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Background: Read alignment is a computational bottleneck in some sequencing projects. Most of the existing
software packages for read alignment are based on two algorithmic approaches: prefix-trees and hash-tables. We
propose a new approach to read alignment using random permutations of strings.

Results: We present a prototype implementation and experiments performed with simulated and real reads of
human DNA. Our experiments indicate that this permutations-based prototype is several times faster than
comparable programs for fast read alignment and that it aligns more reads correctly.

Conclusions: This approach may lead to improved speed, sensitivity, and accuracy in read alignment. The
algorithm can also be used for specialized alignment applications and it can be extended to other related

Background

The exponential growth in high-throughput sequencing
exceeds the pace of speed increase in computer hardware.
Therefore, advancements in software and algorithms for
read analysis have been required in order to analyze the
tremendous amount of data obtained from sequencing.

Most of the existing programs for read alignment are
based on two classes of algorithms: a) prefix-trees (used in
programs such as SOAPAligner [1], BWA [2], Bowtie [3]
and Bowtie2 [4]) and b) hash-tables (used in programs
such as mrFast [5], mrsFast [6], RazerS [7] and Hobbes
[8]). Reviews of the main algorithms and software
packages developed for read alignment are available in
[9-11].

Software packages released in recent years use these
approaches very efficiently. When the reference is not
very large and not very repetitive, when the number of
reads is not large, and when it is possible to “mask” large
parts of the reference, existing algorithms and tools pro-
vide a computationally inexpensive solution. However, as
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the throughput continues to grow and new applications
emerge, a new approach to read alignment may be useful
for many applications.

In this paper, we introduce a random-permutations-
based approach to read alignment. The approach is con-
ceptually related to the use of random projections in ran-
domized nearest neighbors algorithms (e.g. [12]). An
outline for a random-permutations-based algorithm for
string searches has been presented by Charikar [13]. We
formulate the read alignment problem as a special nearest
neighbors search problem and propose a practical search
algorithm based on the random permutations approach.

The applicability of the algorithm is demonstrated by
comparing an implementation of the algorithm to existing
fast read alignment programs.

Problem definition
In this subsection we formulate the problem as a “near-
est neighbors search” problem.

In the study of the genome, the sequences of nucleotides
that form DNA molecules are represented as strings com-
posed of the characters A, C, G and T. We investigate the
following scenario: we are given a long reference string
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(the reference DNA) and a large number of short strings,
called “reads.” For each of the reads, we would like to find
the most similar substring of the reference.

We assume that all our reads are strings of the same
length. This assumption often holds in practice, and the
approach can be extended to non-uniform lengths. We
denote the length of the reads by M. A typical value can
be M ~ 100.

We denote the long reference string, which represents
the entire reference genome, by W. In the human
genome, the length of this string is in the order of N =
3 x 10°.

Instead of considering W as one long string, we examine
its contiguous substrings of length M. There are N - M + 1
such substrings, each of them starts at a different location
in W. We denote each of these substrings by its location
in W, so X; is the substring that begins at the ith character
of W.

We can now phrase our alignment problem as follows:
given a read Y, find the most “similar” string X; in the
reference library. The measure for similarity is based on
the number of mismatches, or the “Hamming distance”
between strings; the smaller the distance, the higher the
similarity.

This type of search problems (with any definition of
distance) is known as “nearest neighbors search.”

In this discussion, we describe an algorithm for finding
a single, unique, “true nearest neighbor”. We assume that
no two reference strings are identical. We also assume
that there is a unique “true nearest neighbor” for every
read, so no other reference string has the same Hamming
distance to the read as the “true nearest neighbor.” These
assumptions simplify the definitions and the analysis, but
the approach is applicable when these assumptions do
not hold.

Extended frameworks
The principles discussed in this limited framework and
under these assumptions can be extended. For more gen-
eral search problems, we consider a two-step framework
for read alignment: a search step and a refinement step. In
the first step, we use a search algorithm to recover candi-
date alignments and apply a coarse filter to obtain a “small”
list of final candidates. In the second step, a more refined
method is used to process the list of candidates. This step
may include scores (such as the Hamming distance) and
thresholds, but may also include cross-referencing of the
information recovered from different reads as well as addi-
tional searches. This framework is appropriate for permuta-
tions-based-algorithms which automatically enumerate
many possible candidates.

The prototype presented in the results section imple-
ments a version of the algorithm which preforms the first
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approximate search step and returns a small number of
candidates, rather than a single “best” match.

In most of this paper, we restrict our attention to mis-
match-type variations and errors. Although considering
mismatches is sufficient for some applications, there are
other important variations: insertions and deletions
("indels”) of characters that change the relative positions
of other characters. The implementation in the results sec-
tion demonstrates one of the extensions for fast and accu-
rate alignment in the presence of indels. A comprehensive
discussion of the extensions for indels is beyond the scope
of this paper.

Observations

In the description of the algorithm, we discuss arrays of
strings which we sort lexicographically, like words in a dic-
tionary. In particular, we discuss lexicographically sorted
libraries containing versions of the strings in the reference
library. In this subsection, we describe several properties
of lexicographically sorted libraries and properties of
strings comparison.

Definition 1 If a string is present in the lexicographi-
cally sorted array, we define its “lexicographical position”
in the array as its position in the array. If a string is not
present in the lexicographically sorted array, we define
its “lexicographical position” in the array as the position
where it would have been inserted if we had added it to
the array.

Observation 1 There are search algorithms, such as
“binary search” [14], that allow us to find the lexicogra-
phical position of reads in sorted libraries of reference
strings in O(log(N)) strings comparison operations.
Furthermore, when the reference library contains a per-
fect match for the read, these search algorithms find the
perfect match.

This operation is very similar to looking up a word in
a dictionary.

Observation 2 Suppose that all the mismatches in some
read with respect to its true nearest neighbor are known to
occur “late enough” in the read, so that the lexicographical
position of the read in the sorted array is within K positions
from the position of the true nearest neighbor. Then we can
find the true nearest neighbor in O(log(N) + K) strings
comparison operations.

This can be done by first finding the lexicographical
position of the read, and then considering the “neighbor-
hood” of ~ 2K strings around it. This operation is analo-
gous to finding the correct page in a dictionary and then
examining all the words on that page.

Observation 3 If the same permutation is applied to
two strings, the Hamming distance between the permuted
strings is equal to the Hamming distance between the
original strings.
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A permutation of a string reorders the characters in
the string. Therefore, the same mismatches still occur in
the permuted versions, only the positions where they
occur are changed by the permutations.

Methods

An informal description of the algorithm

In our search problem, we have some library of reference
strings and a read. Suppose that our read Y and its true
nearest neighbor X; have p mismatches. Based on observa-
tion 3, if we apply the same permutation 7% to our read
and all the reference strings, the Hamming distance
between the permuted version of our read and each per-
muted reference string is the same as the distance between
the original read and the corresponding original reference
string. In particular, the number of mismatches between
the permuted read Y% and the permuted version of the
true nearest neighbor Xl.(j) is still p, and the permuted ver-
sion of the true nearest neighbors is the true nearest
neighbor of the permuted read. If we are “lucky” enough,
we happen to move the p mismatches to positions that are
“far enough” from the beginning of the string. Based on
observation 2, if the positions are “far enough,” the search
for the lexicographical position of the read leads us to the
“neighborhood” of the “true nearest neighbor.” Formal
definitions of “neighborhoods” are presented below.

We do not know in advance which characters to
“push” to the end of the string and we cannot expect to
always be “lucky” enough to permute the correct charac-
ters away from the beginning. Instead, for each read that
we receive, we repeat the procedure described above
several times, using a different random permutation
each time. Consequently, we have a high probability of
finding the true nearest neighbor in at least one of the
repetitions.

This procedure uses sorted arrays of permuted strings
to define and search for “neighborhoods.” Different ver-
sions of the algorithm use other data structures, such as
prefix-trees of permuted strings.

To illustrate what permutations do, we generated a ran-
dom “reference genome” of length N = 20000, and built a
library of all substrings of length 15. In this example, we
consider the read ¥ = CTtGCCAAAGCCATG, which
should be mapped to the location 10000, where X900 =
CTCGCCAAAGCCATG.

We attempt to look for a match to Y in the sorted
library. Since the mismatch occurred “early” in the read,
our search takes us to a distant position in the sorted
array and we do not find X;ggq0 there. The correct neigh-
borhood of X;ggqo is presented in table 1.

If we permute Y using the code 7‘V): (11, 2, 7, 13, 9, 15,
4, 5,1, 12, 10, 14, 3, 8, 6), the mismatch in position 3 is
permuted to the 13th position: Y = 7M(Y) = CTAA
AGGCCCGTtAC. When we look for YV, we find the
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Table 1 Sorted library

Sorted Position DNA Locus Original String
9383 8111 CTCGATTGGAACTGA
9384 17930 CTCGCAATCCGCAAA
9385 3710 CTCGCAGTGTCAAAC
9386 1608 CTCGCATCAAAGGTT
9387 10000 CTCGCCAAAGCCATG
9388 17832 CTCGCCCACCTATTA
9389 1034 CTCGCCGGTCTAGTC
9390 19834 CTCGCGCGGTCAACT
9391 6422 CTCGCGTCGGGCGAA

permuted version of Xjgo09, Which is thl)z)oo = 7V
(X10000) = CTAAAGGCCCGTCAC. The lexicographical
neighborhood of 7Y (X10000) is presented in table 2.

If we use the same permutation and the mismatch
occurs in a different position, we may not find X;0000-
In fact, if the mismatch occurs in position 11, it becomes a
mismatch in the first character of the permuted string.
Therefore, we use several randomly chosen permutations
to reduce the probability of failure. When we use long
strings and random permutations, the probability of error
drops rapidly as the number of iterations grows.

A more formal description of the algorithm

We now describe the algorithm more formally. First, we

describe an indexing procedure (part 1). Then we describe

the search for candidate neighbors (part 2). Finally, we

describe an approach to filtering the proposed neighbors

and finding the best one (part 3).

Part 1: Indexes

Create a collection of random permutation schemes ().
For each permutation ¥

Use 1) to permute all the original reference strings.
Build a sorted array Ar"” of the permuted reference
strings.

Store permutation 77 and index A7 for use in part 2.

End For.

Table 2 Sorted library of permuted strings

Sorted DNA Original String Permuted String
Position Location

8898 997 ATTACGATAACAACG  CTAAAGACAAACTTG
8899 11316 CTGAGCATAGCTACG  CTAAAGAGCTGCGTC
8900 4844 GTTAGGAAAACAACG CTAAAGAGGAACTAG
8901 9523 GTGCCCAAATCGATG  CTAAAGCCGGTTGAC
8902 10000 CTCGCCAAAGCCATG  CTAAAGGCCCGTCAC
8903 4568 TTTGTAAGATCTACG  CTAAAGGTTTTCTGA

8904 16699 CTCTCCATAGCCAAG  CTAAAGTCCCGACTC
8905 9139 GTGTCTAGAGCTATG  CTAAAGTCGTGTGGT
8906 1115 GTTTGGAGAGCGAGG  CTAAAGTGGGGGTGG
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Part 2: Lists of candidates
For each read Y:

Initialize Candidates(Y ) = &.

Randomly choose J of the random permutations.

For each chosen permutation:
Calculate YV = 7zY)(Y), the permuted version of
Y.
Find the lexicographical position of Y9 in A,
Add the lexicographical neighborhood of Y to
Candidates(Y).

End For.

End For.
Part 3: Filter
For each read Y :

For every candidate (i € Candidates(Y"))
Calculate the Hamming distance between X; and Y .
Keep track of the candidate string most similar
to the read.

End For.

Report the most similar string as the alignment of Y.

End For.

“Neighborhoods” of strings

In this subsection we give one of the possible definitions
for a “neighborhood.” We also define the terms “prefix
neighborhood” and “resolution length,” which we use in
the analysis.

We define a neighborhood size K >0, which is an
order of magnitude of the number of strings that we
compare to the read in each iteration.

Suppose that we are looking for the string Y in a
sorted array of reference strings.

Definition 2 If k is the lexicographical position of the
string Y in a sorted array of strings, then the “neighbor-
hood” of Y is defined as the list of strings in positions k - K
to k + K in the sorted array.

Definition 3 The “prefix neighborhood of length I” of
the string Y is the list of all strings that have the same [-
long prefix as the string Y .

Definition 4 Given a string X, we define the “resolution
length” (L) as the smallest value such that the L-long prefix
of X is the prefix of no more than K strings in the library.

Analysis
In this subsection, we discuss the probability of obtain-
ing the “true nearest neighbor” for a read. We denote
the number of mismatches between the read and the
true nearest neighbor by p.

We assume a constant value of “resolution length” for
the true nearest neighbor across the different permutations
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used. We denote it by L. Different reads may have different
true nearest neighbors with different values of L. This
assumption can be relaxed in more detailed analyses of the
algorithm. We assume that p <(M - L).

There are M! possible permutations for a string of M
characters. The permutations that we use are chosen
randomly from these M! possibilities with equal
probabilities.

We begin by considering a single permutation and a
single iteration of part 2 of the algorithm. By definition,
if there are no mismatches in the first L characters of
the permuted string, then the true nearest neighbor is in
the “neighborhood” and it is added to the list of candi-
dates in this iteration. Since the “neighborhood” exam-
ined in part 2 of the algorithm is larger than the “prefix
neighborhood of length L,” some additional reference
strings are added to the list of candidates. There are
(A(AA:?;)! ways to place p mismatches in the (M - L) posi-
tions at the end of the string, which are not part of the
L-long prefix. There are (M - P)! ways to place the (M -
P) characters that have no mismatches. Therefore, there

are A(/‘Afi)p")! (M — p)! “lucky” permutations, that permute

the p mismatches away from the prefix. We assumed
that our permutations are chosen from among all M!
permutations with equal probabilities, so each of the
“lucky” permutations is chosen with probability 1/M!.

Therefore, the probability of “being lucky” in a single
iteration, and adding the true nearest neighbor to the
list of candidates is at least:

(M—=L)!

_L_p)t (M=p)!
PrGoodPerm(p, L, M) = (M-L ﬁ: . (1)

The probability for being “unlucky” in any one experi-
ment is at most 1 — PrGoodPerm(p, L, M). The permuta-
tions are chosen at random, and they are independent.
Therefore, the probability that at least one of the lists
contains the true nearest neighbor is:

PrSuccess(p, L, M,J) > 1 — (1 — PrGoodPerm(p, L, M) . (2)

In part 3 of the algorithm, we check all the candidates
directly, so if the true nearest neighbor is in the list, we
are guaranteed to report it as the the best match for the
read. So, PrSuccess(p, L, M,]) is also the probability of
reporting the correct search result.

Each read has its own true nearest neighbor, therefore
the value of L and the number of mismatches (p) varies
between reads. Given a distribution of L for the different
reads and their “true nearest neighbors,” a distribution
of the number of mismatches and criteria for the
desired probability of success in different cases, we set
appropriate values of K and /. Our experiments suggest
that in practice, low values of K and J, which allow fast



Lederman BMC Bioinformatics 2013, 14(Suppl 5):58
http://www.biomedcentral.com/1471-2105/14/55/S8

computation, can produce good alignment results in a
wide range of scenarios.

Complexity

The indexing of the reference in part 1 of the algorithm

is a simple sorting operation which requires O(Nlog(N))

strings comparison operations for each of the indexes.
Based on observations 1 and 2, the number of strings

comparison operations required by parts 2 and 3 of the

algorithm is O(J(log(N) + K)) per read.

Filtration and reporting multiple possible alignments
Since the algorithm evaluates multiple candidates in part
3, some degree of multiple alignments analysis is a
byproduct of the algorithm and the algorithm can be
extended to report multiple possible alignments. This
property allows us to extend the algorithm to perform
the fast search required in the first step of the extended
alignment framework.

An improved filtration component, the “hit-count” filter,
can be used to generate a small list of candidates ("coarse
filtration”) and also to accelerate the algorithm. A version
of the algorithm that uses “hit-counts” stores the number
of times each candidate appeared in the searches in part 2
of the algorithm (the “hit-count” for that candidate). In
part 3 of this version, the algorithm evaluates and reports
only candidates that appeared in several searches in differ-
ent indexes ("received multiple hits”).

Memory considerations and practical indexes

Large reference genomes may require multiple large
indexes. It is enough to store the original reference
string and the permutation rules, and it is not necessary
to store all the permuted strings explicitly in the sorted
arrays. It is also not necessary to store all the indexes in
the RAM at the same time; one can load an index, per-
form one iteration of part 2 of the algorithm for a batch
of reads, and then load another index.

Furthermore, each single index can be used almost as
if it were multiple indexes with different permutations.
To achieve this, we use a sliding window to take contig-
uous substrings of the reads. We permute each of these
substrings and search for it in the sorted array of per-
muted reference strings.

Results and discussion
Basic alignment
We implemented a version of the algorithm in C (with
no SIMD/SSE). Our permutations-based prototype
implementation was used in the same three modes in all
the experiments.

For the comparison presented here, we chose some of
the popular programs which preform the fastest alignment
to a human reference genome. We used Bowtie [3] as the
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main benchmark for performance evaluation because it is
one of the fastest aligners [11]. We also compared the per-
formance to BWA [2] and the more recent Bowtie2 [4].

The purpose of the comparison is to demonstrate the
applicability of the algorithm to a large-scale problem like
aligning to a full human genome. This is not meant to be
a complete comparison to all programs in all scenarios.

All the real reads were obtained from The 1000 Gen-
omes Project [15]. All the simulated reads were produced
using wgsim [16]. The human genome GRCh37 [17]
(obtained from The 1000 Genomes Project) was used as
the reference. Some large regions were masked with “N"s
in the original reference, but other repetitive regions
were not masked.

The comparison was performed on a cluster node
with (2) E5620 CPUs and 48 GB RAM. Similar experi-
ments of alignment to the full human genome, using
low-cost ($500-600) desktops with 16 GB and 32 GB
RAM, produced similar results. All the programs were
used in single thread mode. Bowtie requires about 2.2
GB of RAM, Bowtie2 requires about 3.1 GB and BWA
requires about 2.3 GB. The permutations-based proto-
type implementation requires about 15 GB of RAM for
the full human genome (Using more memory would
allow to index the reverse complement, doubling the
speed. There is a 8 GB version of the program for com-
puters with smaller RAM. Smaller references require
smaller indexes).

In Figure 1 we compare the best alignments obtained by
Bowtie and the permutations-based prototype. In certain
settings, Bowtie found alignments with fewer mismatches
for some reads. For example, “Bowtie -v 3” found align-
ments with up to 3 mismatches for about 0.1% more reads
(not visible in the figure). The permutations-based proto-
type found more alignments for reads with a large number
of mismatches than all the modes which we tested in this
experiment (most modes are not shown in the figure), and
found more alignments with a low number of mismatches
than some modes of Bowtie (the default “-n” modes).

In table 3 we compare the search times of Bowtie, Bow-
tie2, BWA and the permutations-based prototype in
alignment of real reads. The different programs have dif-
ferent criteria for reporting, and the permutations-based
prototype usually generates more possible alignments, so
the number of alignments would be misleading and it is
not reported in the tables.

We also simulated reads to measure how many of the
reads are aligned to the “correct original location in the
genome.” In some cases, there may be several equally prob-
able alignments and in some cases the “best” alignment
with the fewest mismatches may be different than the “cor-
rect location.” Ideally, the alignment program should report
both the “best” alignment and other possibilities that could
be the “correct” alignment. The results of this experiment
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Figure 1 Single-end alignment of real reads: best match. The percent of reads for which an alignment with up to n mismatches was found.
Additional alignments are ignored. Dataset: 105 reads from ERR009392_1.

are presented in Figure 2 and table 4. In most cases, the
permutations-based prototype was faster than Bowtie,
Bowtie2 and BWA and produced more correct alignments
to the correct “original location” than all other programs.

Alignment of paired-end reads, in the presence of indels

One common variation in the alignment scenario we
described is the use of a different type of distance: “edit

Table 3 Real single-end reads: search time

distance.” Strings may be close in “edit distance” even in
the presence of indels, although the indels are likely to
make the strings far apart in Hamming distance.
Another common variation in the scenario is the
availability of “paired-end reads™ reads are presented in
pairs, in which both reads are known to have originated
from nearby areas in the genome. In this case, we are
required to find nearest neighbors for both strings,

Software Search time (s)
SRR023337_1 ERR009392_1 ERR016249_1
78 bp 108 bp 160 bp

Bowtie -v 3 233 256 773
Bowtie -n 2 144 334 1560
Bowtie -n 2 -k 10 658 1142 2830
Bowtie2 -very-fast 179 285 440
Bowtie2 -sensitive 328 654 853
Bowtie2 -very-sensitive 812 1488 1855
Bowtie2 -very-sensitive -k 10 121 2430 3869
BWA -0 0 548 860 2434
Permutations-based (mode 1) 65 68 111
Permutations-based (mode 2) 147 151 145
Permutations-based (fast) 35 39 57

Each dataset contained 10° reads from the fastq files obtained from the “1000 Genomes” project.
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Figure 2 Single-end alignment of simulated reads: search time and correct alignments. Dataset: 106 simulated reads of length 100,
mutation rate: 0:1%, indel ratio: 15%, mismatch rate: 2%. The results of additional simulations are reported in table 4.

subject to some constraint on the distance between the
locations in the reference genome.

A modified version of our prototype performs paired-
end alignment in the presence of indels. We first align
each of the reads in the pair separately. Then, for each
“reasonable” candidate found for one of the reads, we
restrict our attention to the area of the reference gen-
ome around that candidate, and attempt to align sub-
strings of the other read to that area.

Since Bowtie does not allow indels, we used Bowtie2
[4] and BWA [2] as benchmarks. All the programs were
used in single thread mode. This version of the proto-
type requires about 25 GB of RAM for the alignment of
paired-end reads to a human genome. Bowtie requires
about 2.9 GB of RAM, Bowtie2 requires about 3.2 GB
and BWA requires about 2.3 GB.

In table 5 we compare the search times of Bowtie,
Bowtie2, BWA and the permutations-based prototype
implementation in paired-end alignment of real reads.

In Figure 3 and table 6 we present the results of align-
ing simulated pairs of reads with indels. The permu-
tations-based prototype was faster than the other
programs and usually produced more correct alignments
when there were few indels. The permutations-based
prototype was also able to align reads with higher indel

rates almost as well as the best performing benchmark
program, but significantly faster.

Conclusions
An algorithm has been constructed for the fast align-
ment of DNA reads to a reference genome. The algo-
rithm handles mismatches by design, and it has been
demonstrated that it can be extended to allow some
inserts and deletions in some cases of practical interest.
The algorithm has been implemented and compared
to existing programs. Our experiments indicate that the
algorithm can produce alignments comparable to those
generated by existing fast alignment algorithms, often
aligning more reads with a significant speed increase.
Future implementations of the algorithm are expected
to be faster and more efficient, sensitive and accurate.
The permutations-based prototype implementation
requires 15 GB of RAM for the alignment of reads to a
human genome (25 GB for paired-end alignment). Some
existing programs require significantly less memory.
However, the amount of memory required by this imple-
mentation is available in low cost computers, and other
versions of the algorithm utilize memory more efficiently.
Our current implementation of the algorithm is not a
complete software package and does not replace existing
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Table 4 Simulated single-end reads: search time and percent of correct alignments

Read length 75 100 150
Mismatch probability 1% 2% 5% 1% 2% 5% 1% 2% 5%
Software Time/%Correct

Bowtie time (s) 141 245 517 177 350 588 306 537 647

-v 3 % correct 94.9 89.0 450 94.4 819 24.1 89.5 60.9 50

Bowtie time (s) 58 90 165 79 125 190 126 194 218

-v 2 % correct 91.1 76.2 25.1 876 63.7 11.0 76.2 389 16

Bowtie time (s) 152 236 439 234 393 961 397 733 2430

-n 3 % correct 926 84.6 67.7 925 788 65.2 88.2 594 419

Bowtie time (s) 108 161 286 170 264 609 294 514 1560

-n2 % correct 93.1 85.7 69.6 93.0 79.7 67.0 88.6 59.9 431

Bowtie time (s) 873 869 1179 1242 1069 2377 1511 1243 3446

-n 2 -k 10 % correct 96.2 887 729 953 817 69.2 90.3 61.0 44.0
Bowtie2 time (s) 169 163 136 234 233 196 363 366 299
-very-fast % correct 93.6 873 595 953 91.2 694 959 93.0 76.1
Bowtie2 time (s) 224 223 178 329 320 267 533 523 422

-fast % correct 94.0 88.2 60.8 95.9 N4 71.0 96.9 94.7 782
Bowtie2 time (s) 354 315 275 498 462 396 791 765 638
-sensitive % correct 95.2 92.1 73.1 96.5 94.6 804 97.6 96.6 884
Bowtie2 time (s) 776 734 611 1124 1056 851 1864 1730 1383

-very sensitive % correct 95.7 94.2 83.6 96.8 95.8 89.1 97.8 97.3 94.2
Bowtie2 time (s) 1063 813 691 1743 1341 1165 3498 2775 2395

-very sensitive -k 10 % correct 98.0 95.8 84.6 984 96.6 89.9 98.9 976 94.9
BWA time (s) 320 457 516 404 743 610 715 931 447

00 % correct 96.5 933 599 97.2 939 54.2 974 925 331
BWA time (s) 359 560 889 483 1007 1206 904 1513 1034

01 % correct 97.1 938 60.2 98.1 94.7 54.6 98.7 936 334
Permutations-based time (s) 53 76 106 56 90 118 76 98 112
(mode 1) % correct 97.5 958 84.5 984 97.5 89.0 98.5 98.0 913
Permutations-based time (s) 147 149 152 155 147 145 145 148 156
(mode 2) % correct 97.8 96.4 86.6 98.5 97.8 90.6 98.6 98.1 927
Permutations-based time (s) 31 43 62 33 46 64 45 51 72
(fast) % correct 93.7 88.5 64.1 95.8 915 66.9 96.9 933 694

Each dataset contained 10° reads. Mutation rate: 0.1%, indel ratio: 15%.

We report the search time (for BWA: overall run time) and the percent of the reads which were aligned to the correct position in the genome.

In some cases and in some settings, the programs may report several possible alignments for some reads. When needed, additional filtering can be added to
aligners in order to eliminate some of the results, as appropriate for specific applications. In the experiment, the programs reported <4 alignments/read (in
average, in sensitive modes), with 0-1 alignments for the majority of reads. In this table, when the program produces multiple possible alignments, it is enough
that one of the reported alignments corresponds to the correct location in order to consider the alignment correct.

Table 5 Real paired-end reads: search times.

Software Search time (s)
SRR023337 ERR009392
78 bp, paired 108 bp, paired

Bowtie -v 3 2004 2145
Bowtie -v 2 264 315
Bowtie -n 3 628 718
Bowtie2 -very-fast 650 848
Bowtie2 -fast 740 961
Bowtie2 -sensitive 978 1351
Bowtie2 -very-sensitive 1749 2576
BWA -0 0 903 2001
BWA -0 1 1707 3540
Permutations-based (report one) 345 259
Permutations-based (report more) 608 488

Each dataset contained 10° pairs of reads from the fastq files obtained from the “1000 Genomes” website. Search times are reported.
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Figure 3 Paired-end alignment of simulated reads: search time and correct alignments. Dataset: 106 pairs of reads of length 100, mutation
rate: 0:1%, indel ratio: 15%, mismatch rate: 2%. Additional results are reported in table 6.

Table 6 Simulated paired-end reads: search time and percent of correct alignments.

Low indel probability High indel probability
Mismatch probability 1% 2% 5% 1% 2% 5%
Software Time/%Correct

Bowtie time (s) 1766 2274 3068 1849 2375 3059
-v 3 Y%correct 91.8 69.3 6.1 832 63.8 5.7
Bowtie time (s) 6161 5283 3260 5793 5151 3246
-v3-k10 9ocorrect 936 70.5 6.1 849 64.9 58
Bowtie time (s) 241 333 353 256 337 352
-v 2 %correct 79.7 42.2 13 732 396 12
Bowtie time (s) 483 593 645 486 618 664
-n2 Y%correct 86.4 64.8 504 784 59.6 46.1
Bowtie time (s) 1308 1293 1054 1283 1199 1036
-n2-k10 9ocorrect 878 65.7 51.1 79.6 60.5 46.8
Bowtie2 time (s) 757 715 506 734 670 484
-very-fast Y%correct 98 94.6 67.0 98.0 94.6 67.0
Bowtie2 time (s) 834 800 571 804 750 551
-fast %correct 98.1 948 67.5 98.1 94.8 67.5
Bowtie2 time (s) 1104 1079 893 1062 1014 857
-sensitive 9ocorrect 984 975 838 984 975 838
Bowtie2 time (s) 2070 2045 1671 2080 1968 1648
-very-sensitive Ycorrect 98.5 983 96.5 985 98.3 96.5
BWA time (s) 1026 1404 1670 1162 1379 1676
00 9ocorrect 99.1 98.7 78.1 98.6 98.0 76.3
BWA time (s) 1252 1956 3062 1499 2274 3180

01 Y%correct 99.1 98.8 784 99.1 98.8 780
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Table 6 Simulated paired-end reads: search time and percent of correct alignments. (Continued)

Permutations-based time (s) 155 208 300 166 223 313
(report one) %correct 98.2 979 95.0 976 97.2 936
Permutations-based time (s) 227 328 530 268 365 553
(report more) 9%correct 99.5 99.2 96.5 98.9 98.5 952

The “low indel probability” datasets were generated with mutation rate: 0.1%, and indel ratio: 15%. The “high indel probability” datasets were generated with

mutation rate: 0.1% and indel ratio: 100%. Each of the datasets contains 10° pairs of 100 character-long reads.

For each dataset and each program, we report the search time (for BWA: overall run time) and the percent of the reads which were aligned to the correct

position in the genome.

In some cases and in some settings, the programs may report several possible alignments for some reads. When needed, additional filtering can be added to
aligners in order to eliminate some of the results, as appropriate for specific applications. In the experiment, the programs reported <3 alignments/read (in
average, in sensitive modes), with 0-1 alignments for the majority of reads. In this table, when the program produces multiple possible alignments, it is enough
that one of the reported alignments corresponds to the correct location in order to consider the alignment correct.

software packages. This prototype implementation
demonstrates how the proposed algorithm can be used
to enhance existing software packages and to build new
software packages.

The scope of this discussion is limited to the basic pro-
blem of fast alignment to large genomes. Separate work
on this class of algorithms indicates that the algorithms
can also be used for very fast alignment of long 454 and
Ion Torrent reads which may have many indels. Other
work indicates that these algorithms can be used for
other applications, such as assembly. Additional preli-
minary results and technical reports are available at
http://alignment.commons.yale.edu.
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