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Abstract

Background: Pairwise comparison of time series data for both local and time-lagged relationships is a
computationally challenging problem relevant to many fields of inquiry. The Local Similarity Analysis (LSA) statistic
identifies the existence of local and lagged relationships, but determining significance through a p-value has been
algorithmically cumbersome due to an intensive permutation test, shuffling rows and columns and repeatedly
calculating the statistic. Furthermore, this p-value is calculated with the assumption of normality – a statistical
luxury dissociated from most real world datasets.

Results: To improve the performance of LSA on big datasets, an asymptotic upper bound on the p-value
calculation was derived without the assumption of normality. This change in the bound calculation markedly
improved computational speed from O(pm2n) to O(m2n), where p is the number of permutations in a permutation
test, m is the number of time series, and n is the length of each time series. The bounding process is implemented
as a computationally efficient software package, FASTLSA, written in C and optimized for threading on multi-core
computers, improving its practical computation time. We computationally compare our approach to previous
implementations of LSA, demonstrate broad applicability by analyzing time series data from public health,
microbial ecology, and social media, and visualize resulting networks using the Cytoscape software.

Conclusions: The FASTLSA software package expands the boundaries of LSA allowing analysis on datasets with
millions of co-varying time series. Mapping metadata onto force-directed graphs derived from FASTLSA allows
investigators to view correlated cliques and explore previously unrecognized network relationships. The software is
freely available for download at: http://www.cmde.science.ubc.ca/hallam/fastLSA/.

Background
The exponential increase and ubiquitous use of computa-
tional technology has given rise to an era of “Big Data” that
pushes the limits of conventional data analysis [1-3]. Tech-
niques for analyzing big datasets often proceed by identify-
ing patterns of co-occurrence or correlation through
principal component analysis (PCA) [4], multidimensional
scaling (MDS) [5], etc. However, many of these methods
require significant data reduction or smoothing which
makes them difficult to interpret [6]. Other methods such
as multiple linear regression or Pearson’s correlation

coefficient (PCC) are easy to interpret as they operate on
data in their native data space, without any kind of large
data transformation or dimensionality reduction, but are
limited in the structure that they can detect.
Though PCC is a classic and powerful technique for

finding linear relationships between two variables, it is not
designed for capturing lead-lag relationships seen in time
series data. Local similarity analysis (LSA) [6] extends cor-
relation calculations to include the time variable, enabling
identification of local correlates. Furthermore, Ruan et al.
have presented a graphical network framework in which
to visualize the structure of significant LSA correlations.
Unfortunately, the current implementation of LSA
requires multiple runs on permuted data and a Monte
Carlo statistical method known as a permutation test to
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evaluate a null distribution and obtain a p-value determin-
ing significance. Each iteration of this procedure has a
computational complexity of O(pm2n), where p is the
number of permutations, m is the number of covariate
time series, and n is their length. Due to the number of
pair-wise calculations needed, extant LSA is computation-
ally onerous when m is large, limiting its use to datasets
where the number of observed variables at each time
point is small (< 100). Though there has been some
improvement to its performance [7], assumptions of nor-
mality and implementation issues continue to stymie prac-
tical application of LSA on big datasets.
Here we describe a novel asymptotic upper bound on

the calculation of the LSA statistic’s p-value, resulting in
an exponentially converging calculation to bound and
check for significance of computed LSA statistics with-
out a computationally intensive permutation test. This
bound does not require a rank-vector normal transfor-
mation, promoting application to any distribution that
has finite variance. As a result, this implementation of
LSA can navigate big datasets with millions of co-variate
time series. We demonstrate this using time-series data-
sets from public health [8], microbial ecology [9], and
social media [10]. The implemented algorithm, named

FASTLSA, is written in C and optimized for threading
on multi-core computers.

Interpreting the LSA statistic
LSA concerns itself with pairs of time series data. The
LSA Statistic can be interpreted in a manner similar to
PCC when no lag window exists between two time series.
However, LSA is also capable of capturing localized cor-
relation that is staggered or lagged. A large positive or
negative LSA value indicates a correspondingly strong
PCC correlation or a correlation at a time displacement
within the lag window (Figure 1). Note that if both posi-
tive and negative correlations exist between two time ser-
ies, LSA will only report the strongest of the two.
LSA is advantageous on large datasets containing many

time series. Results can be visualized as a graphical net-
work where nodes represent the individual time series
and the edges represent their LSA correlation statistic.
When displayed using a force-directed layout in Cytos-
cape [11], closely related time series cluster together,
visually isolating clusters of local similarity. Metadata
related to experimental or environmental conditions can
then be applied to the nodes, shedding insight into hier-
archical network structure.

Figure 1 A lagged correlation between two time series. An example of two set time series that contain a lead-lag correlation.
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Implementation
Description of the LSA algorithm
In this section we reproduce the algorithm from [6] to
compute LSA statistics and their corresponding p-values
between pairs of time series in a dataset. We assume as
input a set of time series vectors of equal length. Let us
denote the number of time series by m and their length as
n. Let us denote the time series dataset as X where
Xij denotes the jth element of the ith time series, with i =
1, 2, ..., m and j = 1, 2, ..., n, and assume that the Xij are
real numbers. We also assume that there are no missing
values in the dataset X, and realize that practical use will
require interpolation or filtering.
In Figure 2 we present the algorithm for computing

the LSA statistic for a pair of time series, X = {Xi}n1 and
Y = {Yi}n1 , where the length of the time series is
assumed to be equally spaced in time. We have modified
the presentation of the LSA algorithm by [6] to high-
light our analysis and derivation of a bound on the tail
distribution of the LSA statistic. Specifically we calculate
the LSA statistic for a pair of time series, X and Y.
Two-dimensional arrays Pi, j and Ni, j are used to store
the positive and negative partial sums (truncated if less
than 0) of the pairwise product of time series values.
We also assume a suitable bound on the maximum time
lag considered while computing the LSA statistic,
denoted by D.
The algorithm first initializes the arrays Pj,0, Nj, 0, P0, i,

and N0,i for all i, j = 1, ..., n, with a maximum absolute dif-
ference of D. Next it considers the time series pairs for

each possible lag, up to a maximum of D, and then com-
putes the progressive sum of the pair-wise products of the
time-series values from the low to high index of the arrays.
During the computation, the progression of the partial sum
is reset to 0 if the sum is below 0. After partial sums have
been computed, the values of N̂ and P̂ are calculated by
taking the maximum of the corresponding values of the
arrays N and P. Finally, the LSA statistic is estimated as

sign
(̂
P − N̂

) max
{̂
P, N̂

}
n

.

Calculating the upper bound
In this section we derive the asymptotic upper bound on
the p-value for the cumulative probability distribution of
the LSA statistic without the need of a normality assump-
tion. Our derivation is based on distributional results of
the maximum cumulative sum of independent random
variables known in the literature from probability theory
[12-15]. We begin by stating our assumptions about the
dataset, isolate target calculations from the LSA algo-
rithm, and from our referenced mathematical results,
derive and prove important lemmas. These lemmas will
serve as the building blocks as we logically construct a
theorem which will form the basis of our LSA p-value
upper bound.
We begin by making certain assumptions about the

probability model used to derive the bounds. First, each
Pi, j or Ni, j is considered individually. We assume that
the time series values Xi, Yj for i, j = 1, ..., n are indepen-
dent of one another. This assumption can be made when

Figure 2 The LSA algorithm . Algorithm for computing the LSA for a pair of time series X and Y. D denotes the set{(
i, j

)
: i, j ∈ N+, either i = 0 or j = 0 and

∣∣i − j
∣∣ ≤ D

}
and N+ denotes the set of positive integers.
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weak dependence exists because it is near the truth and
effective, much like the Naive Bayes assumption. This
assumption is also enabling, as it allows us to invoke the
distributions of partial sums of independent random vari-
ables and continue in a mathematically straightforward
way. Further, we assume independence between each
time time series as a null hypothesis, and as it is subject
to rejection upon obtaining a statistically significant LSA
value.
Consider lines 5 and 7 of the LSA algorithm (Figure 2),

Pi+k+1,j+k+1 ¬ max{0, Pi+k, j+k + Xi+k * Yj+k} and

P̂ ← max{(i,j):|i−j|≤D}
{
Pi,j

}
. For any pair of i and j let us

define the sequence random variables as Zk = Xi+kYj+k for
k = 0, ..., min{n - i, n - j} - 1, and the sequence of random
variables ζk = Z1 + ... + Zk for k = 0, ..., min{n - i, n - j} - 1
supposing ζ0 = 0. Using the above ζk’s, we define random
variables η∗

k as η∗
k = max {ζ1, ζ2, · · · , ζk} for the same

values of k = 0, ..., min{n - i, n - j} - 1.
We also define the set of random variables h1, h2, ..., hk

by the recurrence formula hk+1 = max{0, hk + Zk+1}. Note
that the random variables Pi+k, j+k and the hk have the
same distribution. It is shown in [12,13] that the random
variables η∗

k and hk also have the same distribution. As a
result, now we can analyze the cumulative distribution of
Pi+k, j+k as a distribution for η∗

k , and use the results by
Nevzorov and Petrov [14] on Pi+k, j+k to derive tail prob-
ability bounds. We also assume that the random variables
Zk have the first two moments, although such assumptions
are not required for the results of [14], we use them to
derive simpler bounds.
We now consider a few useful lemmas that we will use

to construct our p-value upper bound. The first step is to
simplify the tail event (which we will later connect to p-
value) into simpler terms. The following lemma expresses
the tail event for LSA {|LSA| >x} and any x ∈ R in terms
of the tail events of {Pi, j >x} and {Ni, j >x}, the positive
and negative LSA calculations for the same x, the bound
on our test statistic (the target p-value).
Lemma 1 For any x ∈ Rwe have {|LSA| >x} = {(∪ij{Pij

>xn}) ∪ (∪ij{Nij >xn})}.
Proof. The result is clear from the following:
{|LSA| > x} = {

max
{̂
P, N̂

}
> xn

}
=

{̂
P ≤ xn ∩ N̂≤ xn

}c
=

{
maxij

{
Pij

} ≤ xn ∩ maxij
{
Nij

} ≤ xn
}c

={(∩ij
{
Pij ≤ xn

}) ∩ (∩ij
{
Nij ≤ xn

})}c = {(∪ij
{
Pij > xn

}) ∪ (∪ij
{
Nij > xn

})} □
In the LSA algorithm, we have maximums Pij = max

{0, Pi-1, j-1 + Xi-1Yj-1} and Nij = max{0, Pi-1,j-1 - Xi-1, j-1},
which complicates their theoretical analysis. Fortunately,
equivalence have been demonstrated in the literature
[12], and we restate these in the following lemma for
clarity: the similarity of the distributions of hk and η∗

k ,
for k = 1, ..., min{n - i, n - j} - 1. This will help us derive
the bounds for the events {Pij >xn} and {Nij >xn}, the
simpler terms we derived in the previous lemma.

Lemma 2 Let Zi be mutually independent random

variables and let us denote by Sk =
∑k

i=1 Ziwhere S0 = 0,

and qk+1 = max{0, qk + Zk} with q0 = 0, then P(qk ≤ x) =
P (max{S0, ..., Sk-1} ≤ x) for x ∈ R .
In order to get a simple formula for the bound on the

cumulative tail probabilities for Pi, j and Ni, j we reproduce
below the results on partial sums of random variables due
to Nevzorov and Petrov [14]. For our sequence of indepen-
dent and identically distributed (iid) random variables
under consideration {Xn} it follows that Lindeberg’s condi-
tion holds [15]. A property showing the variance of a dis-
tribution stabilizes as more variables are added, pinning
the tails of it down. Thinking about this in terms of time
series, as a series gets larger, the upper bound of the distri-
bution becomes more defined and calculable.
Now to build theorems upon which we will derive a

formulaic p-value bound.
Theorem 3 If the random variables {Xn} have

zero expectation and finite variances and if Linde-
berg’s condition holds: Λn(ε) ® 0 as n ® ∞ ∀ε > 0

where �n (ε) =
1
q2n

∑n
k=1 ∫{|x|>εqn}x2dVk (x) and q2n =

∑n
k=1 E

(
X2
k

)
and G (x) =

√
2
π

∫x
0 e

−t2/2dt i f x ≥ 0 and 0 i f x < 0 ,

then we have supx|P
(
Sn < qnx

) − G (x) | → 0 where

Sn = max1≤k≤n
∑k

j=1 Xj and Vk(x) = P(Xk ≤ x)

In order to apply the above theorem to get a simple
formulaic approximation, we assume some random
variables {Zi}m1 , each with the variance s2 and

Sk =
∑k

i=1 Zi . Then by applying the above theorem, we

get the following uniform convergence of distribution
to that of the one-sided standard normal as
supx|P

(
maxk∈{1,...,m}Sk ≤ √

mσx
) − G (x) | → 0 as m ® ∞.

Now we use the above results to get the probability esti-
mates for our simple event terms {Pij >xn} and {Nij >xn}.
The following theorem provides us with the p-value’s tail
bound for LSA for any x ∈ R .
Theorem 4 For G, the one-sided normal distribution,

defined above P (|LSA| > x) ≤ 2
(
n2 − (n − D − 1) (n − D)

) (
1 − G

(
x
√
n/Vαr (X1Y1)

))
.

Proof. By applying Lemma 2 we have

P
(
Pij > xn

)
= P

(
max

{
0, Pi−1,j−1 + Xi−1Yj−1

}
> xn

)
= 1 − P

(
max

{
0, Pi−1,j−1 + Xi−1Yj−1

} ≤ xn
)

= 1 − P

(
max

1≤k≤min{i−1,j−1}

{
k∑
l=0

XlYl

}
≤ xn

)
,

and by Theorem 3, replacing x with y, we have

sup
y

|P
(

max
k∈{1,...,m}

Sk ≤ √
mσ y

)
− G

(
y
) | → 0 as m → ∞.
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Notice that
∑k

l=0XlYl satisfies the definition of Sk, so

replacing Sk,
√
m , and s with

∑k
l=0XlYl , mini-1,j-1, and

√
Var (X1Y1) , respectively,

sup
y

∣∣∣∣∣P
(
max

k∈
{
1,...,

√
min{i−1,j−1}}

k∑
l=0

XlYl ≤
√
min

{
i − 1, j − 1

}
Var (X1Y1)y

)
− G

(
y
)∣∣∣∣∣ → 0,

as n ® ∞, and by change of variables to get our equa-
tion into the appropriate form

xn =
√
min

{
i − 1, j − 1

}
Var (X1Y1)y ⇒ y = xn/

√
min

{
i − 1, j − 1

}
Var (X1Y1)

⇒ sup
x

∣∣∣∣∣P
(
max

kε
{
1,...,

√
min{i−1,j−1}}

k∑
l=0

XlYl ≤ xn

)
− G

(
xn/

√
min

{
i − 1, j − 1

}
Var (X1Y1)

)∣∣∣∣∣ → 0,

as n ® ∞, thus

P
(
Pij > xn

) ∼= 1 − G
(
xn/

√
min

{
i − 1, j − 1

}
Var (X1Y1)

)
.

It follows from Boole’s inequality and Lemma 1 that

P (|LSA| > x) = P
((∪ij

{
Pij > xn

}) ∪ (∪ij
{
Nij > xn

}))
≤

∑
ij

P
(
Pij > xn

)
+

∑
ij

P
(
Nij > xn

)
= 2

∑
ij

(
1 − G

(
xn/

√
min

{
i − 1, j − 1

}
Var (X1Y1)

))
.

Finally, we have the following tail probability bound

P (|LSA| > x) ≤ 2
∑
ij

(
1 − G

(
xn/

√
min

{
i − 1, j − 1

}
Var (X1Y1)

))
≤ 2

∑
ij

(
1 − G

(
xn/

√
nVar (X1Y1)

))
= 2

(
n2 − (n − D − 1) (n − D)

) (
1 − G

(
x
√
n/Var (X1Y1)

))
,

standardizing with a mean of zero and a variance of
one

= 2
(
n2 − (n − D − 1) (n − D)

) (
1 − G

(
x
√
n
))
.

□
Note that this last result is asymptotic. Thus, n must be

substantially large for this p-value bound to be relevant
(Figure 3 and Table 1). Similar to the normal distribution
as an approximation to Student’s t-distribution, this
implementation of LSA requires at least 30 time points
to promote confidence. Though this convergence can
vary from dataset to dataset, the bound is conservative,
and will not easily produce false positives if run on
shorter time series.

Results
To validate versatility and effectiveness of the derived
upper bound (Theorem 4), we applied the algorithm to
four datasets, two sourced from biology, one from social
networking, and a randomly generated control dataset.
These include the Moving Pictures of the Human Micro-
biome [8] (MPH), the largest human microbial time ser-
ies to date, a microarray hybridization dataset identifying

cell cycle regulated genes in the yeast Saccharomyces cer-
evisiae [9] (CDC), and an online social media dataset of
the volumes of the top 1000 Memetracker phrases and
top 1000 twitter hash tags over an eight month period
from September 2008 to August 2009 [10]. Missing data
values were interpolated by averaging the two nearest
temporal data points, and all analysis was performed on a
Mac Pro desktop computer running Mac OSX 10.6.8
with a 2 × 2.4 Ghz Quad-Core Intel Xeon processors and
16 GB of 1066 Mhz DDR3 RAM.

Computational complexity
The algorithm calculates in O(m2n) time, where m is the
number of time series and n is the length of each time
series. To get an idea of how long calculations take, we
fixed n = 50, d = 3 and plotted log-calculation time
against log-m (Figure 4). It can be seen that LSA tests
with p-values calculated by the permutation test are
about 10,000 times slower than calculating p-values for-
mulaically. Compared to direct formulaic calculation,
random number generation is slow, making a repetition
of 10,000 permutations for each time series pair a com-
putationally intense operation (Table 2). The permuta-
tion test may be able to calculate statistically significant
(a = 0.001) pairs confidently, but applying a multiple test
correction (Bonferroni) will require exponentially more
permutations to reach the same level of confidence for
the entire dataset. Pairwise comparisons for big datasets
are computationally infeasible to sufficiently estimate p-
values with enough accuracy to protect against false posi-
tives. In contrast, FASTLSA directly calculates a conser-
vative upper bound approximating the p-value, making
permutation unnecessary and protecting against false
positives.

Moving pictures of the human microbiome (MPH)
The MPH time series dataset [8] investigates temporal
variations in the microbial community structure of two
healthy human subjects, one male, one female. Samples
were collected from three body parts, the gut (feces),
mouth, and skin (left and right palms) daily for 15
months (male) and six months (female) with taxonomy
being determined by the amplified V4 region of the small
subunit ribosomal RNA (SSU or 16S rRNA) gene. The
male and female samples were concatenated together
resulting in a profile of 14105 taxa for 390 time points
with missing values being interpolated by the average of
the two nearest time points.
For a given time series, if more than 25% of time steps

were zero it was removed from the analysis. Analysis took
58 minutes (7.5 minutes on 16 threads) without including
output writing time which is variable. Significant (a <
0.001) LSA results revealed clusters of local similarity that
corresponded well when nodes were colored by sample
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source (Figure 5). The low level of mixing between local
clusters reflects the large differences in taxonomic profiles
across the different body environments [8].

Microarray hybridization detection cell cycle-regulated
genes in yeast Saccharomyces cerevisae (CDC)
In the CDC data set [9], we focused on the cdc15 tem-
perature sensitive mutant and the profile of 6178 genes
over 24 time steps, representing gene expression for
approximately three cell cycles. Analysis took 3.25 min-
utes (22 seconds on 16 threads) without including out-
put writing time (Figure 6). Applying the asymptotic
bound with the small number of time steps resulted in
some rather large bounds (≥ 1).
However, LSA was capable of detecting lead-lag corre-

lation despite the periodicity of the data, demonstrating
its capacity to find long correlate pairs with a large
number of covariate time series. Only 800 of the 6178
gene nodes could be classified from [9] to one of the
five defined cell cycle phases (G1, G2/M, S, S/G2,

M/G1) so only two clusters could be inferred upon with
any confidence (Figure 7).

Social media: top 1000 Twitter and Memetracker phrases
(Twitter)
The data from [10] contains the volume of the top 1000
Twitter and Memetracker phrase counts over 130 time
steps from September 2008 to August 2009, a spacing of
approximately 2-3 days per observation. Analysis took
approximately six seconds (one second on 16 threads)
without including write out time. Two major clusters of
related times series nodes emerged. However, attempts to
label the series using existing metadata of general content
or time granularity (day of the week, working hours, sea-
sonality, etc.) did not elucidate its structure (Figure 8). We
conjecture that this difference is geographical (East-West
North America) or socially structured, however, additional
metadata on geolocation or social connectivity associations
of the nodes would be needed to better elucidate network
structure.

Figure 3 Asymptotic p-value upper bounds converge on the LSA density. Notice that the p-value upper bound (red) converges in the tail
to the approximate LSA density (blue), an attractive quality. As the number of time steps (n) increase, both the density and the p-value upper
bound push up against zero. This is similar to the asymptotic behaviour of PCC.
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Table 1 Empirical p-value (Emp) & the FASTLSA p-value bound (Fas) with n = 30, 50, & 100 time steps.

x1 n30Emp n30Fas n50Emp n50Fas n100Emp n100Fas

0.05 1 1.000 1 1.000 1 1.000

0.07 1 1.000 1 1.000 0.997 1.000

0.09 1 1.000 0.999 1.000 0.953 1.000

0.11 0.999 1.000 0.984 1.000 0.819 1.000

0.13 0.989 1.000 0.928 1.000 0.627 1.000

0.15 0.958 1.000 0.823 1.000 0.441 1.000

0.17 0.896 1.000 0.687 1.000 0.292 1.000

0.19 0.803 1.000 0.545 1.000 0.184 1.000

0.21 0.694 1.000 0.417 1.000 0.111 1.000

0.23 0.58 1.000 0.309 1.000 0.064 1.000

0.25 0.472 1.000 0.224 1.000 0.036 1.000

0.27 0.376 1.000 0.158 1.000 0.019 0.693

0.29 0.294 1.000 0.109 1.000 0.009 0.373

0.31 0.227 1.000 0.073 1.000 0.005 0.194

0.33 0.172 1.000 0.048 0.981 0.002 0.097

0.35 0.128 1.000 0.031 0.666 0.001 0.047

0.37 0.094 1.000 0.019 0.444 < 0.001 0.022

0.39 0.067 0.98 0.012 0.291 < 0.001 0.01

0.41 0.048 0.742 0.007 0.187 < 0.001 0.004

0.43 0.033 0.555 0.004 0.118 < 0.001 0.002

0.45 0.023 0.411 0.002 0.073 < 0.001 0.001

0.47 0.015 0.301 0.001 0.044 < 0.001 < 0.001

0.49 0.01 0.218 0.001 0.027 < 0.001 < 0.001

0.51 0.006 0.156 < 0.001 0.016 < 0.001 < 0.001

0.53 0.004 0.111 < 0.001 0.009 < 0.001 < 0.001

0.55 0.002 0.078 < 0.001 0.005 < 0.001 < 0.001

0.57 0.001 0.054 < 0.001 0.003 < 0.001 < 0.001

0.59 0.001 0.037 < 0.001 0.002 < 0.001 < 0.001

0.61 < 0.001 0.025 < 0.001 0.001 < 0.001 < 0.001

0.63 < 0.001 0.017 < 0.001 < 0.001 < 0.001 < 0.001

0.65 < 0.001 0.011 < 0.001 < 0.001 < 0.001 < 0.001

0.67 < 0.001 0.007 < 0.001 < 0.001 < 0.001 < 0.001

0.69 < 0.001 0.005 < 0.001 < 0.001 < 0.001 < 0.001

0.71 < 0.001 0.003 < 0.001 < 0.001 < 0.001 < 0.001

0.73 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001

0.75 < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.77 < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.79 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.81 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.83 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.85 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.87 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.89 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.91 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.93 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.95 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.97 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.99 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001
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Null hypothesis simulated data
Finally, to identify throughput limits of FASTLSA and to
simulate a large iid dataset without time dependence,
three data matrices were randomly generated: (1) one hun-
dred thousand measurements across 100 time steps, (2)
one million measurements across 30 time steps, and (3)
one million measurements across 100 time steps. Data
were generated by random sampling from a uniform dis-
tribution. Running FASTLSA on 16 threads, the first data-
set (100, 000 × 100) took one hour 54 minutes, the second
(1, 000, 000 × 30) 2 days and 3 hours, and the third (1,
000, 000 × 100) had an ETA of 7 days and 23 hours with-
out including writeout time. The asymptotic bound is

conservative for shorter datasets (n ≤ 30) (Figure 3, Table 1),
the second data having 30 time points found zero false
positives, despite having a Bonferroni correction of

α

/(
n
2

)
= 10−13 . This is likely because the software’s

p-value is an upper bound to the real p-value, and so is the
Bonferroni correction. An inspection of a uniform random
graph (a = 0.05, |LSA| < 0.4) of 1,000 random time series
with 100 time steps did not generate any cliques, but only
short (4-8) length chains of nodes, serving as a warning to
those wanting to interpret relevant structure (Figure 9).
Given appropriate thresholds on LSA values, cliques do
not seem to occur randomly.

Figure 4 LSA calculation time as a function of the number of time series. On this log-log plot notice that because of its lack of a
permutation test FASTLSA (red) is consistently faster than the older implementation of LSA (black) [6].

Table 2 Empirical running time for LSA calculation for data sets of different size

Time series Time points fastLSA (single thread) fastLSA (16 threads)

Twitter 1,000 130 6 sec 1 sec

CDC 6,178 24 3.24 min 2.2 sec

MPH 14,105 390 58 min 7.5 min

First Null 100,000 100 - 54 min

Second Null 1,000,000 30 - 2 days 3 hrs

Third Null 1,000,000 100 - 7 days 23 hrs
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Figure 5 MPH local similarity graph. A local similarity graph of the MPH dataset showing significant LSA values as defined by the asymptotic
upper bound (a = 0.001). Local clusters defined by LSA were revealed and the mapping of samples sources (feces, mouth, and skin) to the
nodes revealed underlying network structure.
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Discussion
FASTLSA uses a novel asymptotic upper bound algorithm
for calculating the LSA p-value. This is done without any
normality assumption, extending implementation to
untransformed data and data in violation of normality
assumptions such as time series containing many zero
entries. Moreover, FASTLSA replaces a computationally
intensive permutation test that was previously required to
calculate significance of LSA statistics with a dramatic
increase on the size of datasets that can be analyzed on a
single desktop machine. However, like all asymptotic
bounds, a significant number of observations need to be
obtained for their application. From theoretical simulation,
we estimate this to be greater than 30 time points for most
datasets. This is supported by our experience on the CDC
and MPH datasets having 24 and 390 time series, respec-
tively. Despite this potential operating constraint, FAS-
TLSA expands the boundaries of LSA allowing time series
analysis on datasets with millions of co-variate time series.
The algorithm is implemented as a computationally effi-
cient software package, FASTLSA, written in C and

optimized for threading on multi-core computers using
POSIX threads. Finally, we demonstrated the utility and
versatility of FASTLSA using real-world and simulated
time series datasets from different fields of inquiry, visua-
lizing the resulting clusters of local similarity using the
Cytoscape software.
LSA statistics have been demonstrated to capture rele-

vant local similarity structure for a number of biological
datasets [16,17]. However, previous implementations were
limited to relatively small datasets. FASTLSA improves
the computational efficiency and statistical robustness of
LSA, a necessary step in using the statistic to explore next
generation time series datasets. Despite the current
improvements, the structure captured by LSA is less than
ideal and could be further improved. Given two vectors of
time series, LSA reports the strongest statistic. However, it
is unclear where this significant time window occurs, or if
there are multiple small windows with large LSA values
that are not reported. An inspection of time series traces
in question is often required to visually check exactly how
the two are similar. Another hazard is that LSA does not

Figure 6 Comparison of LSA values: fastLSA and Original LSA. A comparison of calculated LSA statistics between FASTLSA and Original LSA
implemented by [6] and calculated on the CDC dataset. There is an almost one-to-one correspondence between calculated values. The one outlying
value was likely due to the transform that the original LSA applies, causing a disagreement between positive and negative values. For a single value
fastLSA picked the negative value (-0.4) and original LSA picked positive (0.4).
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handle missing data effectively, and so a continuous ver-
sion of the statistic would be desirable for exploratory
experiments where sampling conditions could change to
small degrees and analysis could be performed without
imputation. Furthermore, LSA is asymmetric in nature,

meaning that time reversal has the potential to produce
differing LSA values. We anticipate even better perfor-
mance from the statistic if these issues were addressed,
perhaps through a modified version of PCC that isolates
optimal windows of similarity.

Figure 7 CDC local similarity graph. A local similarity graph of the CDC dataset showing significant LSA values as defined by the upper bound
cutoff and the additional constraint of absolute LSA values greater than 0.85 (a = 0.001, |LSA| ≥ 0.85). Clusters of local structure are observed
with some example correlates of expression shown in graphs a, b, and c, indicated by solid ellipses. However, because only 800 of the
approximately 6,000 genes could be classified to a cell cycle position (G1, G2/M, S, S/G2, M/G1) we could only guess at two clusters’ functional
characteristics. Cluster x has many G1 genes that, according to the Saccharomyces Genome Database http://www.yeastgenome.org [18], have
some functionality relative to helicases and telomeres. The gene, YKR077W (*), accelerates the cell cycle initiation stage (G1) when abundant [19].
Cluster y is a set of genes encoding histone proteins [19]. Histone development is an essential part of genome replication [20] adequately
describing all of cluster y as S phase genes.
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Conclusions
LSA is a local similarity statistic that has recently been
used to capture relevant local structure in time series data-
sets, particularly within the biological community. How-
ever, its use has been limited to smaller datasets due to an

intensive permutation test used to calculate significance.
Our derivation and direct calculation of an asymptotic
upper bound using FASTLSA replaces this onerous calcu-
lation without a normality assumption, enabling LSA on
time series datasets containing millions of co-variate time

Figure 8 Twitter local similarity graph. A local similarity graph of the Twitter dataset showing significant LSA values with an additional
threshold absolute LSA values greater than 0.98 (a = 0.001,|LSA ≥ 0.98). Two primary clusters of local similarity were found, however, none of
the attempted metadata mappings could classify the clusters by time (hour of day, day of week, season, etc.) or general message content
(political, personal, media, etc.).
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series. We demonstrate the utility and versatility of FAS-
TLSA by analyzing time series data from public health,
microbial ecology, and social media and compare these
results to the previous implementation of LSA, obtaining
similar results with orders of magnitude increase in
throughput.
Project name: fastLSA

Project home page: http://www.cmde.science.ubc.ca/
hallam/fastLSA/
Operating system(s): OS X, Linux, or Windows
Programming Languages: C /C++
Other requirements: 1 GB RAM
License: GPLv3
Non-academic restrictions: None

Figure 9 Uniform random local similarity graph. A local similarity graph representing purposeful false positives, 1000 time series with 100
time steps randomly generated from a uniform distribution. Notice how no cliques form in the random data generated from a uniform
distribution.
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