
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Figure 1 Comparison of de novo structure inference in HapMapll data. Each plot shows individuals (haplotypes) in different origins (shown
in symbols) projected onto the principal components (A denotes eigen values). Top: true origins. Middle: origins inferred by DBM-Admix.
Bottom: origins inferred by fineSTRUCTURE. Columns from left to right correspond to datasets containing 2, 3 and 4 populations, respectively.
aRl: adjusted rand index. K: estimated number of populations.
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individuals in each dataset (40, 60, and 80 for K = 2, 3, and
4, respectively), and was not due to real subpopulations in
the data, because we randomly recombined haplotypes to
generate new individuals in each population. The over-
estimation of fineSTRUCTURE is likely due to its ad hoc
use of the tuning parameter ¢, which failed to correctly
adjust for the effective number of independent SNPs.
Figure 2 shows the results of the 1000Genomes data-
sets. Again, DBM-Admix performed very well with only
one mistake at K = 4. In contrast, the results of fineS-
TRUCTURE were much worse than those obtained in
the HapMapll data, both in the adjusted rand index and
in the estimated number of populations. It is seen from
the principal component projection that the individuals
in HapMaplII were more separated than individuals in
1000Genomes. The 1000Genomes data contained many
SNPs not in HapMapl], the haplotype configurations of
which were relatively similar across populations. As a
result, it is harder to analyze the 1000Genomes data, for
which fineSTRUCTURE performed unsatisfactorily.

Local admixture mapping with references

We next evaluated DBM-Admix for local admixture infer-
ence using ancestral references. We first simulated 2-way
admixture datasets containing 20 individuals with equal
proportions of CEU and YRI origins at 40,000 HapMaplI
and 120,000 1000Genome SNPs, respectively. The number
of SNPs was chosen such that each dataset covered ~30
Mb region in the genome. Figure 3 shows the percentage
of incorrect local ancestry inferred by DBM-Admix, HAP-
MIX, LAMPLD, and PCADMIX in samples admixed by
A = 8, 24, 72, 216 generations, using n = 2, 4, 8, 16 ances-
tral references per population, respectively. We did not
use the adjusted rand index here, because each admixed
individual may carry haplotypes from multiple origins.
The percentage of incorrect local ancestry is calculated at
each SNP separately and then averaged over all SNPs. We
observed that DBM-Admix performed consistently and
substantially better than the other methods when only
n = 2 reference individuals per ancestral population were
available. At n = 4, DBM-Admix still performed better
than the other methods in all cases. At n = 8, DBM-
Admix performed the second best after LAMPLD for the
HapMaplI data, but performed the best for the 1000Gen-
omes data. At # = 16, DBM-Admix still performed the 2™
best in all cases. In addition, the errors for all methods
increased as A increased, i.e., more ancient admixtures are
harder to identify. The 1000Genomes data were again
harder to analyze and had much higher error rates than
the HapMaplI data..

We next simulated datasets of 3-way admixtures con-
taining 20 individuals admixed with equal proportions of
CEU, YRI and JPT (+CHB) origins at 40,000 HapMapII
SNPs and 120,000 1000Genome SNPs, respectively. We
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dropped HAPMIX from this study as it only works for 2
populations. Figure 4 shows the proportion of incorrect
local ancestry inferred by the three programs. Similar to
the results of 2-way admixture, and more evidently,
DBM-Admix performed substantially better than the
other methods when the number of reference individuals
was small (at # = 2 and 4). With more references used,
LAMPLD began to perform similar (n = 8) or better (n =
16 1000Genomes data) than our method, while PCAD-
MIX performed the worst in most scenarios (at n = 2,
PCADMIX failed to produce any results for the HapMa-
plI data due to singularity problems). This suggests that
selecting independent and/or AIM SNPs is not desirable
and is less powerful than using all SNPs.

We show in Figure 5 two examples of 3-way admixture
inference results using n = 4 references per ancestral
population, for HapMapII and 1000Genomes, respec-
tively. The results inferred by DBM-Admix, LAMPLD
and PCADMIX for only one individual are shown. We
observed that the results for HapMapll were much clea-
ner than the results for 1000Genomes. Although the
error rates for the 1000Genomes data (right panel in
Figure 5) were large (>20%), our method still produced
good agreement between the inferred and the true local
ancestries in most regions. Comparing the results of the
3 methods, DBM-Admix produced the most accurate
and the cleanest inference, whereas PCADMIX produced
the noisiest results with spurious spikes, which is prob-
ably due to its inefficient selection of AIMs from limited
references. Finally, although we only showed the results
of equal proportions of admixtures in this study, we have
further tested all methods on datasets with unequal pro-
portions of admixtures (e.g., 80% CEU and 20% YRI, data
not shown), where we obtained almost the same results
and conclusions.

De novo local admixture mapping

Our method can in principle identify unknown numbers
of populations admixed in a sample using a dynamic
Bayesian Markov process. We have already shown its
performance in de novo identification of population
structures. For admixture mapping, however, de novo
inference is much more difficult, because not only the
number of populations is unknown, the locations and
the frequency of local admixtures are also unknown. We
tested DBM-Admix without using references in two
ways: 1) “O ref": no reference data but specify the popu-
lation number; and 2) “de novo“: no reference data and
no population number. We tested the method on the
datasets simulated in the 2-way and 3-way admixture
studies with 2 references, and we call the previous
results of DBM-Admix “2 ref” as a benchmark. Without
reference information, it is not guaranteed for the
method to yield the correct population labels and/or
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Figure 2 Comparison of de novo structure inference in 1000Genome data. Each plot shows individuals (haplotypes) in different origins
(shown in symbols) projected onto the principal components (A denotes eigen values). Top: true origins. Middle: origins inferred by DBM-Admix.
Y Yy
Bottom: origins inferred by fineSTRUCTURE. Columns from left to right correspond to datasets containing 2, 3 and 4 populations, respectively.
aRl: adjusted rand index. K: estimated number of populations.

identify the correct number of populations at all SNPs.
When comparing the results, therefore, we performed
label mapping at each SNP. In particular, we ran DBM-
Admix on the admixed individuals along with 2 refer-
ence individuals per population, without telling the pro-
gram the origins of the references. We then mapped the
inferred population labels to the true labels of the refer-
ences to maximize their correlation. Finally, we com-
puted the percentage of incorrect local ancestries using
the mapped labels on the admixed individuals.

Table 1 shows the result of DBM-Admix for de novo
admixture mapping. For the HapMaplII datasets, our
method performed similarly among the three input types,
with “2 ref” slightly better than “0 ref”, and “0 ref” slightly
better than “de novo“, which were consistent with the
amount of information we provided to the program. For
the 1000Genomes datasets, we observed similar results
but with larger error rates. The results of “0O ref” and “de
novo“ were almost identical in the 1000Genomes data,
suggesting that using references are more critical when
analyzing individuals admixed between similar populations
or when the data are noisier.

We further evaluated the performance of de novo
admixture mapping of DBM-Admix with respect to
sample size. We simulated datasets of 5, 10, 20, 40 and
80 individuals (at A = 24 and two references per popu-
lation for label mapping) with 2-way and 3-way admix-
tures from HapMapll and 1000Genomes data,
respectively, following the same simulation procedures
as described above. As shown in Figure 6 (top), the
error rates of local admixture decreased as sample size
increased, because our method combined multiple indi-
viduals for joint admixture inference. The error rates of
de novo inference were greater than the error rates of
“2 ref” (using 2 references per population) in most
cases, but the differences were not substantial. We
further show in Figure 6 (bottom) the number of
admixing populations per SNP inferred by DBM-Admix.
It is very challenging to identify the correct number of
admixing populations (dash lines) at all SNPs, particu-
larly for the 1000Genomes data, but our method per-
formed satisfactorily. These results suggested that
de novo local admixture mapping is indeed feasible in
certain scenarios.
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Discussion
We have presented a novel method DBM-Admix for
detecting population stratification and admixture requiring
little information about ancestral populations. One moti-
vation of this work is that in many sequencing studies,
particularly exploratory studies, it is very expensive to
obtain samples with known ancestry from a species of
interest. Particularly ancestral populations may have been
extinct in many species. In such cases, existing methods
will perform poorly or fail to produce results. DBM-
Admix can take input of sequencing data, genotype data,
and haplotype data. The method incorporates LD informa-
tion through haplotype segmentation, which is internally
inferred by a method called DBM-Hap (paper submitted),
such that all SNPs are jointly utilized without requiring
pre-screening of independent and/or AIM SNPs.
Compared to existing methods, DBM-Admix is advanta-
geous in that it infers structures of all individuals simulta-
neously, such that information is borrowed across
individuals to help detecting subtle structures. DBM-
Admix is also robust to switch errors in haplotype phasing.
Switching pieces of haplotypes within an individual can
hamper the power of admixture mapping. This is seen
from the fact that more frequent admixture is harder to
infer, whereas switching errors due to computational

phasing algorithms can artificially create extra “admix-
tures”. DBM-Admix is built on a Bayesian framework so
that inference uncertainty is accounted for in the model.
Particularly, when there are few reference individuals, the
uncertainty (or reliability) of the reference information,
such as the ancestral allele frequencies, can be automati-
cally taken into account by the model. As a result, DBM-
Admix avoids over fitting the data. Finally, DBM-Admix
learns the dependence structure of SNPs in a sample and
utilizes the dependence to perform de novo detection of
stratification and local admixture. The idea is to use a
Bayesian Markov process to find a proper number of
states to fit the data. With SNP dependence captured by
haplotype segments, DBM-Admix is able to estimate the
number of populations stratified or admixed in a sample.
Using simulated datasets from two very different reference
panels, HapMapII and 1000Genomes, we demonstrated
the superior performance of our method compared to
existing approaches, with and without using ancestral
references.

In term of computing speed, DBM-Admix runs linearly
with respect to the sample size and the number of SNPs if
the number of populations is fixed. For de novo inference,
DBM-Admix runs proportional to the square of the num-
ber of populations inferred by the program. For example,

Table 1 Percentage of incorrect local ancestry inferred by DBM-Admix with and without using reference.

2-way admix

3-way admix

HapMapll 1000Genomes HapMapll 1000Genomes
A 8 24 72 216 8 24 72 216 8 24 72 216 8 24 72 216
2 ref 0.7 1.1 1.6 43 95 121 15.8 203 1.7 26 4.1 87 20.8 238 27.7 309
0 ref 1.0 1.7 29 55 14.8 179 221 256 30 4.2 7.7 15.1 260 316 365 352
denovo 20 24 35 84 15.2 206 216 256 29 54 9.0 18.1 25.1 318 383 353

“A": # of admix generations; “2 ref": 2 references per population; “0 ref": no reference but specify # of populations; “denovo”: no reference and no # of

populations.
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Figure 6 de novo local admixture inference by DBM-Admix at different sample sizes. Top: violin plots of proportion of incorrect local
ancestries; dashed lines show the “2 ref” results. Bottom: inferred SNP-wise number of populations; dashed lines show the true numbers of
populations.

DBM-Admix took ~5 minutes to infer each of the
1000Genomes results in Figure 3 and 4, which contained
20 individuals and 120,000 SNPs per individual. For the de
novo mapping results in Figure 6, without knowing the true
number of populations, our method took ~10 minutes.
About the same amount of time is further required to run
DBM-HAP to obtain haplotype segmentation, but this time
can be reduced if haplotypes are given.

The current DBM-Admix model can be improved in
several ways. One drawback in the current model is that
the method makes a bona fide use of haplotype segmenta-
tion. If the segmentation is inaccurate, the power of DBM-
Admix will suffer. A simple solution is to run the method
multiple times independently and then summarize results
from all runs. Alternatively, we may merge DBM-Hap and
DBM-Admix together into a joint hierarchical model and
simultaneously infer haplotypes and population structures.
We avoided this approach not only because of its obvious
computational burdens, but also because haplotype infer-
ence by itself is of interest in many studies (e.g., disease
association studies). The users may also want to use haplo-
types obtained by other means to infer population struc-
ture and admixture. Another weakness of the current
model is that, although haplotype segmentation captures
SNP dependence, haplotype segments are not equally
similar or dissimilar in allele composition. A population is
more likely to carry similar haplotype segments, yet the
current model does not take this information into account.
A possible extension of DBM-Admix is thus to introduce a
hierarchical relationship between haplotype segments,
such that a population carrying one haplotype segment is

more likely to carry another haplotype segment with simi-
lar genetic contents. This idea has been previously used in
haplotype inference [28], which is straightforward to
implement.

Methods

Haplotype segmentation

We first use DBM-Hap [23] to infer haplotype structures
from sequencing data. Note that haplotype structures are
not equivalent to haplotypes. Haplotypes are just allele
compositions across SNPs, whereas haplotype structures
further include allele dependence information and the
locations of recombination events. We infer haplotype
structures by DBM-Hap [23], which is briefly described
below.

The input of DBM-Hap is sequencing read counts of
two alternative alleles per SNP per individual, denoted by
D={d}, for i = 1,..,N individuals and j = 1,...,L SNPs,
where d;; = (A;,a;;) denotes the read counts for alleles A
and 4, respectively. We assume that all individuals are
unrelated. We introduce a 2NL binary matrix H = {hyj,
hyp}, for i = 1,..,N, j = 1,...,L, denoting the haplotypes of N
individuals at L SNPs, where (%;.;, /,.,) denotes the hap-
lotype pair for individual i, and /4, = 0,1 indicates the
absence and presence of minor alleles, respectively. To
learn haplotype structures, we introduce a latent variable
S = {sijl, Sijp}, for i = 1,..,N, j = 1,..,L, denoting the haplo-
type states for N individuals at L SNPs. S represents 2N
Markov chains, where (s;.;, s;.2) represents a pair of
Markov chains for individual , and s;; takes any positive
integer values, i.e., infinite number of states, denoting the



Zhang BMC Bioinformatics 2013, 14(Suppl 5):517
http://www.biomedcentral.com/1471-2105/14/S5/S17

index of haplotype state of the /™ haplotype at SNP j in

individual i. At each SNP, we assume that haplotypes in
the same state have a common allele frequency. Indivi-
duals’ haplotype states at nearby SNPs tend to be identical
due to its Markov nature. As a result, similar haplotypes
will be assigned into the same states. Our intuition is to
capture the “ancestral” haplotypes by S, the diversity of
which is much lower than that of haplotypes (H) in the
current sample. To identify recombination events, we
further introduce an indicator variable @ = {¢;j1,¢;j2}
denoting the transition between states in the 2N Markov
chains across L SNPs. The joint model of DBM-Hap is
therefore written as Pr(D,H,S,® ) = Pr(D|H)Pr(H|S,® )Pr
(S,@ ). In this model, Pr(D|H) denotes the probability of
read counts given haplotypes, which we model by Poisson
distributions. Pr(H|S,®) denotes the emission probability
of alleles given states, which we model by independent
Bernoulli events at each SNP. Pr(S,® ) denotes the Markov
chains of haplotype states, which we model by a dynamic
infinite state Bayesian Markov process. The output of
DBM-Hap includes the posterior inference of haplotype
states S, recombination events @ , and recombination
probabilities {r;}; _ 1, ,; at each SNP. These yield haplotype
segmentation at the individual level and are used as the
input to DBM-Admix.

DBM-Admix model

A haplotype segment contains an interval of SNPs that
belong to the same haplotype state in S, and the segment
is bounded by two recombination events specified by @.
Conceptually, each haplotype segment represents a piece
of ancestral haplotypes, within which alleles are inherited
together to the current population. The haplotype seg-
ments therefore capture the allele dependence across
SNPs. We directly use the segmentation results from
DBM-Hap to infer population structure and local admix-
ture. The idea is to introduce another layer of HMMs
representing population ancestries, where individuals
from the same population, in a region, have the same dis-
tribution of haplotype segments.

Let X = {XusXixo), for i = 1,..N and k = 1,2,...,
denote the haplotype segments in N individuals, with
Xixi = {syt}, for j = (1<)aus @i+ 1,...bix-1,bizg (<L) and [
= 1 or 2, denoting the k™ haplotype segment of the /™
haplotype in individual i. The interval [a;,, b is
given by @ from DBM-Hap and is treated as fixed.
Also, haplotype segments are consecutive, i.e., b;x.1)
+1 = a;;;. We next introduce 2N Markov chains to
model population ancestry. Let Q = {g;j;,4;»} denote
the population states, for i = 1,..,N, j = 1,...,L, where
q;; takes any positive integer values denoting indices of
population origins. Again, we allow infinite number of
populations. Further let I = {I;;;,];;;}denote the indica-
tors of population admix events in individual i at
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SNP j. We write the joint probability function of (X,
Q, I) in the form of

Pr(X, Q1) = Pr(X|Q,I) Pr(Q, 1) (1)

where Pr(X|Q,]) denotes the emission probability of
haplotype segments given population states and admix
events, and Pr(Q,I) denotes the HMM distribution of
population origins.

To model Pr(X|Q,1), we first identify double haplotype
recombination sites in all individuals. The double
recombination sites are the SNPs at which both haplo-
types in an individual recombine. These are the sites of
potential haplotype switch errors. For convenience, we
further denote the two ending SNPs (SNP 1 and SNP L)
as double recombination sites. Let {E;,,} denote the col-
lection of haplotype segments lie between the m"" and
the (m+1)™ double recombination sites in individual i.
Let J;,, denote an indicator of whether or not a haplo-
type switch error occurs at the double recombination
site m in individual i, we write

meen o T [, T e T, T T Pt s pan®==2] (2)

,,,,,,

In formula (2), Pr(s;;|q;;) denotes how frequent a hap-
lotype state s;; occurs in population g;;, which is a para-
meter estimated iteratively as described in the Mode!l
Fitting section. Pr(s;s.;|g;) denotes the similar para-
meter but with the haplotype pair switched (when 6, =
1, population g;; on the '™ strand emits haplotype state
Si3- on the (3-))™ strand, for / = 1 or 2). We assign a
small weight w;; to the power of Pr(s;;|g;;) and Pr(s;;s.
plgi1) to adjust for the fact that haplotype states within
a segment are redundant information. By default,

bi ,
wi = (1 + Zj,%m” 17)/(bits — ai + 1), for  a;<j<bi;,
where r; is the haplotype recombination probability at
SNP j’ provided by DBM-HAP. The numerator of the
weight equals to the expected number of haplotype
recombination events within segment [a;y, by, and the
denominator equals to the total number of SNPs within

biw o
the segment. As a result, l_[‘“ Pr (sijtlgi)""in formula
J=aikl

(2) equals to the geometric mean of {Pr(s;;|g;,)} over all
SNPs in the segment to the power of the expected num-
ber of haplotype recombination events. Another possible
choice of weight is to let w;; = 1 at j = a;q, i.e,, the first
SNP in each segment, and w;; = r; otherwise, which pro-
duces similar results. In formula (2), we also sum over
all possible haplotype switch errors at all double recom-
bination sites, and we let the switch error probability
e =0.5.

We next model the HMM distribution Pr(Q,) of popu-
lation ancestries. To detect an unknown number of stra-
tification and admixtures, we use an infinite state Markov
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model that automatically determines the number of states
at each SNP. Let {v,} denote an infinite dimensional vector
of probabilities that sum to 1, and is used as the “ances-
tral” distribution of population states. We model the prior
distribution of {v,} by a stick-breaking process [29]. Let
{V,} denote an infinite set of independent Beta random
variables, with V, ~Beta(1,1), we express v, = V,II, . ,
(1-V;). Using this prior, DBM-Admix essentially allows an
infinite number of populations to be fitted to the data.
Simultaneously, v, is regularized, because it tends to 0
with probability approaching to 1 as g increases to infinity,
and hence avoids over-fitting the data. Let {);} denote the
population admix probability between SNPs j-1 and j. We
write

L

pr(@ 1) = [T, T2, PreQu altvgd =TT, T, [T 1 [ =)=ty ]

subject to the constraint that, if g5 %4, (i.e., an admix
event between SNPs (j-1) and j), the admix indicator I;;
must be 1 (and vise versa, if I;; = 1, then g;;.1); = g:31),
otherwise the probability equals to 0. Note that our model
has heterogeneous transition probabilities across SNPs.
Let v = {v,} denote an infinite-dim column vector of popu-
lation distribution, 1 denote an infinite-dim column vector
of 1s, our transition probability matrix at SNP j is given by
diag(1-y, «)+y1v.

Without knowing {%}, we assign a Dirichlet prior Dir
(orj,1-0r;) to {¥}, where 7; is the haplotype recombina-
tion probability output by DBM-Hap, and o denotes a
small constant (by default 0.2). Let & = ¥,%,1;; denote
the total number of admix events at SNP j in all Markov
chains, we integrate out {¥} and obtain the marginalized
probability function

Pr(Q. Il{vy}) = (HH: }'[q) I rﬁ’;éﬁ:‘;ﬁ@%?fﬂﬁ:f Do

Derivation of formula (3) is almost identical to the
derivation of formula (4) in [23], from which more
details can be found.

Putting formulas (2) and (3) together, along with the
prior distribution of {v,}, we obtain the full probability
function in the form of Pr(X|QI)Pr(QI|{vs})Pr({v,}). The
unknown parameters in our model include population
origins Q, population admix events [, distribution of
population origin {v,}, and haplotype segment emission
probability Pr(s;;|g;;). All these parameters are inferred
iteratively as described below.

Model fitting

Starting from a random initialization of parameters Q, I,
{v4}, we first update the population-specific haplotype
state distribution Pr(s;;|q;) = (v + 1)/(n;,+K}), where
¥ denotes the number occurrences of haplotype s;; and
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population g, n;; denotes the total number of haplo-
types in population g;;, and K; denotes the number of
distinct haplotype states at SNP ;.

Given Pr(s;;|q;;1), we next update Q and I from the full
model, iteratively for one individual at a time condition-
ing on the parameters of the other individuals. For each
individual i, we update {g;;,9;2} and {f;;,I; 5} using a for-
ward-summation and backward-sampling (or maximiza-
tion) algorithm. In the forward-summation step, we
calculate the marginal probability of a specific configura-
tion of population origins ending at SNP j of individual
i, where the population origins and the admix events at
SNPs 1,...,j-1 are marginalized out. This is done recur-
sively at SNPs j = 1,...,L in ascending order. To handle
infinite number of states, we collapse all origins with
indices >g* into a “super” state, where g* denotes the
maximum index in Q in the current iteration. The num-
ber of distinct population origins therefore becomes
finite in computation. In the backward-sampling (or
maximization) step, we use the calculated marginal
probabilities to update {g;.;,q;.o} and {I;;;,;;5} at SNPs j =
L,..,1 sequentially in descending order. In particular, we
first determine {g;; ;,4;1>} by sampling from (or maximiz-
ing) the marginal probability at SNP L, and we let I;;; =
Ii;o = 0. If a “super” state is chosen, indicating a new
population, we further determine the label of the new
population from the prior distribution. Next, at each
SNP j < L in descending order, we first determine the
admix events {J;;;,];;»} according to the marginal prob-
ability at SNP j and conditioning on the origins {g;(. 11
qgi(+1)2} obtained at SNP (j+1). We then determine {g,;,
gij2} based on {I;;,I;5} and {g;.1)1.9:(+1)2}- If admix does
not occur at SNP j in the / haplotype (Iji = 0), then g
= gij+1y- Otherwise, a new population is sampled in the
same way as described for SNP L. In practice, either
backward sampling or maximization works well, but
sampling can help alleviating local mode problems and
thus is used by default. We further restrict that admix
can only occur at the boundaries of haplotype segments.

Finally, we update the distribution of population ori-
gins {v,}. Let {c;} denote the total occurrence of popula-
tion g at either admix sites (I;; = 1) or the start of
Markov chains. We sample V, from V, ~Beta(c,+1,
Zt-4Ci+2), which is the posterior distribution of V,. We
then calculate v, by v, = V_I1; . 4(1-V;). Note that we
only need to calculate {v,} for a finite number of origins
up to g* because we collapse all unoccupied origins
with indices >g* into a “super” state, the posterior prob-
ability of which is 1-¥,< - v,.

We repeat the above model fitting procedures itera-
tively and we allow a few iterations of burn-in before we
collect posterior samples of parameters of interest. To
avoid local mode problems, we also randomly split
population origins a few times during burn-in, such that
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the algorithm has a chance to detect more subtle popu-
lation structures. Finally, we infer population structure
and admixture by maximum a posteriori from the pos-
terior samples, at each SNP separately. If reference indi-
viduals with known ancestries are available, say, from C
ancestries (C = 2,3,...), then DBM-Admix reduces to a
heterogeneous (with respect to transition probabilities)
Markov model with fixed number of states, and it fits
both the sample and the reference individuals together.

Authors’ contributions
YZ designed and carried out the entire study and wrote the manuscript.

Competing interests
The author declare that he has no competing interests.

Declarations

Publication of this article was supported by NIH ROTHG004718 and NIH
TUL1RR033184.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 5, 2013: Proceedings of the Third Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-seq 2013). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/14/S5.

Published: 10 April 2013

References

1. Church GM: Genomes for all. Sci Am 2006, 294:46-54.

2. Hall N: Advanced sequencing technologies and their wider impact in
microbiology. J Exp Biol 2007, 210:1518-25.

3. Schuster SC: Next-generation sequencing transforms today’s biology.
Nat Methods 2008, 5:16-8.

4. Hoggart C, Shriver MD, Kittles RA, Clayton DG, McKeigue PM: Design and
analysis of admixture mapping studies. Am J Hum Genet 2004, 74:965-978.

5. Zhu X, Cooper RS, Elston RC: Linkage analysis of a complex disease
through use of admixed populations. Am J Hum Genet 2004,
74:1136-1153.

6. Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A, Tandon A,
Lincoln RR, Deloa C, Fruhan SA, Cabre P, Bera O, Semana G, Kelly MA,
Francis DA, Ardlie K, Khan O, Cree BA, Hauser SL, Oksenberg JR, Hafler DA:
A whole-genome admixture scan finds a candidate locus for multiple
sclerosis susceptibility. Nat Genet 2005, 37:1113-1118.

7. Seldin M, Pasaniuc B, Price AL: New approaches to disease mapping in
admixed populations. Nat Rev Genet 2011, 12:523-528.

8. Pasaniuc B, Zaitlen N, Lettre G, Chen GK, Tandon A, Kao WH, Ruczinski |,
Fornage M, Siscovick DS, Zhu X, Larkin E, Lange LA, Cupples LA, Yang Q,
Akylbekova EL, Musani SK, Divers J, Mychaleckyj J, Li M, Papanicolaou GJ,
Millikan RC, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ,
Ziegler RG, Nyante SJ, Bandera EV, Ingles SA, Press MF, Chanock SJ,
Deming SL, Rodriguez-Gil JL, Palmer CD, Buxbaum S, Ekunwe L,
Hirschhorn JN, Henderson BE, Myers S, Haiman CA, Reich D, Patterson N,
Wilson JG, Price AL: Enhanced statistical tests for GWAS in admixed
populations: assessment using African Americans from CARe and a
Breast Cancer Consortium. PLoS Genet 2011, 7:¢1001371.

9. Pritchard JK, Stephens M, Donnelly P: Inference of population structure
using multilocus genotype data. Genetics 2000, 155:945-958.

10.  Falush D, Stephens M, Pritchard JK: Inference of population structure
using multi-locus genotype data, linked loci, and correlated allele
frequencies. Genetics 2003, 164:1567-1587.

11. Patterson N, Price A, Reich D: Population structure and eigenanalysis. PLoS
Genet 2006, 2:¢190, doi: 10.1371/journal.pgen.0020190.

12. Zhang Y: Tree-guided Bayesian inference of population structures.
Bioinformatics 2008, 24:965-971.

13.  Alexander DH, Novembre J, Lange K: Fast model-based estimation of
ancestry in unrelated individuals. Genome Res 2009, 19:1655-1664.

Page 11 of 11

14.  Tang H, Coram M, Wang P, Zhu X, Risch N: Reconstructing genetic
ancestry blocks in admixed individuals. Am J Hum Genet 2006, 79:1-12.

15. Sundquist A, Fratkin E, Do CB, Batzoglou S: Effect of genetic divergence in
identifying ancestral origin using HAPAA. Genome Res 2008, 18:676-682.

16.  Sankararaman S, Kimmel G, Halperin E, Jordan M: On the inference of
ancestries in admixed populations. Genome Res 2008a, 18:668-675.

17.  Sankararaman S, Sridhar S, Kimmel G, Halperin E: Estimating local ancestry
in admixed populations. Am J Hum Genet 2008b, 82:290-303.

18.  Price A, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski |, Beaty TH,
Mathias R, Reich D, Myers S: Sensitive detection of chromosomal
segments of distinct ancestry in admixed populations. PLoS Genet 2009,
5:21000519.

19.  Pasaniuc B, Kennedy J, Mandoiu I: Imputation-based local ancestry
inference in admixed populations. Proceedings of the 5th International
Symposium on Bioinformatics Research and Applications (ISBRA) 2009a,
5542:221-233.

20. Pasaniuc B, Sankararaman S, Kimmel G, Halperin E: Inference of locus-
specific ancestry in closely related populations. Bioinformatics 2009b, 25:
i213-221.

21. Brisbin A: Linkage analysis for categorical traits and ancestry assignment
in admixed individuals. Doctoral Dissertation Cornell University, Ithaca, New
York; 2010.

22. Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C,
Rodriguez-Cintron W, Chapela R, Ford JG, Avila PC, Rodriguez-Santana J,
Burchard EG, Halperin E: Fast and accurate inference of local ancestry in
Latino populations. Bioinformatics 2012, 28:1359-67.

23. Zhang Y: A dynamic Bayesian Markov model for phasing and
characterizing haplotypes in next generation sequencing. Bioinformatics
2003, doi:10.1093/bioinformatics/btt065.

24. Lawson DJ, Hellenthal G, Myers S, Falush D: Inference of population
structure using dense haplotype data. PLoS Genetics 2012, 8(e1002453).

25. The International HapMap Consortium: A second generation human
haplotype map of over 3.1 million SNPs. Nature 2007, 449:851-861.

26. The 1000 Genomes Project Consortium: A map of human genome
variation from population-scale sequencing. Nature 2010, 467:1061-1073.

27. Hubert L, Arabie P: Comparing partitions. Journal of Classification 1985,
2:193-218.

28. Zhang Y, Niu T, Liu J: A coalescence-guided hierarchical Bayesian method
for haplotype inference. Am J Hum Genet 2006, 79:313-322.

29. Sethuraman J: A Constructive Definition of Dirichlet Priors. Statistica Sinica
1994, 4:639-650.

doi:10.1186/1471-2105-14-S5-517

Cite this article as: Zhang: De novo inference of stratification and local
admixture in sequencing studies. BMC Bioinformatics 2013 14(Suppl 5):
S17.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.ncbi.nlm.nih.gov/pubmed/16596879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18165802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15088268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15088268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16186815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16186815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21709689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21709689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21541012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21541012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21541012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10835412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10835412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12930761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18296461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16773560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16773560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18353807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18353807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19543370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19543370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22495753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22495753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16826521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16826521?dopt=Abstract

	Abstract
	Introduction
	Results
	Simulated datasets
	De novo inference of population stratification
	Local admixture mapping with references
	De novo local admixture mapping

	Discussion
	Methods
	Haplotype segmentation
	DBM-Admix model
	Model fitting

	Authors’ contributions
	Competing interests
	Declarations
	References

