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Abstract

Background: Tumour markers are standard tools for the differential diagnosis of cancer. However, the occurrence
of nonspecific symptoms and different malignancies involving the same cancer site may lead to a high proportion
of misclassifications.
Classification accuracy can be improved by combining information from different markers using standard data
mining techniques, like Decision Tree (DT), Artificial Neural Network (ANN), and k-Nearest Neighbour (KNN)
classifier. Unfortunately, each method suffers from some unavoidable limitations. DT, in general, tends to show a
low classification performance, whereas ANN and KNN produce a “black-box” classification that does not provide
biological information useful for clinical purposes.

Methods: Logic Learning Machine (LLM) is an innovative method of supervised data analysis capable of building
classifiers described by a set of intelligible rules including simple conditions in their antecedent part. It is essentially
an efficient implementation of the Switching Neural Network model and reaches excellent classification accuracy
while keeping low the computational demand.
LLM was applied to data from a consecutive cohort of 169 patients admitted for diagnosis to two pulmonary
departments in Northern Italy from 2009 to 2011. Patients included 52 malignant pleural mesotheliomas (MPM), 62
pleural metastases (MTX) from other tumours and 55 benign diseases (BD) associated with pleurisies. Concentration
of three tumour markers (CEA, CYFRA 21-1 and SMRP) was measured in the pleural fluid of each patient and a
cytological examination was also carried out.
The performance of LLM and that of three competing methods (DT, KNN and ANN) was assessed by leave-one-out
cross-validation.

Results: LLM outperformed all other considered methods. Global accuracy was 77.5% for LLM, 72.8% for DT, 54.4%
for KNN, and 63.9% for ANN, respectively. In more details, LLM correctly classified 79% of MPM, 66% of MTX and
89% of BD. The corresponding figures for DT were: MPM = 83%, MTX = 55% and BD = 84%; for KNN: MPM = 58%,
MTX = 45%, BD = 62%; for ANN: MPM = 71%, MTX = 47%, BD = 76%.
Finally, LLM provided classification rules in a very good agreement with a priori knowledge about the biological
role of the considered tumour markers.

Conclusions: LLM is a new flexible tool potentially useful for the differential diagnosis of pleural mesothelioma.
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Background
Differential diagnosis of cancer plays a crucial role in
addressing medical therapies and surgical interventions.
However, cancer diagnosis can become a very difficult
task in the presence of nonspecific symptoms and differ-
ent malignancies involving the same cancer site.
Malignant pleural mesothelioma (MPM) is a rare highly

fatal tumour, whose incidence is rapidly increasing in
developed countries due to the widespread past exposure
to asbestos in environmental and occupational settings [1].
The correct diagnosis of MPM is often hampered by the
presence of atypical clinical symptoms that may cause mis-
diagnosis with either other malignancies (especially adeno-
carcinomas) or benign inflammatory or infectious diseases
(BD) causing pleurisies [2]. Cytological examination (CE)
may allow to identify malignant cells, but sometimes a very
high false negative proportion may be encountered due to
the high prevalence of non-neoplastic cells [2]. Moreover,
in most cases a positive result from CE only does not allow
to distinguish MPM from other malignancies [3].
Many tumour markers (TM) have been demonstrated

to be useful complementary tools for the diagnosis of
MPM [4-6]. In particular, a recent investigation, based on
pairwise comparisons by standard ROC analysis, analysed
the concentrations of three tumour markers in pleural
effusions, namely: the soluble mesothelin-related peptide
(SMRP), CYFRA 21-1 and CEA, and their association
with a differential diagnosis of MPM, pleural metastasis
from other tumours (MTX) and BD [7]. SMRP showed
the best performance in separating MPM from both
MTX and BD, while high values of CYFRA 21-1 were
associated to both MPM and MTX. Conversely, high
concentrations of CEA were mainly observed in patients
with MTX. Taken together, these results indicate that
information from the three considered markers and from
CE might be combined together in order to obtain a clas-
sifier to separate MPM from both MTX and BD.
Logic Learning Machine (LLM) is an innovative

method of supervised data mining able to provide
threshold-based rules for classification purposes [8,9].
The present investigation is aimed at illustrating the
application of LLM for the differential diagnosis of
MPM by identifying simple and intelligible rules based
on CE and TM concentration. Preliminary results of the
present study have been published as an extended

abstract in the framework of the Bioinformatics Italian
Society annual meeting 2013 [10].

Methods
Data set description
A consecutive cohort of 177 patients admitted for diag-
nosis to two pulmonary departments in Northern Italy
from 2009 to 2011 was considered as eligible. Concen-
tration of SMRP, CYFRA 21-1 and CEA tumour mar-
kers was measured in pleural effusion as described by
Filiberti et al. [7].
All patients underwent CE, while 8 had at least one

missing data for a considered TM, and were conse-
quently excluded from the study, thus leaving 169
patients available for the analyses (namely: 52 MPM,
62 MTX and 55 BD). Study design was carried out
according to the protocol “Research on pulmonary dis-
eases” approved by the ethical committee of AO Villa
Scassi Hospital of Genoa, Italy, on 15 December 2005.
An informed consent for analysis of pleural fluid was

obtained from all patients.
Descriptive statistics of the three considered TM and

results of CE are resumed in Table 1. SMRP concentration
was higher among MPM than in the other two classes,
whereas CYFRA 21-1 showed very low values among BD
and higher values among the two malignancies, with the
highest median concentration observed for MPM. CEA
showed high values among MTX and similar low values
among the other two classes. The corresponding inter-
quartile ranges were largely overlapping, indicating that no
considered TM can provide a perfect separation between
MPM and the other two classes. Finally, CE provided a
positive result in about one third of MPM and a half of
MTX patients only, confirming the very low sensitivity of
such technique [2]. Furthermore, a positive CE result was
observed among BD, which corresponded to a very old
patient who died after a short period of follow-up, as
described in Filiberti et al. [7]. It remains unclear if it was
due to the occurrence of some latent pleural malignancy
or it actually represents a false positive result.

LLM classification rules
Information from tumour marker concentrations and
CE was combined using a set of simple intelligible rules,
automatically generated by the LLM algorithm, which is

Table 1. Characteristics of 169 patients with pleural disease according to benign and malignant pleural effusion

Diagnosis SMRP (nmol/l)
Median (IQR)

CYFRA 21-1 (ng/l)
Median (IQR)

CEA (ng/l)
Median (IQR)

Cytology
(% of positivity)

MPM 24.2 (8.8-55.0) 226.6 (117.6-732.2) 0.9 (0.5-1.5) 32.7

MTX 4.6 (2.6-10.0) 120.9 (41.7-446.7) 8.5 (1.4-72.8) 50.0

BD 2.8 (1.0-7.5) 23.1 (7.8-48.8) 1.1 (0.5-1.7) 1.8

MPM = Malignant Pleural Mesothelioma; MTX = Metastasis; BD = Benign Disease (pleurisis); IQR = Interquartile Range.

Parodi et al. BMC Bioinformatics 2015, 16(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/16/S9/S3

Page 2 of 10



an efficient implementation of the Switching Neural
Network model [8]. In more details, let x ∈ℜd be a
d-dimensional example in a classification problem to be
assigned to one of q possible classes, labeled by the
values of a categorical output y. Starting from a training
set S including n pairs (xi,yi), i = 1,..., n, deriving from
previous observation, LLM has the aim of generating a
classifier, i.e. a model g(x) that provides the correct
answer y = g(x) for most input patterns x. Concerning
the components xj two different situations can be
devised: a) ordered variables: xj varies within an interval
[a,b] of the real axis and an ordering relationship exists
among its values; b) nominal (categorical) variables: xj
can assume only the values contained in a finite set and
there is no ordering relationship among them. LLM
generates an intelligible model g(x) described by a set of
m rules rk, k = 1,..., m, in the if-then form:

if < premise > then < consequence >

where <premise> is the logical product (AND) of mk

conditions ckl, with l = 1,..., mk, on the components xj,
whereas <consequence> gives a class assignment y = ỹ
for the output. In general, a condition ckl in the premise
involving an ordered variable xj has one of the following
forms xj > l, xj ≤ µ, l < xj ≤ µ, being l and µ two real
values, whereas a nominal variable xj leads to member-
ship conditions xj ∈ {a, δ, s}, being a, δ, s admissible
values for the j-th component of x.
For instance, if x1 is an ordered variable in the domain

[1,100] and x2 is a nominal component assuming values
in the set {A, B, C}, a possible rule r1 is:

if x1 > 40 and x2 ∈ {A,B} then y = 0

where 0 denotes one of the q possible assignments
(classes).

The LLM algorithm for rule extraction
Intelligible classification rules described in the previous
paragraph are generated by LLM following the three
steps illustrated in Figure 1. During the first step (lattici-
sation or binarisation), data are binarized according to
the inverse only one code, which allows to preserve
ordering and distance when used to transform both
ordered and nominal attributes [8].
By means of binarisation, each example is therefore

transformed into a string z ∈{0,1}v of binary values
(bits). The length of these strings (i.e. the number of
bits), denoted by v, depends on the number of inputs
and on the number of values that each input assumes in
the training set. After this step the training set has been
translated into a binary input-output matrix which can
be seen as a portion of the truth table of a monotone
Boolean function.

The second step adopts a proper technique for digital
synthesis capable of retrieving in a reasonable time a
monotone Boolean function consistent with a partially
described truth table. A method of this kind is the Sha-
dow Clustering (SC) algorithm [9], which builds at each
iteration a new logical product (implicant) to be added
to the final AND-OR expression for the monotone Boo-
lean function and adopts specific approaches to increase
the classification ability of each produced implicant.
In particular, the Maximum covering Shadow Cluster-

ing criterion [9] attempts to increase the number of
training patterns covered by each implicant while keep-
ing low its complexity. Extensive trials has shown that
the resulting procedure leads to excellent intelligible

Figure 1 The three steps of Logic Learning Machine.
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models in the analysis of several real-world classification
problems [9].
Finally, in the third step from every generated impli-

cant an intelligible rule, including a logical product
(AND) of simple conditions, is automatically retrieved.
The resulting set of rules forms the classification model
for the problem at hand.
More details about SC implementation and estimates

of the related computational burden under different sce-
narios are provided in dedicated papers [8,9].

Quality measures of LLM and Class Prediction
According to the output value included in their conse-
quence part, the m rules rk describing a given model g(x)
can be subdivided into q groups G1, G2,..., Gq. Considering
the training set S, any rule r ∈ Gl is characterized by four
quantities: the numbers True Positive (TP(r)) and False
Positive (FP(r)) of examples (xi,yi) with yi = yl and yi ≠ yl,
respectively, that satisfy all the conditions in the premise
of r, and the numbers False Negative (FN(r)) and True
Negative (TN(r)) of examples (xi,yi) with yi = yl and yi ≠ yl,
respectively, that do not satisfy at least one of the condi-
tions in the premise of r.
Starting from TP(r), FP(r), TN(r), and FN(r), other use-

ful characteristic quantities, such as the covering C(r),
the error E(r), and the precision P(r) can be derived:

C(r) =
TP(r)

TP(r) + FN(r)
(1)

E(r) =
FP(r)

TN(r) + FP(r)
(2)

P(r) =
TP(r)

TP(r) + FP(r)
(3)

C(r) and P(r) are also known as the Sensitivity and the
Positive Predictive Value in Clinical Epidemiology set-
ting, while E(r) corresponds to 1 - Specificity.
C(r) and P(r) are usually adopted as measures of rele-

vance for a rule r. As a matter of fact, the greater is the
covering and the precision, the higher is the generality
and the correctness of the corresponding rule.
On the other hand, to obtain a measure of relevance

R(c) for a condition c included in the premise part of a
rule r, one can consider the rule r’ obtained by removing
that condition from r. Since the premise part of r’ is less
stringent, we obtain that E(r’) ≥ E(r) so that the quantity:

R(c) = C(r)(E(r′) − E(r)) (4)

can be used as a measure of relevance for the condi-
tion c of interest.

Since each condition c refers to a specific component
of x, it is also possible to define a measure of relevance
Rj for every input variable xj:

Rj = 1 −
∏

k
R(ckl) (5)

where the product is computed on the rules rk that
includes a condition ckl on the variable xj.
The model g(x) generated by the LLM task of Rulex

can be adopted to produce the output class for any
input pattern x*, including those that do not verify any
generated rule, provided that at least one condition
inside at least one rule was verified. To this aim the
<premise> part of each of the m intelligible rules rk, k =
1,..., m, describing the model g(x), is checked to analyze
if it is verified by the considered sample x*. Let D(rk) be
the number of conditions in the <premise> part of the
rule rk that are not verified by the pattern x*. Then, for
every output class yl we can determine the minimum
value Dl = minr∈GlD(r) and the subset Hl of rules in the
group Gl characterized by that minimum:

Hl = {r ∈ Gl|D(r) = Dl} (6)

Then, we choose as output value for the pattern x* the
class l scoring the lowest Dl and, in case of ties, the
minimum value of the quantity wl defined as

wl =
∏

r∈Hl

(
1 −

∑
verified c in r

R(c)
)

(7)

where the summation is performed on all the condi-
tions c in the <premise> part of the rule r that are veri-
fied by the sample x*.

LLM performance assessment
In order to obtain an unbiased estimate of the LLM per-
formance, data were analysed according to a leave-one-
out cross-validation (LOOCV). Rules were generated
allowing a maximum error rate of 5% in the training set.
Accuracy of LLM classification applied to the test set
was compared to that of selected competing standard
methods of supervised analysis, namely: k-Nearest
Neighbour classifier (KNN), Artificial Neural Network
(ANN), and Decision Tree (DT). In particular, DT, simi-
larly to LLM, is able to generate threshold-based intelli-
gible rules. For this reason, we performed a comparison
between the rules generated by LLM and those obtained
by DT.
LLM is implemented as part of the Rulex software

suite, developed and distributed by RULEX Inc (http://
www.rulexinc.com/).

Competing methods
A brief description of competing methods (KNN, ANN
and DT) is here given; details regarding their use and
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implementation can be found in standard books of data
mining [11,12].
k-Nearest-Neighbor (KNN)
Although KNN is one of the simplest technique for clas-
sifying previously unseen patterns x taking into account
the information contained in a given training set S, it
can achieve a good accuracy even in complex situations.
Its approach is very straightforward: when an input vec-
tor x has to be classified, KNN searches for the k near-
est points x1, x2,..., xk in S according to a given
definition of distance. Then, it assigns to x the most
common class present in x1, x2,..., xk. The value of k is
usually chosen to avoid ties (e.g., an odd value for binary
classification problems).
Although the adopted definition of distance can affect

the accuracy of the KNN classifier, very often the stan-
dard Euclidean distance is employed, after having nor-
malized the components of x to avoid undesirable
effects due to unbalanced domain intervals in different
input variables. In the reported trials the choice k = 1
was performed, which corresponded to assign to any
previously unseen point x the class of its nearest neigh-
bor in the training set S.
Artificial Neural Network (ANN)
Building a classifier starting from a given training set S
corresponds to determining a subset of the input domain
for each output class or, equivalently, to constructing
proper separating surfaces that delimit these subsets. In
general, each separating surface can be nonlinear and
even complex, depending on the specific classification
problem at hand.
A convenient way to manage this complexity is to build

the separating surface through the composition of sim-
pler functions. This approach is followed by ANN, a con-
nectionist model formed by the interconnection of
simple units, called neurons, arranged in layers. Each
neuron performs a weighted sum of its inputs (generated
by the previous layer) and applies a proper activation
function to obtain the output value that will be propa-
gated to the following layer. The first layer of neurons is
fed by the components of the input vector x, whereas the
last layer produces the output class to be assigned to x.
Suitable optimization techniques are used to retrieve the

weights for each neuron, which form the set of parameters
for the ANN. By properly setting these weights we can
obtain separating surfaces arbitrarily complex, provided
that a sufficient number of neurons is included in the
ANN. The choice of this quantity, together with the selec-
tion of the number of layers, must be performed at the
beginning of the training process and affect the generalisa-
tion ability of the resulting model.
Decision Trees (DT)
An intelligible classifier can be obtained by generating a
tree graph where each node is associated with a condition

on a component of the input vector x (e.g. xi > 5) and
each leaf corresponds to an assignment for the output
class to be assigned to x. A model of this kind is called
decision tree. It is straightforward to retrieve an intelligi-
ble rule for the classification problem at hand by navigat-
ing the decision tree from a leaf to the root and by using
as antecedent for the rule the logical product (AND) of
the conditions associated with the nodes encountered
during the navigation.
Rules obtained in these way are disjoint from each

other.
Although different learning algorithms have been pro-

posed for building a DT, a basic divide-and-conquer
strategy is followed by all of them. At each iteration a
new node is added to the DT by considering a subset of S
(generated after previous iterations) and by choosing the
condition that subdivides it in the best way, according to
a specific measure of goodness. With this approach the
size of the subset pertaining to added nodes decreases
during the construction of the tree, which halts when a
specific stopping criterion is reached (for example all the
subsets associated with the leaves are formed by pattern
of the same class).
Proper pruning techniques are adopted to simplify the

final DT with the aim of reducing its complexity and
increasing its generalisation ability.

Results
Comparison between the performance of LLM and that
of the other supervised methods
Table 2 reports the confusion matrices corresponding to
the classification performance on the test set obtained
from LLM and from the three competing methods.
LLM outperformed any other method of supervised ana-
lysis. In fact, accuracy of LLM on the test set was 77.5%,
whereas the corresponding figures for the three compet-
ing methods were: 72.8% for DT, 54.4% for KNN, and
63.9% for ANN, respectively. In more details, LLM mis-
classified MPM patients with MTX and with BD
approximately at the same rate, while MTX patients
were more often misclassified with BD. On the whole,
the accuracy evaluated pooling together the two malig-
nancies (the “pooled sensitivity”) was 85.1%. DT showed
a slightly higher performance than LLM in classifying
MPM patients, but a poorer accuracy among MTX and
BD classes. Both MPM and MTX patients were more
often misclassified with BD. As a consequence, the
pooled sensitivity was clearly lower than that estimated
during LLM analysis (77.2%). KNN showed a poor accu-
racy within each considered class. In particular, less
than 50% of MTX were correctly identified. However,
the pooled sensitivity was 79.8%, slightly higher than
that observed for DT, reflecting the fact that most mis-
classified samples among MPM were allocated to the
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other class of malignancies (MTX) and vice versa.
Finally, for each considered class ANN showed a slightly
better performance than KNN but a lower performance
than LLM and DT. However, pooled sensitivity was
equal to that obtained by DT (77.2%).

Classification rules obtained by LLM
LLM and DT analyses were repeated on the entire data-
set in order to obtain stable rules for patients
classification.
LLM classifier included 29 rules, but 15 of them had a

very low covering (< 20%).
Table 3 shows the set of the 14 main rules (covering >

20%), while Table 4 reports the corresponding quality
measures, according to equations (1) and (4). Four rules
were associated to MPM class with a covering ranging
from about 54% to 87%. Interestingly, all rules were asso-
ciated to high values of SMRP and low values of CEA,
both identified by different cut-offs. Moreover, high or
intermediate values of CYFRA 21-1 were included in
three rules. MTX classification was performed by five
rules with a covering from 27% to 57%. Three rules
included high values of CEA (n. 5, 7 and 8) and among
them two were also based on high CYFRA 21-1 concen-
trations (n. 5 and 8, the latter also including low SMRP
values), whereas the remaining rule (n. 7) was associated

to a positive CE. The other two rules for MTX classifica-
tion (n. 6 and 9) both included positive CE and a low or
intermediate SMRP value. One of them (n. 6) was also
associated to high CYFRA 21-1 concentration. Finally,
BD classification was performed by five rules (covering
29% - 71%). Among them, one was based on one condi-
tion only (n. 12), corresponding to low values of CYFRA
21-1, while the remaining four were all associated with
negative CE and low values of CEA, the latter identified
by different thresholds. Two rules also included low
values of CYFRA 21-1 (n. 10 and 14), one rule low values
of SMRP (n. 13) and the remaining one (n. 11) low values
of both CYFRA 21-1 and SMRP.

Classification rules obtained by DT
DT classification was based on 8 rules.
Figure 2 shows the DT plot and the corresponding

covering of each related rule. MPM classification was
based on low values of CEA and high values of both
CYFRA 21-1 and SMRP with an 85% covering. MPM
was also identified by a more complex rule, based on
low values of CEA and SMRP, intermediate values of
CYFRA 21-1 and negative CE, but the covering was very
low (1.9%), indicating the occurrence of an outlier.
MTX patients were identified by three independent
rules, namely: a) high values of CEA (covering = 50%);
b) low values of CEA associated to high values of
CYFRA 21-1 and low values of SMRP (covering = 11%);
c) low values of CEA and SMRP, intermediate values of
CYFRA 21-1 and positive CE (covering = 5%). Finally,
BD classification was based on low values of both CEA
and CYFRA 21-1 (covering = 86%), or low values of
both CEA and SMRP, intermediate values of CYFRA
21-1 and negative CE (covering = 13%).

Discussion
LLM is an innovative method that can provide useful
classification rules by exploiting the complex multivari-
able correlation between the different analysed features.
LLM has been recently successfully applied to a variety
of datasets in biomedical settings [13-17], but so far it
has not been used for differential diagnosis of cancer
patients based on tumour markers combination.
In the last decades many other methods of supervised

data mining have been successfully applied to classifica-
tion tasks in different biomedical fields, including Oncol-
ogy. In particular, ANN and KNN have shown a good
accuracy in many instances [18]. However, they represent
“black-box” methods that cannot provide useful insights
about biological and clinical aspects of the disease under
study. For this reason, intelligible “AND- type” and “OR-
type” rules are in general preferred, but methods for
multi-class classification are scarce. Among them, DT is
probably the most widely used tool for its simplicity and

Table 2. Results of leave-one-out cross-validation.
Classification accuracy of 169 patients with pleural
disease based on LLM and three considered competing
methods

Disease status

Classification MPM
N (%)

MTX
N (%)

BD
N (%)

All
N (%)

Total
Accuracy (%)

LLM 77.5

MPM 41 (78.8) 9 (14.5) 3 (5.5) 53 (31.4)

MTX 6 (11.5) 41 (66.1) 3 (5.5) 50 (29.6)

BD 5 (9.6) 12 (19.4) 49 (89.1) 66 (39.1)

DT 72.8

MPM 43 (82.7) 9 (14.5) 5 (9.1) 57 (33.7)

MTX 2 (3.8) 34 (54.8) 4 (7.3) 40 (23.7)

BD 7 (13.5) 19 (30.6) 46 (83.6) 72 (42.6)

KNN 54.4

MPM 30 (57.7) 17 (27.4) 7 (12.7) 54 (32.0)

MTX 16 (30.8) 28 (45.2) 14 (25.5) 58 (34.3)

BD 6 (11.5) 17 (27.4) 34 (61.8) 57 (33.7)

ANN 63.9

MPM 37 (71.2) 13 (21.0) 12 (21.8) 62 (36.7)

MTX 9 (17.3) 29 (46.8) 1 (1.8) 39 (23.1)

BD 6 (11.5) 20 (32.3) 42 (76.4) 68 (40.2)

Total 52 62 55 169

MPM = Malignant Pleural Mesothelioma; MTX = Metastasis; BD = Benign
Diseases; LLM = Logic Learning Machine; DT = Decision Tree; ANN = Artificial
Neural Network; KNN = k-Nearest Neighbour Classifier.

Parodi et al. BMC Bioinformatics 2015, 16(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/16/S9/S3

Page 6 of 10



easily implementation, but in general it tends to show a
low accuracy when compared to other supervised methods
[18]. However, in the present investigation, DT provided a
quite good both total and class-specific accuracy that was
higher than that obtained from the two black-box algo-
rithms. However, LLM outperformed all competing meth-
ods including DT. In particular, DT performance was
slightly lower among BD patients, slightly higher for MPM
class only and clearly lower for both MTX and the pool of
malignancies.
Classification rules obtained from both LLM and DT

were in good agreement with a priori knowledge about
the considered tumour markers. In particular, high values
of CEA were associated with MTX class with a covering of
about 50% for both methods (Table 3 and Table 4, rule n.
5 for LLM, and Figure 2, upper side of the plot for DT).

Such a proportion roughly corresponds to the percentage
of patients with pleural metastasis from lung adenocarci-
noma inside the analysed cohort [7]. This finding is in
agreement with the characteristics of CEA marker, which
is largely expressed among cancers from epithelial origin
[4]. Moreover, high SMRP concentrations were associated
with MPM classification. This finding confirms previous
observations from other independent cohorts reporting
that SMRP concentration in pleural fluid is specific in dis-
tinguishing mesothelioma from both benign and all other
malignant effusions [19,20]. Finally, low values of CYFRA
21-1 were associated with BD classification with a high
coverage in both methods (left part of the DT in Figure 2
and rule n. 10 in Table 3), in agreement with previous stu-
dies that have associated high values of this marker to a
large variety of neoplastic diseases [21].

Table 3. LLM classification rules for 169 patients with pleural disease

n Diag. 1st Condition 2nd Condition 3rd Condition 4th Condition

1 MPM SMRP > 4.50 CYFRA 21-1 > 71.3 CEA ≤ 8.75

2 MPM SMRP > 2.71 88.0 < CYFRA 21-1 ≤ 2518 CEA ≤ 3.75

3 MPM SMRP > 1.60 CYFRA 21-1 > 88.0 CEA ≤ 1.55

4 MPM SMRP > 17.9 CEA ≤ 2.45

5 MTX CYFRA 21-1 > 21.8 CEA > 3.75

6 MTX 0.58 < SMRP ≤ 25.1 CYFRA 21-1 > 21.8 Positive CE

7 MTX CEA > 1.15 Positive CE

8 MTX SMRP ≤ 6.88 CYFRA 21-1 > 71.3 CEA > 1.15

9 MTX SMRP ≤ 5.26 Positive CE

10 BD CYFRA 21-1 ≤ 53.6 CEA ≤ 2.35 Negative CE

11 BD SMRP ≤ 3.79 CYFRA 21-1 ≤ 180.6 CEA ≤ 8.00 Negative CE

12 BD CYFRA 21-1 ≤ 12.7

13 BD SMRP ≤ 12.0 CEA ≤ 0.75 Negative CE

14 BD CYFRA 21-1 ≤ 86.7 CEA ≤ 0.65 Negative CE

Diag. = Diagnosis; MPM = Malignant Pleural Mesothelioma; MTX = Metastasis; BD = Benign Diseases (Pleurises); CE = Cytological Examination

Table 4. LLM quality measures for the rules shown in Table 3

1st Condition 2nd Condition 3rd Condition 4th Condition

n Diag. w% R(c)% w% R(c)% w% R(c)% w% R(c)% Cov. %

1 MPM 14.5 12.6 21.4 18.5 11.1 9.61 86.5

2 MPM 5.13 3.75 30.8 22.5 14.5 10.6 73.1

3 MPM 2.56 1.72 30.8 20.7 23.9 16.1 67.3

4 MPM 59.8 32.2 4.27 2.29 53.8

5 MTX 1.87 1.05 71.0 40.1 56.5

6 MTX 7.48 3.13 0.93 0.38 35.5 14.9 41.9

7 MTX 8.41 3.38 33.6 13.6 40.3

8 MTX 12.2 4.70 11.2 4.33 4.67 1.80 38.7

9 MTX 15.0 4.09 40.2 11.0 27.4

10 BD 29.0 20.5 4.39 3.11 2.63 1.86 70.9

11 BD 18.4 10.7 0.88 0.51 4.39 2.55 3.51 2.04 58.2

12 BD 98.2 37.5 38.2

13 BD 14.9 4.87 23.7 7.74 4.39 1.43 32.7

14 BD 9.65 2.80 16.7 4.85 2.63 0.76 29.1

Diag. = Diagnosis; w% = E(r’) - E(r); R(c)% = relevance%; Cov. % = Covering percent. w and R(c) are defined according to equation (4).
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Rules extracted by LLM and DT only partly overlapped,
thus reflecting a sort of balance between the capability of
the two methods of identifying useful information for clas-
sification purposes, and, on the other hand, the two very
different algorithms for rule generation. For instance, the
rule with the highest covering for MPM classification was
almost identical in the two methods, both including high
values of SMRP and CYFRA 21-1 and low values of CEA,
with very similar cut-offs. Conversely, the best rule for
MTX classification was rather different, including only
high values of CEA for DT, and a combination of high
values of CEA (at a different cut-off) and high CYFRA 21-
1 concentrations for LLM. Finally, the best classification
for BD was obtained from both methods by low values of
both CYFRA 21-1 and CEA, but at different cut-offs.
Furthermore, LLM rule also included negative CE (rule n.
10, Table 3).
On the whole, our results indicate that both LLM and

DT are able to extract meaningful information from
tumour markers and to combine them in simple rules
for classification tasks. DT also provides a simple plot

that allows a very easy interpretation of the rules gener-
ated, whereas LLM rules, being partly overlapping, pro-
vide a rather more complicated picture. However, in our
analysis, in agreement with results from previous inves-
tigations [13,22] the presence of overlapping rules
allowed LLM to outperform DT classification. Further-
more, a non-ambiguous classification can always be
obtained by using coverage and error rate parameters
and by adopting a proper measure of relevance that
allows to select the most probable class for the pattern
at hand. Moreover, overlapping rules can be weighted in
order to improve classification accuracy in the presence
of severely unbalanced sample size [22], thus conferring
a high flexibility to LLM based classification.
Results of our investigation should be evaluated at the

light of some unavoidable limits, in particular the rather
small sample size. Mesothelioma is a rare cancer and, at
least at our knowledge, larger datasets including all the
three TMs considered in the present study are not avail-
able. The possibility that the comparison between the
selected classification methods could have been influenced

Figure 2 Classification of 169 patients with pleural disease obtained by Decision Tree. Percentages indicate the covering of each rule.
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by the size of classes under investigation cannot be com-
pletely ruled out. However, in some previous analyses, car-
ried out in different biomedical fields, LLM was
demonstrated to outperform other methods of machine
learning when applied to large datasets. In particular, LLM
accuracy was higher than that of two competing methods
(namely: Signal-to-Noise Ratio and Support Vector
Machine) in a feature selection task using data from three
real and three simulated databases from microarray
experiments, each based on many thousands of gene
expression profiles [9]. Furthermore, in a recent analysis of
biomedical datasets of the Statlog benchmark [23], which
included a large database of 268 cases of diabetes and 500
healthy controls, LLM systematically outperformed four
competing methods of learning machine (namely: DT,
KNN, ANN and binary logistic regression) [17].
Another limit of our investigation is the low accuracy

for MTX classification, even if this latter was better clas-
sified by LLM than by the considered competing meth-
ods. Finally, the set of rules generated by LLM does not
cover all the possible combinations between tumour
markers and CE results, then making potentially difficult
the classification of some additional patients. Such a
limitation can be overcome by LLM when the features
associated to the subject at least fulfil a subset of one or
more conditions inside a composite rule, by combining
accuracy measures using equations (6) and (7).

Conclusions
Results from the present study indicates that LLM is a
flexible and powerful tool for the differential classifica-
tion of malignant mesothelioma patients. DT perfor-
mance was poorer, but, quite surprisingly, clearly better
than the two selected “black-box” competing methods.
Further studies on larger cohorts are needed in order

to obtain stable and reproducible rules for MPM classifi-
cation. Moreover, additional tumour markers should be
tested to improve the classification of non-mesothelioma
cancers with pleural metastasis.

List of abbreviations
LLM: Logic Learning Machine.
DT: Decision Tree.
KNN: k-Nearest Neighbour classifier.
ANN: Artificial Neural Network.
MPM: Malignant Pleural Mesothelioma.
BD: Benign Disease.
MTX: Metastasis from non-mesothelioma cancers.
CEA: Carcino-Embryonic Antigen.
CYFRA 21-1: soluble fragment of cytokeratin-19
SMRP: Soluble Mesothelin-Related Peptide.
CE: Cytological Examination.
TM: Tumour Marker.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SP, RF and MM (Muselli) conceived the study and wrote the paper.
Moreover, SP performed most analyses, while MM conceived and
implemented the LLM method.
PM, RL, GPI and MM (Mussap) provided data of tumour marker
concentrations and contributed in the interpretation of biological meaning
of results and in writing the Discussion section.
EF, CM and EM implemented most routines for supervised analysis. EF also
supervised data analyses.

Acknowledgements
The Authors are deeply indebted with Michela Paganuzzi for the advice in
managing biomarkers. This work was partially supported by the Italian MIUR
Flagship Project “InterOmics”, which also funded the publication of this
article.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 9, 2015: Proceedings of the Italian Society of Bioinformatics
(BITS): Annual Meeting 2014: Bioinformatics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/16/S9.

Authors’ details
1Institute of Electronics, Computer and Telecommunication Engineering,
National Research Council of Italy, Via De Marini, 6, 16149 Genoa, Italy.
2Epidemiology, Biostatistics and Clinical Trials, IRCCS AOU San Martino-IST, L.
go R. Benzi, 10, 16132 Genoa, Italy. 3Laboratory Medicine Service, IRCCS AOU
San Martino-IST, L.go R. Benzi, 10, 16132 Genoa, Italy. 4Pathology Unit,
Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Via
Venezia 16, 15121 Alessandria, Italy. 5Department of Pneumology, AO Villa
Scassi, Corso Scassi, 1, 16149 Genoa, Italy. 6IMPARA Srl, Piazza Borgo Pila 39,
16129 Genoa, Italy.

Published: 1 June 2015

References
1. Robinson BW, Musk AW, Lake RA: Malignant mesothelioma. Lancet 2005,

366(9483):397-408.
2. Kent M, Rice D, Flores R: Diagnosis, staging, and surgical treatment of

malignant pleural mesothelioma. Curr Treat Options Oncol 2008, 9(2-
3):158-170.

3. Aerts JG, Delahaye M, van der Kwast TH, Davidson B, Hoogsteden HC, van
Meerbeeck JP: The high post-test probability of a cytological
examination renders further investigations to establish a diagnosis of
epithelial malignant pleural mesothelioma redundant. Diagn Cytopathol
2006, 34(8):523-527.

4. Alatas F, Alatas O, Metintas M, Colak O, Harmanci E, Demir S: Diagnostic
value of CEA, CA 15-3, CA 19-9, CYFRA 21-1, NSE and TSA assay in
pleural effusions. Lung Cancer 2001, 31(1):9-16.

5. Shitrit D, Zingerman B, Shitrit AB, Shlomi D, Kramer MR: Diagnostic value
of CYFRA 21-1, CEA, CA 19-9, CA 15-3, and CA 125 assays in pleural
effusions: analysis of 116 cases and review of the literature. Oncologist
2005, 10(7):501-507.

6. van der Bij S, Schaake E, Koffijberg H, Burgers JA, de Mol BA, Moons KG:
Markers for the non-invasive diagnosis of mesothelioma: a systematic
review. Br J Cancer 2011, 104(8):1325-1333.

7. Filiberti R, Parodi S, Libener R, Ivaldi GP, Canessa PA, Ugolini D, Bobbio B,
Marroni P: Diagnostic value of mesothelin in pleural fluids: comparison
with CYFRA 21-1 and CEA. Med Oncol 2013, 30(2):543.

8. Muselli M: Switching neural networks: A new connectionist model for
classification. In WIRN 2005 and NAIS 2005, Lecture Notes in Computer
Science. Berlin: Springer;Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R.
2006:23-30, http://link.springer.com/chapter/10.1007%2F11731177_4.

9. Muselli M, Ferrari E: Coupling Logical Analysis of Data and Shadow
Clustering for partially defined positive Boolean function reconstruction.
IEEE Transactions on Knowledge and Data Engineering 2011, 23:37-50.

10. Parodi S, Filiberti R, Marroni P, Montani E, Muselli M: Differential diagnosis
of pleural mesothelioma using Logic Learning Machine. BITS-2014:
Bioinformatics Italian Society Meeting Roma, Italy; February 2014, 26-29.

11. Hastie T, Tibshirani R, Friedman J: The Element of Statistical Learning. New
York: Springer-Verlag; 2001.

Parodi et al. BMC Bioinformatics 2015, 16(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/16/S9/S3

Page 9 of 10

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S9


12. Tan PN, Seinbach M, Kumar V: Introduction to Data Mining. Edimburgh
Gate: Pearson Education Limited; 2014.

13. Muselli M, Costacurta M, Ruffino F: Evaluating switching neural networks
through artificial and real gene expression data. Artif Intell Med 2009,
45:163-171.

14. Mangerini R, Romano P, Facchiano A, Damonte G, Muselli M, Rocco M,
Boccardo F, Profumo A: The application of atmospheric pressure matrix-
assisted laser desorption/ionization to the analysis of long-term
cryopreserved serum peptidome. Anal Biochem 2011, 417(2):174-181.

15. Mordenti M, Ferrari E, Pedrini E, Fabbri N, Campanacci L, Muselli M,
Sangiorgi L: Validation of a new multiple osteochondromas classification
through Switching Neural Networks. Am J Med Genet A 2013,
161A(3):556-560.

16. Cangelosi D, Blengio F, Versteeg R, Eggert A, Garaventa A, Gambini C,
Conte M, Eva A, Muselli M, Varesio L: Logic Learning Machine creates
explicit and stable rules stratifying neuroblastoma patients. BMC
Bioinformatics 2013, 14(Suppl 7):S12.

17. Muselli M: Extracting knowledge from biomedical data through Logic
Learning Machines and Rulex. EMBnet Journal 2012, , 18B: 56-58.

18. Hijazi H, Chan C: A classification framework applied to cancer gene
expression profiles. J Healthc Eng 2013, 4(2):255-283.

19. Creaney J, Yeoman D, Naumoff LK, Hof M, Segal A, Musk AW, De Klerk N,
Horick N, Skates SJ, Robinson BW: Soluble mesothelin in effusions: a
useful tool for the diagnosis of malignant mesothelioma. Thorax 2007,
62(7):569-576.

20. Davies HE, Sadler RS, Bielsa S, Maskell NA, Rahman NM, Davies RJ, Ferry BL,
Lee YC: Clinical impact and reliability of pleural fluid mesothelin in
undiagnosed pleural effusions. Am J Respir Crit Care Med 2009,
180(5):437-444.

21. Barak V, Goike H, Panaretakis K, Einarsson R: Clinical utility of cytokeratins
as tumor markers. Clin Biochem 2004, 37(7):529-540.

22. Cangelosi D, Muselli M, Parodi S, Blengio F, Becherini P, Versteeg R,
Conte M, Varesio L: Use of Attribute Driven Incremental Discretization
and Logic Learning Machine to build a prognostic classifier for
neuroblastoma patients. BMC Bioinformatics 2014, 15(Suppl 5):S4.

23. Michie D, Spiegelhalter DJ, Taylor CC: Machine Learning, Neural, and
Statistical Classification. London: Ellis-Horwood; 1994.

doi:10.1186/1471-2105-16-S9-S3
Cite this article as: Parodi et al.: Differential diagnosis of pleural
mesothelioma using Logic Learning Machine. BMC Bioinformatics 2015
16(Suppl 9):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Parodi et al. BMC Bioinformatics 2015, 16(Suppl 9):S3
http://www.biomedcentral.com/1471-2105/16/S9/S3

Page 10 of 10


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data set description
	LLM classification rules
	The LLM algorithm for rule extraction
	Quality measures of LLM and Class Prediction
	LLM performance assessment
	Competing methods
	k-Nearest-Neighbor (KNN)
	Artificial Neural Network (ANN)
	Decision Trees (DT)


	Results
	Comparison between the performance of LLM and that of the other supervised methods
	Classification rules obtained by LLM
	Classification rules obtained by DT

	Discussion
	Conclusions
	List of abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

