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Abstract

We present a framework for the design of optimal assembly algorithms for shotgun sequencing under the criterion of
complete reconstruction. We derive a lower bound on the read length and the coverage depth required for
reconstruction in terms of the repeat statistics of the genome. Building on earlier works, we design a de Brujin graph
based assembly algorithm which can achieve very close to the lower bound for repeat statistics of a wide range of
sequenced genomes, including the GAGE datasets. The results are based on a set of necessary and sufficient conditions
on the DNA sequence and the reads for reconstruction. The conditions can be viewed as the shotgun sequencing
analogue of Ukkonen-Pevzner’s necessary and sufficient conditions for Sequencing by Hybridization.

Introduction
Problem statement
DNA sequencing is the basic workhorse of modern day
biology and medicine. Since the sequencing of the Human
Reference Genome ten years ago, there has been an explo-
sive advance in sequencing technology, resulting in several
orders of magnitude increase in throughput and decrease
in cost. Multiple “next-generation” sequencing platforms
have emerged. All of them are based on the whole-genome
shotgun sequencing method, which entails two steps. First,
many short reads are extracted from random locations on
the DNA sequence, with the length, number, and error
rates of the reads depending on the particular sequencing
platform. Second, the reads are assembled to reconstruct
the original DNA sequence.
Assembly of the reads is a major algorithmic challenge,

and over the years dozens of assembly algorithms have
been proposed to solve this problem [1]. Nevertheless,
the assembly problem is far from solved, and it is not
clear how to compare algorithms nor where improve-
ment might be possible. The difficulty of comparing algo-
rithms is evidenced by the recent assembly evaluations
Assemblathon 1 [2] and GAGE [3], where which assem-
bler is “best” depends on the particular dataset as well as

the performance metric used. In part this is a conse-
quence of metrics for partial assemblies: there is an
inherent tradeoff between larger contiguous fragments
(contigs) and fewer mistakes in merging contigs (mis-
joins). But more fundamentally, independent of the
metric, performance depends critically on the dataset, i.e.
length, number, and quality of the reads, as well as the
complexity of the genome sequence.
With an eye towards the near future, we seek to under-

stand the interplay between these factors by using the
intuitive and unambiguous metric of complete reconstruc-
tion. The notion of complete reconstruction can be
thought of as a mathematical idealization of the notion of
“finishing” a sequencing project as defined by the National
Human Genome Research Institute [4], where finishing a
chromosome requires at least 95% of the chromosome to
be represented by a contiguous sequence. Note that this
objective of reconstructing the original DNA sequence
from the reads contrasts with the many optimization-
based formulations of assembly, such as shortest common
superstring (SCS) [5], maximum-likelihood [6], [7], and
various graph-based formulations [8], [9]. When solving
one of these alternative formulations, there is no guarantee
that the optimal solution is indeed the original sequence.
Given the goal of complete reconstruction, the most basic

questions are 1) feasibility: given a set of reads, is it possible
to reconstruct the original sequence? 2) optimality: which* Correspondence: gbresler@eecs.berkeley.edu
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algorithms can successfully reconstruct whenever it is feasi-
ble to reconstruct? The feasibility question is a measure of
the intrinsic information each read provides about the
DNA sequence, and for given sequence statistics depends
on characteristics of the sequencing technology such as
read length and noise statistics. As such, it can provide an
algorithm-independent basis for evaluating the efficiency of
a sequencing technology. Equally important, algorithms
can be evaluated on their relative read length and data
requirements, and compared against the fundamental limit.
In studying these questions, we consider the most

basic shotgun sequencing model where N noiseless
reads (i.e. exact subsequences) of a fixed length L base
pairs are uniformly and independently drawn from a
DNA sequence of length G. In this statistical model, fea-
sibility is rephrased as the question of whether, for given
sequence statistics, the correct sequence can be recon-
structed with probability 1 - Î when N reads of length L
are sampled from the genome. We note that answering
the feasibility question of whether each N, L pair is suf-
ficient to reconstruct is equivalent to finding the mini-
mum required N (or the coverage depth c = NL/G) as a
function of L.
A lower bound on the minimum coverage depth

needed was obtained by Lander and Waterman [10].
Their lower bound cLW = cLW(L, Î) is the minimum
number of randomly located reads needed to cover the
entire DNA sequence with a given target success prob-
ability 1 - Î. While this is clearly a necessary condition,
it is in general not tight: only requiring the reads to
cover the entire genome sequence does not guarantee
that consecutive reads can actually be stitched back
together to recover the original sequence. Characterizing
when the reads can be reliably stitched together, i.e.
determining feasibility, is an open problem. In fact, the
ability to reconstruct depends crucially on the repeat
statistics of the DNA sequence.
An earlier work [11] has answered the feasibility and

optimality questions under an i.i.d. model for the DNA
sequence. However, real DNA, especially those of eukar-
yotes, have much longer and complex repeat structures.
Here, we are interested in determining feasibility and
optimality given arbitrary repeat statistics. This allows
us to evaluate algorithms on statistics from already
sequenced genomes, and gives confidence in predicting
whether the algorithms will be useful for an unseen gen-
ome with similar statistics.

Results
Our approach results in a pipeline, which takes as input a
genome sequence and desired success probability 1 - Î,
computes a few simple repeat statistics, and from these
statistics computes a feasibility plot that indicates for
which L, N reconstruction is possible. Figure 1 displays

the simplest of the statistics, the number of repeats as a
function of the repeat length ℓ. Figure 2 shows the result-
ing feasibility plot produced for the statistics of human
chromosome 19 (henceforth hc19) with success probabil-
ity 99%. The horizontal axis signifies read length L and
the vertical axis signifies the normalized coverage depth
c̄ := c/cLW , the coverage depth c normalized by cLW, the
coverage depth required as per Lander-Waterman [10] in
order to cover the sequence.
Since the coverage depth must satisfy c ≥ cLW, the nor-

malized coverage depth satisfies c̄ ≥ 1 , and we plot the
horizontal line c̄ = 1 . This lower bound holds for any
assembly algorithm. In addition, there is another lower
bound, shown as the thick black nearly vertical line in
Figure 2. In contrast to the coverage lower bound, this
lower bound is a function of the repeat statistics. It has a
vertical asymptote at Lcrit := max{ℓinterleaved, ℓtriple} + 1,
where ℓinterleaved is the length of the longest interleaved
repeats in the DNA sequence and ℓtriple is the length of
the longest triple repeat (see Section for precise defini-
tions). Our lower bound can be viewed as a generaliza-
tion of a result of Ukkonen [12] for Sequencing by
Hybridization to the shotgun sequencing setting.
Each colored curve in the feasibility plot is the lower

boundary of the set of feasible N,L pairs for a specific
algorithm. The rightmost curve is the one achieved by
the greedy algorithm, which merges reads with largest
overlaps first (used for example in TIGR [13], CAP3 [14],
and more recently SSAKE [15]). As seen in Figure 2, its
performance curve asymptotes at L = ℓrepeat, the length of
the longest repeat. De Brujin graph based algorithms (e.g.
[16] and [8]) take a more global view via the construction
of a de Brujin graph out of all the K-mers of the reads.
The performance curves of all K-mer graph based algo-
rithms asymptote at read length L = Lcrit, but different
algorithms use read information in a variety of ways to
resolve repeats in the K-mer graph and thus have differ-
ent coverage depth requirement beyond read length Lcrit.
By combining the ideas from several existing algorithms
(including [8], [17]) we designed MULTIBRIDGING,
which is very close to the lower bound for this dataset.
Thus Figure 2 answers, up to a very small gap, the feasi-
bility of assembly for the repeat statistics of hc19, where
successful reconstruction is desired with probability 99%.
We produce similar plots for a dozen or so datasets

(Additional file 1). For datasets where ℓinterleaved is signif-
icantly larger than ℓtriple (the majority of the datasets we
looked at, including those used in the recent GAGE
assembly algorithm evaluation [3]), MULTIBRIDGING
is near optimal, thus allowing us to characterize the
fundamental limits for these repeat statistics (Figure 9).
On the other hand, if ℓtriple is close to or larger than
ℓinterleaved, there is a gap between the performance of
MULTIBRIDGING and the lower bound (see for example
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Figure 3). The reason for the gap is explained later in the
paper.
An interesting feature of the feasibility plots is that for
typical repeat statistics exhibited by DNA data, the
minimum coverage depth is characterized by a critical
phenomenon: If the read length L is below Lcrit = ℓinter-

leaved, reliable reconstruction of the DNA sequence is
impossible no matter what the coverage depth is, but if
the read length L is slightly above Lcrit, then covering
the sequence suffices, i.e. c̄ = c/cLW = 1 . The sharpness
of the critical phenomenon is described by the size of
the critical window, which refers to the range of L over
which the transition from one regime to the other
occurs. For the case when MULTIBRIDGING is near
optimal, the width W of the window size can be well
approximated as:

W ≈ Lcrit
2r + 1

, where r :=
log G

Lcrit

log ε−1
. (1)

For the hc19 dataset, the critical window size evaluates
to about 19% of Lcrit.
In Sections and, we discuss the underlying analysis and

algorithm design supporting the plots. The curves are all
computed from formulas, which are validated by simula-
tions. We return in Section to put our contributions in a
broader perspective and discuss extensions to the basic
framework. All proofs can be found in the appendix.

Lower bounds
In this section we discuss lower bounds, due to coverage
analysis and certain repeat patterns, on the required cov-
erage depth and read length. The style of analysis here is
continued in Section, in which we search for an assembly
algorithm that performs close to the lower bounds.

Coverage bound
Lander and Waterman’s coverage analysis [10] gives the
well known condition for the number of reads NLW

Figure 1 For hc19, a log plot of number of repeats as a function of the repeat length ℓ. Red line is what would have been predicted by
an i.i.d. fit.
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required to cover the entire DNA sequence with prob-
ability at least 1 - Î. In the regime when L ≪ G, one
may make the standard assumption that the starting
locations of the N reads follow a Poisson process with
rate l = N/G, and the number NLW is to a very good
approximation given by the solution to the equation

NLW =
G
L
log

NLW

ε
. (2)

The corresponding coverage depth is cLW = NLWL/G.
This is our baseline coverage depth against which to
compare the coverage depth of various algorithms. For
each algorithm, we will plot

c̄ :=
c

cLW
=

N
NLW

,

the coverage depth required by that algorithm normal-
ized by cLW. Note that c̄ is also the ratio of the number
of reads N required by an algorithm to NLW. The require-
ment c̄ ≥ 1 is due to the lower bound on the number of
reads obtained by the Lander-Waterman coverage
condition.

Ukkonen’s condition
A second constraint on reads arises from repeats. A
lower bound on the read length L follows from Ukko-
nen’s condition [12]: if there are interleaved repeats or
triple repeats in the sequence of length at least L - 1,
then the likelihood of observing the reads is the same
for more than one possible DNA sequence and hence
correct reconstruction is not possible. Figure 4 shows an
example with interleaved repeats. (Note that we assume

Figure 2 Thick black lines are lower bounds on feasibility which holds for all algorithms, and colored curves are performance
achieved by specific algorithms. Four such curves are shown: the greedy algorithm and three de Brujin graph based algorithms.
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1-Î >1/2, so random guessing between equally likely
sequences is not viable.)
We take a moment to carefully define the various types

of repeats. Let s�t denote the length-ℓ subsequence of the
DNA sequence s starting at position t. A repeat of length
ℓ is a subsequence appearing twice, at some positions t1, t2
(so s�t1 = s�t2 ) that is maximal (i.e. s(t1 - 1) ≠ s(t2 - 1) and s
(t1 + ℓ) ≠ s(t2 + ℓ)). Similarly, a triple repeat of length ℓ is
a subsequence appearing three times, at positions t1, t2, t3,
such that s�t1 = s�t2 = s�t3 , and such that neither of s(t1 - 1) =
s(t2 - 1) = s(t3 - 1) nor s(t1 + ℓ) = s(t2 + ℓ) = s(t3 + ℓ) holds.
(Note that a subsequence that is repeated f times gives rise
to (f2) repeats and (f3) triple repeats.) A copy is a single
one of the instances of the subsequence’s appearances. A
pair of repeats refers to two repeats, each having two
copies. A pair of repeats, one at positions t1, t3 with t1 < t3
and the second at positions t2, t4 with t2 < t4, is interleaved
if t1 < t2 < t3 < t4 or t2 < t1 < t4 < t3 (Figure 4). The length

of a pair of interleaved repeats is defined to be the length
of the shorter of the two repeats.
Ukkonen’s condition implies a lower bound on the

read length,

L > Lcrit := max{�interleaved , �triple} + 1.

Here ℓinterleaved is the length of the longest pair of
interleaved repeats on the DNA sequence and ℓtriple is
the length of the longest triple repeat.
Ukkonen’s condition says that for read lengths less

than Lcrit, reconstruction is impossible no matter what
the coverage depth is. But it can be generalized to pro-
vide a lower bound on the coverage depth for read
lengths greater than Lcrit, through the important concept
of bridging as shown in Figure 5. We observe that in
Ukkonen’s interleaved or triple repeats, the actual length
of the repeated subsequences is irrelevant; rather, to
cause confusion it is enough that all the copies of the

Figure 3 Performance of MULTIBRIDGING on P Marinus, where ℓtriple > ℓinterleaved.
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pertinent repeats are unbridged. This leads to the fol-
lowing theorem.
Theorem 1. Given a DNA sequence s and a set of reads,

if there is a pair of interleaved repeats or a triple repeat
whose copies are all unbridged, then there is another
sequence s’ of the same length under which the likelihood
of observing the reads is the same.
For brevity, we will call a repeat or a triple repeat

bridged if at least one copy of the repeat is bridged, and a
pair of interleaved repeats bridged if at least one of the
repeats is bridged. Thus, the above theorem says that a
necessary condition for reconstruction is that all inter-
leaved and triple repeats are bridged.
How does Theorem 1 imply a lower bound on the cov-

erage depth? Focus on the longest pair of interleaved
repeats and suppose the read length L is between the
lengths of the shorter and the longer repeats. The prob-

ability this pair is unbridged is (punbridged�inter1eaved
)2 , where

punbridged� := P[� − length subseq. is unbridged]

= e

N

G
(L−�−1)+

.

(3)

Theorem 1 implies that the probability of making an
error in the reconstruction is at least 1/2 if this event
occurs. Hence, the requirement that Perror ≤ Î implies a
lower bound on the number of reads N:

N ≥ G
(L − �interleaved − 1) ln(1/(2ε))

. (4)

A similar lower bound can be derived using the long-
est triple repeat. A slightly tighter lower bound can be
obtained by taking into consideration the bridging of all
the interleaved and triple repeats, not only the longest
one, resulting in the black curve in Figure 2.

Towards optimal assembly
We now begin our search for algorithms performing close
to the lower bounds derived in the previous section. Algo-
rithm assessment begins with obtaining deterministic suf-
ficient conditions for success in terms of repeat-bridging.
We then find the necessary N and L in order to satisfy
these sufficient conditions with a target probability 1 - Î.
The required coverage depth for each algorithm depends
only on certain repeat statistics extracted from the DNA
data, which may be thought of as sufficient statistics.

Greedy algorithm
The greedy algorithm, denoted GREEDY, with pseudo-
code in the supplementary material, is described as fol-
lows. Starting with the initial set of reads, the two
fragments (i.e. subsequences) with maximum length
overlap are merged, and this operation is repeated until a
single fragment remains. Here the overlap of two frag-
ments x, y is a suffix of x equal to a prefix of y, and mer-
ging two fragments results in a single longer fragment.
Theorem 2. GREEDYreconstructs the original sequence s

if every repeat is bridged.
Theorem 2 allows us to determine the coverage depth

required by GREEDY: we must ensure that all repeats are
bridged. By the union bound,

Figure 4 The likelihood of observing the reads under two possible sequences (the green and magenta segments swapped) is the
same. Here, the two red subsequences form a repeat and the two orange subsequences form another repeat.
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P[some repeat is unbridged] ≤
∑
m

am(p
unbridged
m )2,

where punbridgedm is defined in (3) and am is the num-
ber of repeats of length m. Setting the right-hand side
of (5) to Î ensures Perror ≤ Î and yields the performance
curve of GREEDY in Figure 2. Note that the repeat sta-
tistics {am} are sufficient to compute this curve.
GREEDY requires L > ℓrepeat + 1, whereas the lower

bound has its asymptote at L = ℓinterleaved + 1. In chromo-
some 19, for instance, there is a large difference between
ℓinterleaved = 2248 and ℓrepeat = 4092, and in Figure 2 we see
a correspondingly large gap. GREEDY is evidently sub-
optimal in handling interleaved repeats. Its strength, how-
ever, is that once the reads are slightly longer than ℓrepeat,
coverage of the sequence is sufficient for correct recon-
struction. Thus if ℓrepeat ≈ ℓinterleaved, then GREEDY is
close to optimal.

K-mer algorithms
The greedy algorithm fails when there are unbridged
repeats, even if there are no unbridged interleaved repeats,
and therefore requires a read length much longer than
that required by Ukkonen’s condition. As we will see,
K-mer algorithms do not have this limitation.

Background
In the introduction we mention Sequencing By Hybridiza-
tion (SBH), for which Ukkonen’s condition was originally
introduced. In the SBH setting, an optimal algorithm match-
ing Ukkonen’s condition is known, due to Pevzner [18].
Pevzner’s algorithm is based on finding an appropriate

cycle in a K-mer graph (also known as a de Bruijn graph)
with K = L - 1 (see e.g. [19] for an overview). A K-mer
graph is formed by first creating a node in the graph for
each unique K-mer (length K subsequence) in the set of
reads, and then adding an edge with overlap K - 1
between any two nodes representing K-mers that are
adjacent in a read, i.e. offset by a single nucleotide. Edges
thus correspond to unique (K + 1)-mers in s and paths

correspond to longer subsequences obtained by merging
the constituent nodes. There exists a cycle corresponding
to the original sequence s, and reconstruction entails
finding this cycle.
As is common, we will replace edges corresponding to

an unambiguous path by a single node (c.f. Figure 6).
Since the subsequences at some nodes are now longer
than K, this is no longer a K-mer graph, and we call the
more general graph a sequence graph. The simplified
graph is called the condensed sequence graph.
The condensed graph has the useful property that if

the original sequence s is reconstructible, then s is
determined by a unique Eulerian cycle:
Theorem 3. Let G0 be the K-mer graph constructed

from the (K + 1)-spectrum SK+1 of s, and let G be the con-
densed sequence graph obtained from G0 . If Ukkonen’s
condition is satisfied, i.e. there are no triple or interleaved
repeats of length at least K, then there is a unique Eulerian
cycle C in G and C corresponds to s.
Theorem 3 characterizes, deterministically, the values

of K for which reconstruction from the (K + 1)-spec-
trum is possible. We proceed with application of the K-
mer graph approach to shotgun sequencing data.

Basic K-mer algorithm
Starting with Idury and Waterman [16], and then Pevzner
et al.’s [8] EULER algorithm, most current assembly algo-
rithms for shotgun sequencing are based on the K-mer
graph. Idury and Waterman [16] made the key observation
that SBH with subsequences of length K+1 can be emulated
by shotgun sequencing if each read overlaps the subsequent
read by K: the set of all (K +1)-mers within the reads is
equal to the (K+1)-spectrum SK+1. The resultant algorithm
DEBRUIJN which consists of constructing the K-mer graph
from the (K+1)-spectrum observed in the reads, condensing
the graph, and then identifying an Eulerian cycle, has suffi-
cient conditions for correct reconstruction as follows.
Theorem 4. DEBRUIJNwith parameter choice K

reconstructs the original sequence s if:
(a) K > ℓinterleaved

Figure 5 A subsequence s�t is bridged if and only if there exists at least one read which covers at least one base on both sides of the

subsequence, i.e. the read arrives in the preceding length L-ℓ-1 interval.
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(b) K > ℓtriple

(c) adjacent reads overlap by at least K
Lander and Waterman’s coverage analysis applies also

to Condition (c) of Theorem 4, yielding a normalized
coverage depth requirement c̄ = 1/(1 − K/L) . The larger
the overlap K, the higher the coverage depth required.
Conditions (a) and (b) say that the smallest K one can
choose is K = max{ℓtriple, ℓinterleaved} + 1, so

c̄ =
1

1 − max{�trip1e, �interleaved} + 1

L

.
(6)

The performance of DEBRUIJN is plotted in Figure 2.
DEBRUIJN significantly improves on GREEDY by obtain-
ing the correct first order performance: given sufficiently
many reads, the read length L may be decreased to {ℓtriple,
ℓinterleaved} + 1. Still, the number of reads required to
approach this critical length is far above the lower
bound. The following subsection pursues reducing K in
order to reduce the required number of reads.

Improved K-mer algorithms
Algorithm DEBRUIJN ignores a lot of information con-
tained in the reads, and indeed all of the K-mer based
algorithms proposed by the sequencing community
(including [16], [8], [20], [21], [22], [23]) use the read
information to a greater extent than the naive DEB-
RUIJN algorithm. Better use of the read information, as
described below in algorithms SIMPLEBRIDGING and
MULTIBRIDGING, will allow us to relax the condition
K >max{ℓinterleaved, ℓtriple} for success of DEBRUIJN,
which in turn reduces the high coverage depth required
by Condition (c).
Existing algorithms use read information in a variety of

distinct ways to resolve repeats. For instance, Pevzner et
al. [8] observe that for graphs where each edge has multi-
plicity one, if one copy of a repeat is bridged, the repeat
can be resolved through what they call a “detachment”.
The algorithm SIMPLEBRIDGING described below is

very similar, and resolves repeats with two copies if at
least one copy is bridged.
Meanwhile, other algorithms are better suited to

higher edge multiplicities due to higher order repeats;
IDBA (Iterative DeBruijn Assembler) [17] creates a ser-
ies of K-mer graphs, each with larger K, and at each
step uses not just the reads to identify adjacent K-mers,
but also all the unbridged paths in the K-mer graph
with smaller K. Although not stated explicitly in their
paper, we observe here that if all copies of every repeat
are bridged, then IDBA correctly reconstructs.
However, it is suboptimal to require that all copies of

every repeat up to the maximal K be bridged. We intro-
duce MULTIBRIDGING, which combines the aforemen-
tioned ideas to simultaneously allow for single-bridged
double repeats, triple repeats in which all copies are
bridged, and unbridged non-interleaved repeats.

SimpleBridging
SIMPLEBRIDGING improves on DEBRUIJN by resolving
bridged 2-repeats (i.e. a repeat with exactly two copies in
which at least one copy is bridged by a read). Condition
(a) K > ℓinterleaved for success of DEBRUIJN (ensuring that
no interleaved repeats appear in the initial K-mer graph)
is updated to require only no unbridged interleaved
repeats, which matches the lower bound. With this
change, Condition (b) K > ℓtriple forms the bottleneck for
typical DNA sequences. Thus SIMPLEBRIDGING is
optimal with respect to interleaved repeats, but it is sub-
optimal with respect to triple repeats.
SIMPLEBRIDGING deals with repeats by performing

surgery on certain nodes in the sequence graph. In the
sequence graph, a repeat corresponds to a node we call
an X-node, a node with in-degree and out-degree each at
least two (e.g. Figure 7). A self-loop adds one each to the
in degree and out-degree. The cycle C(s) traverses each
X-node at least twice, so X-nodes correspond to repeats
in s. We call an X-node traversed exactly twice a 2-X-
node; these nodes correspond to 2-repeats, and are said
to be bridged if the corresponding repeat in s is bridged.

Figure 6 Contracting an edge by merging the incident nodes. Repeating this operation results in the condensed graph.
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In the repeat resolution step of SIMPLEBRIDGING
(illustrated in Figure 7), bridged 2-X-nodes are duplicated
in the graph and incoming and outgoing edges are inferred
using the bridging read, reducing possible ambiguity.
Theorem 5. SIMPLEBRIDGINGwith parameter choice

K reconstructs the original sequence s if:
(a) all interleaved repeats are bridged
(b) K > ℓtriple

(c) adjacent reads overlap by at least K.
By the union bound,

P[some interleaved repeat is unbridged]

≤
∑
m,n

bm,n(p
unbridged
m )2(punbridgedn )2 (7)

where bm,n is the number of interleaved repeats in which
one repeat is of length m and the other is of length n. To
ensure that condition (a) in the above theorem fails with
probability no more than Î, the right hand side of (7) is set
to be Î; this imposes a constraint on the coverage depth.
Furthermore, conditions (b) and (c) imply that the nor-
malized coverage depth c̄ ≥ 1/(1 − (�triple + 1)/L) . These
two constraints together yield the performance curve of
SIMPLEBRIDGING in Figure 2.

MultiBridging
We now turn to triple repeats. As previously observed, it
can be challenging to resolve repeats with more than one
copy [8], because an edge into the repeat may be paired
with more than one outgoing edge. As discussed above,
our approach here shares elements with IDBA [17]: we
note that increasing the node length serves to resolve
repeats. Unlike IDBA, we do not increase the node length
globally.
As noted in the previous subsection, repeats corre-

spond to nodes in the sequence graph we call X-nodes.

Here the converse is false: not all repeats correspond to
X-nodes. A repeat is said to be all-bridged if all repeat
copies are bridged, and an X-node is called all-bridged if
the corresponding repeat is all-bridged.
The requirement that triple repeats be all bridged allows

them to be resolved locally (Figure 8). The X-node resolu-
tion procedure given in Step 4 of MULTIBRIDGING can
be interpreted in the K-mer graph framework as increas-
ing K locally so that repeats do not appear in the graph. In
order to do this, we introduce the following notation for
extending nodes: Given an edge (v, q) with weight av,q,
let v®qdenote v extended one base to the right along

(v, q), i.e. v→q = vq1
avq+1 (notation introduced in Sec.).

Similarly, let p→v = p1end−apv
v . MULTIBRIDGING is

described as follows.
Algorithm 1 MULTIBRIDGING. Input: reads R ,

parameter K. Output: sequence ŝ .
K-mer steps 1-3:
1. For each subsequence x of length K in a read, form

a node with label x.
2. For each read, add edges between nodes represent-

ing adjacent K-mers in the read.
3. Condense the graph (c.f. Figure 6).
4. Bridging step: (See Figure 8). While there exists a

bridged X-node v: (i) For each edge (pi, v) with weight
api,v , create a new node ui = pi→v and an edge (pi, ui)

with weight 1 + api,v . Similarly for each edge (v, qj ),

create a new node wj = v→qj and edge (wj , qj ). (ii) If v
has a self-loop (v, v) with weight av ,v, add an edge
(v→v, v→v) with weight av ,v + 2. (iii) Remove node v
and all incident edges. (iv) For each pair ui, wj adjacent
in a read, add edge (ui,wj ). If exactly one each of the ui
and wj nodes have no added edge, add the edge. (v)
Condense graph.

Figure 7 An example of the bridging step in SIMPLEBRIDGING.
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5. Finishing step: Find an Eulerian cycle in the graph
and return the corresponding sequence.
Theorem 6. The algorithm MULTIBRIDGINGrecon-

structs the sequence s if:
(a) all interleaved repeats are bridged
(b) all triple repeats are all-bridged
(c) the sequence is covered by the reads.
A similar analysis as for SIMPLEBRIDGING yields the

performance curve of MULTIBRIDGING in Figure 2.

Gap to lower bound
The only difference between the sufficient condition
guaranteeing the success of MULTIBRIDGING and the

necessary condition of the lower bound is the bridging
condition of triple repeats: while MULTIBRIDGING
requires bridging all three copies of the triple repeats,
the necessary condition requires only bridging a single
copy. When ℓtriple is significantly smaller than ℓinterleaved,
the bridging requirement of interleaved repeats domi-
nates over that of triple repeats and MULTIBRIDGING
achieves very close to the lower bound. This occurs in
hc19 and the majority of the datasets we looked at. (See
Figure 9 and the plots in additional file 1.) A critical
phenomenon occurs as L increases: for L < Lcrit recon-
struction is impossible, over a small critical window the
bridging requirement of interleaved repeats (primarily

Figure 8 MULTIBRIDGING resolves an X-node with label ATTGCAA corresponding to a triple repeat.
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the longest) dominates, and then for larger L, coverage
suffices.
On the other hand, when ℓtriple is comparable or lar-

ger than ℓinterleaved, then MULTIBRIDGING has a gap in
the coverage depth to the lower bound (see for example
Figure 3). If we further assume that the longest triple
repeat is dominant, then this gap can be calculated to

be a factor of 3 · log 3ε−1

log ε−1
≈ 3.72 for Î = 10-2. This gap

occurs only within the critical window where the
repeat-bridging constraint is active. Beyond the critical
window, the coverage constraint dominates and MUL-
TIBRIDGING is optimal. Further details are provided in
the appendices.

Simulations and complexity
In order to verify performance predictions, we imple-
mented and ran the algorithms on simulated error-free
reads from sequenced genomes. For each algorithm, we
sampled (N, L) points predicted to give <5% error, and
recorded the number of times correct reconstruction
was achieved out of 100 trials. Figure 9 shows results
for the three GAGE reference sequences.
We now estimate the run-time of MULTIBRIDGING.

The algorithm has two phases: the K-mer graph forma-
tion step, and the repeat resolution step. The K-mer
graph formation runtime can be easily bounded by O
((L-K)NK), assuming O(K) look-up time for each of the
(L-K)N K-mers observed in reads. This step is common
to all K-mer graph based algorithms, so previous works
to decrease the practical runtime or memory require-
ments are applicable.
The repeat resolution step depends on the repeat sta-

tistics and choice of K. It can be loosely bounded as

O

(∑L

�=K
L
∑

max repeats x
of length �

dx

)
. The second sum is over

distinct of length maximal repeats x of length ℓ and dx is
the number of (not necessarily maximal) copies of repeat x.
The bound comes from the fact that each maximal repeat
of length K < ℓ < L is resolved via exactly one bridged
X-node, and each such resolution requires examining at
most the Ldx distinct reads that contain the repeat. We

note that
∑L

�=K
L
∑

max repeats x
of length �

dx < L
∑L

�=K
a� , and the

latter quantity is easily computable from our sufficient
statistics.
For our data sets, with appropriate choice of K, the

bridging step is much simpler than the K-mer graph for-
mation step: for R. sphaeroides we use K = 40 to get∑L

�=K
La� = 412; in contrast, N >22421 for the relevant

range of L. Similarly, for hc14, using K = 300,∑L

�=K
La� = 661 while N >733550; for S. Aureus,∑L

�=K
La� = 558 while N >8031.

Discussions and extensions
The notion of optimal shotgun assembly is not commonly
discussed in the literature. One reason is that there is no
universally agreed-upon metric of success. Another reason
is that most of the optimization-based formulations of
assembly have been shown to be NP-hard, including
Shortest Common Superstring [24], [5], De Bruijn Super-
walk [8], [25], and Minimum s-Walk on the string graph
[9], [25]. Thus, it would seem that optimal assembly algo-
rithms are out of the question from a computational per-
spective. What we show in this paper is that if the goal is
complete reconstruction, then one can define a clear
notion of optimality, and moreover there is a computa-
tionally efficient assembly algorithm (MULTIBRIDGING)
that is near optimal for a wide range of DNA repeat statis-
tics. So while the reconstruction problem may well be NP-

Figure 9 Simulation results for each of the GAGE reference genomes. Each simulated (N,L) point is marked with the number of correct
reconstructions (e.g. 93, 98, 95) on 100 simulated read sets. All four algorithms (GREEDY, DEBRUIJN, SIMPLEBRIDGING, and MULTIBRIDGING) were
run on S. Aureus, R. sphaeroides and hc14. Note that MULTIBRIDGING is very close to the lower bound on all 3 datasets.
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hard, typical instances of the problem seem much easier
than the worst-case, a possibility already suggested by
Nagarajan and Pop [26].
The MULTIBRIDGING algorithm is near optimal in

the sense that, for a wide range of repeat statistics, it
requires the minimum read length and minimum cover-
age depth to achieve complete reconstruction. However,
since the repeat statistics of a genome to be sequenced
are usually not known in advance, this minimum
required read length and minimum required coverage
depth may also not be known in advance. In this con-
text, it would be useful for the Multi-Bridging algorithm
to validate whether its assembly is correct. More gener-
ally, an interesting question is to seek algorithms which
are not only optimal in their data requirements but also
provide a measure of confidence in their assemblies.
How realistic is the goal of complete reconstruction

given current-day sequencing technologies? The mini-
mum read lengths Lcrit required for complete reconstruc-
tion on the datasets we examined are typically on the
order of 500-3000 base pairs (bp). This is substantially
longer than the reads produced by Illumina, the current
dominant sequencing technology, which produces reads
of lengths 100-200bp; however, other technologies pro-
duce longer reads. PacBio reads can be as long as several
thousand base pairs, and as demonstrated by [27], the
noise can be cleaned by Illumina reads to enable near
complete reconstruction. Thus our framework is already
relevant to some of the current cutting edge technologies.
To make our framework more relevant to short-read
technologies such as Illumina, an important direction is
to incorporate mate-pairs in the read model, which can
help to resolve long repeats with short reads. Other
extensions to the basic shotgun sequencing model: het-
erogenous read lengths: This occurs in some technolo-
gies where the read length is random (e.g. Pacbio) or
when reads from multiple technologies are used. Gener-
alized Ukkonen’s conditions and the sufficient conditions
of MULTIBRIDGING extend verbatim to this case, and
only the computation of the bridging probability (3) has
to be slightly modified.
non-uniform read coverage: Again, only the compu-

tation of the bridging probability has to be modified.
One issue of interest is to investigate whether reads are
sampled less frequently from long repeat regions. If so,
our framework can quantify the performance hit.
double strand: DNA is double-stranded and consists

of a length-G sequence u and its reverse complement
ũ . Each read is either sampled from u or ũ . This more
realistic scenario can be mapped into our single-strand
model by defining s as the length-2G concatenation of u
and ũ , transforming each read into itself and its reverse
complement so that there are 2N reads. Generalized
Ukkonen’s conditions hold verbatim for this problem,

and MULTIBRIDGING can be applied, with the slight
modification that instead of looking for a single Eulerian
path, it should look for two Eulerian paths, one for each
component of the sequence graph after repeat-resolu-
tion. An interesting aspect of this model is that, in addi-
tion to interleaved repeats on the single strand u,
reverse complement repeats on u will also induce inter-
leaved repeats on the sequence s.

Additional material

Additional file 1: In this supplementary material, we display in Figures
10-17 the output of our pipeline for 9 datasets (in addition to hc19,
whose output is in the introduction, and the GAGE datasets R.
sphaeroides, S. Aureus, and hc14). For each dataset we plot

log(1 + a�), the log of one plus the number of repeats of each

length ℓ. From the repeat statistics am, bm,n, and cm, we produce a
feasibility plot. The thick black line denotes the lower bound on feasible
N, L, and the green line is the performance achieved by MULTIBRIDGING.
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