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Abstract

Background: Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is
recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation
(ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when
studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding
of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not
sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq
analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an
example; we describe here an improved approach that allows the simultaneous identification of the particular
genomic binding regions of all TFs with SUMO-1 modification.

Results: Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve
long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a
combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS)
using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result
was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by
ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated
TFs are able to be pinpointed using our pipeline.

Conclusion: A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our
analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling
results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that
enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites
simultaneously, which can then be utilized for other functional PTM binding site prediction in future.
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Introduction
SUMOylation was initially identified as a reversible post-
translational modification that controls a variety of cellular
processes including replication, chromosome segregation,
and DNA repair [1-3]. The growing list of SUMO sub-
strates includes various transcription factors (TFs) and
chromatin remodeling molecules, which, upon SUMOyla-
tion, are often associated with transcriptional repression
[4], and the maintenance of heterochromatin silencing
[5,6]. The deregulation of SUMOylation has been asso-
ciated with a number of diseases including cancer [7-10].
SUMO has been found in all eukaryotes, but not in pro-
karyotes. Furthermore, the global regulatory role of
SUMO in gene expression and protein interactions has
been shown to be richly exploited in lower eukaryotes
such as yeast [11,12]. While numerous studies have pro-
vided considerable insight into the regulation of SUMOy-
lated proteins in higher eukaryotes, their scope usually has
been limited to a single host factor. The underlying com-
plexity of SUMOylation has been extended by identifying
the downstream consequences of these non-covalent
interactions with effectors via SUMO interaction motifs
(SIMs) [13], with the SIMs being critical to both SUMO
conjugation and SUMO-mediated effects. Exploring the
functions of SUMO conjugation and interaction during
epigenetic regulation in mammalian cells will considerably
enhance our knowledge of transcriptional regulation of
SUMOylation in higher eukaryotes.
SUMOylation of transcriptional regulators results in

alterations to the transcription regulation of individual
genes, while the SUMOylation of epigenetic regulators
brings about long-range chromatin remodeling, and
hence global changes in expression. When chromatin
structures are regulated by SUMO, it has been found to
involve SUMO targeting of histone deacetylases and this
then results in histone deacetylation, chromosome con-
densation, and transcriptional repression. At the same
time, numerous transcription factors have been reported
to be SUMO substrates, including Elk-1[14], SP1 [15],
AP2[16], and many others. The study of epigenetic regu-
lation when there is PTM of regulatory transcription
factors is still in its infancy and there remains a need for
new and improved screening tools as well as the develop-
ment of assay pipelines.
Recently, chromatin immunoprecipitation (ChIP) fol-

lowed by high-throughput sequencing (ChIP-seq), has
become a powerful and high resolution method that allows
the study of the impact of TFs and their co-regulators in
higher eukaryotes in a genome-wide manner [17,18].
During the ChIP process, DNA is initially cross-linked in a
specific sample to the protein that binds to it. This cross-
linked DNA is then broken into fragments and immuno-
precipitation with a specific antibody for the DNA-binding
protein follows; finally, the associated DNA is identified

after de-crosslinking. High-throughput sequencing of short
tags (reads) can be achieved using the resulting DNA
population. ChIP-seq involves the short read (30~100 bp)
sequencing of ChIP-enriched DNA fragments. These reads
are subsequently aligned to a reference genome such as
hg19. The first step of all ChIP-seq analyses is peak detec-
tion. Peaks are regions that are markedly enriched in terms
of read density based on the ChIP-seq data. Potential tran-
scription factor binding sites (TFBS) can only be precisely
identified when the true peaks are detected first by “peak
calling” tools.
Many peak calling algorithms have been developed for

identifying ChIP-enriched regions from ChIP-seq experi-
ments from a single TF [19]. In addition to commercial
software, there are more than 30 open source programs
available. Many reviews of the major steps in ChIP-seq
analysis are available in literature [20-22]. These offer a
variety of strategies that allow evaluation of each system
and answer questions as to how to choose the most appro-
priate software from among the many available peak call-
ing tools. Although current software is well established
and can find the TFBS of single TFs, annotation of multi-
ple functional TFBSs using the same PTM remains chal-
lenging [23]. TFs are known to recognize more than one
motif and similar motifs can be recognized by different
TFs. Simultaneously detecting the binding sites of multiple
TFs, including SUMOylated TFs, is therefore a difficult
task. Another big challenging is that the SUMO enriched
sites represent not only directly SUMO modified TFs but
also SUMOylated cofactors that are able to bind to the
chromatin bound TFs (Figure 1). Therefore there is a wide
range of discordance among the peaks identified by differ-
ent software systems. This paper attempts to address the
problem of predicting potential chromatin bound
SUMOylated TFs and identifying their binding sites. To
overcome the difficulty of simultaneously identifying
SUMOylated TFs in ChIP-seq experiments, we investi-
gated and compared the peak detection results of various
different software approaches [24]. We selected four main-
stream tools, Model-base Analysis of ChIP-seq (MACS)
[25], T-PIC [26] , BayesPeak [27], and CisGenome [28].
MACS models uses the shift size of ChIP-seq tags to iden-
tify peaks and utilizes a dynamic Poisson distribution to
highlight local biases in the genome. The “shift size” strat-
egy of MACS helps to identify board and blunt peaks.
However, this strategy may loss many sharp ones. T-PIC
identifies significant peaks using topological data analysis
and provides a non-parametric approach that is statisti-
cally sound and robust in relation to experimental noise.
The T-PIC strategy is therefore able to identify most sharp
peaks. Combine these two methods help us identifying
most potential chromatin binding peaks. However, these
two approaches may also identify some false positive
peaks. The false positive peaks can be eliminated by
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combing peak detection methods, such as BayesPeak and
CisGenome, that is specifically designed for identify the
false positive peaks. BayesPeak was developed to model
data structure using Bayesian statistical techniques.
CisGenome was developed to model data structure using
conditional binomial model. Combining BayesPeak or
CisGenome with MACS and T-PIC using combinatorial
fusion analysis [29], the results show that MACS*CisGen-
ome*T-PIC (M*C*T) is superiors over MACS*T-PIC*-
BayesPeak (M*T*B). The M*C*T pipeline is able to
improve peak detection in ChIP-seq data significantly.
This approach should help produce great advances in our
understanding of how SUMO modifications contribute to
important biological processes.

Results
Global identification of SUMO-1 peaks in a primary
effusion lymphoma (PEL) cell line, BCBL-1
We used a ChIP-verified polyclone antibody specifically
against SUMO-1 to immunoprecipitate SUMO-1 from a
B lymphoma cell line, BCBL-1. Size-selected (400 bp)
DNA fragments were excised and short reads (100 bp)

obtained from both ends (paired-end reads) via high
throughput sequencing-by-synthesis on an Illumina®

Genome AnalyzerIIx System. Analysing and interpreting
ChIP-seq data typically involves pre-treating the raw
reads using multiple applications, which can include
mapping of sequences to the human genome, filtering
and quality control. Around 63 million reads were
mapped to the human genome sequence, hg19. Details
of the number of reads that underwent data pre-process
are presented in Table 1. After the density profiles were
generated, the focus shifted to localizing the potential
peaks. Here, we selected MACS, T-PIC, BayesPeak and
CisGenome to localize the potential binding sites for deli-
neated SUMO-1 targeting TFBSs. As shown in Table 2,
the peaks calling results were found to be very different
when the four different methods were compared. Specifi-
cally, MACS (M) detected 53,972 peaks with the longest
regions (average 810 bp). T-PIC (T) detected the shortest
peaks (average 442 bp). BayesPeak (B) and CisGenome
(C) that were primarily designed to identify false positive
peaks can be used to eliminate untrue peaks. Peaks sets
identified by different methods were annotated using

Figure 1 Overview of experimental design. The experimental design of the SUMO-1 ChIP-seq. DNA crosslinking with either SUMO-TF or
SUMO-cofactor are identified using SUMO-1 antibody. Following size selection, all the resulting ChIP-DNA fragments were sequenced using an
Illumina® Genome AnalyzerIIx.
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TFBSs (see materials and methods). T-PIC detected the
greatest number of TFBS (477,353) in the whole genome,
while MACS found the highest number of TFBS (27,615)
in promoter regions. An example of the peaks identified
by individual methods and their annotation by TFBS is
presented in Figure 2. Consistent with other SUMO-1
ChIP-seq datasets (GEO ACCESSION: GSM1012775),
we identified peaks in the promoter region of the NOSIP
gene.

Intersection of different peak calling tools represents
positive results
To evaluate the various individual systems and different
combinations, we used four indexes: Ppromoter, PTFBS,
Ptp_p, and Ptp_t (see Methods section). The higher value
of each index means that meaningful peaks were detected
either in the promoter region or annotated TFBS. The
results of the four individual tools are recorded in Tables
3. The order of average precision (AP) of individual tool
is C (40.8%) > M (27.8%) > T (26.3%) > B ( 23.3%) (see
Table 3). We choice the top three tools (C, M, and T) to
do the following steps. All four combinations of intersec-
tion (*) and union (+) are recorded in Table 4 and 5,
respectively. When we used the union and the intersec-
tion strategies to analysis the peaks of two or three tools,
the average precision of intersection (M*C*T) was found
to be the most effective method with highest average

precision (45.8%) (Table 3 and 4). Three pools of SUMO-
1 putative peaks in the promoter region were intersected
to give 4,834 peaks. Among them, 3,604 peaks contain
TFBSs. In total, 3,860 SUMO-1 related TFBSs were iden-
tified from these 3,604 peaks. This result indicates that
the intersection method is able to extract functional
peaks from a massive range of peaks.

Validation the data from ChIP-seq for ELK-1 binding sites
with SUMO-1 enrichment by real-time qPCR
To confirm the SUMO-1 enrichment at the ELK-1 bind-
ing sites, we randomly pick up three ELK-1 binding
regions where the SUMO-1 peaks had been identified by
the ChIP-seq assay and design primers for qPCR assay.
The SUMO-1 enrichment in promoter regions of
TARS2, NDUFB7 and ADAMTS10 was then validated
using a ChIP sample and real-time qPCR. Consistent
with the ChIP-seq results, the three ELK-1 binding
regions tested here showed significant enrichment for
SUMO-1 compares to IgG control (Figure 3A to 3C).
ChIP-reChIP analysis was used to further confirm the co-
localization of SUMO-1 and ELK-1 on ELK-1 binding sits
of TARS2, NDUFB7 and ADAMTS10 promoter region
with SUMO-1 enrichment. Control rabbit IgG and
SUMO-1 antibody were used in the first ChIP, followed
by reChIP using antibody for ELK-1. Real-time qPCR
analyses of the first ChIP and reChIP product with
TARS2 and NDUFB7 promoter-specific primers indicates
that the SUMO-1 and ELK-1 are co-localized in the
TARS2 and NDUFB7 promoter region (Figure 4A and
4B). Maybe due to the low PCR efficacy of ADAMTS10
promoter-specific primers, qPCR data show low detec-
tion value in the input of ADAMTS10 promoter region
and no signal in ChIP and reChIP samples.
To study the functional role of SUMO-1 in the regula-

tion of ELK-1, we established a SUMO-1 inducible

Table 1 SUMO-1 ChIP-seq alignment results

SUMO-1 ChIP-seq data

# of total reads 97,620,354

# of filtered reads 70,300,792

# of duplicate reads 70,278,726

# of mapped reads 63,157,210

alignment rate* 89.87%

*The reads are aligned using BWA with the default parameters [39].

Table 2 Peak features obtained using the individual, union and intersection methods

Peak # TFBS peak # TFBS #

Methods Total Promoter Total Promoter Total Promote

MACS = M 53,972 10,282 15,428 3,934 110,779 27,615

CisGenome = C 32,158 12,069 7,153 4,640 30,828 5,322

T-PIC = T* 459,962 37,923 99,986 20,735 477,353 20,008

BayesPeak = B 241,257 35,349 102,905 9,188 220,182 48,710

M+C+T 465,103 31,096 100,484 15,352 460,753 39,449

M+T 460,503 38,023 100,417 20,775 477,996 22,042

M+C 65,605 32,588 17,643 7,400 120,964 54,569

C+T 462,622 43,355 100,284 20,735 478,565 22,008

M*C*T 20,349 9,834 4,834 3,604 20,525 3,860

M*T 50,655 17,246 15,274 9,312 128,473 10,526

M*C 20,525 9,852 4,863 3,612 20,643 3,874

C*T 30,158 11,914 6,780 4,637 29,616 4,956

* p-value < 0.001
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knockdown cell line in TREx-F3H3-K-Rta BCBL-1,
namely TREx-F3H3-K-Rta shSUMO-1 BCBL-1. Effective
knockdown of SUMO-1 protein in TREx-F3H3-K-Rta
BCBL-1 cells was identified at 48 hours after Dox treat-
ment (Figure 5A). Consistent with previous finding
showing that SUMO modification of ELK-1 is required
for its repressive activity [30], reverse transcription-
qPCR (RT-qPCR) analysis showed a higher induction of
TARS2 and NDUFB7 during K-Rta induced KSHV reac-
tivation after SUMO-1 knockdown in TREx-F3H3-K-Rta
shSUMO-1 BCBL-1 cells comparing with its parental
TREx-F3H3-K-Rta BCBL-1 cells (Figure 5B and 5C).

Potential SUMO-1 targeting TF identification that relies
on SUMO-1ChIP peak height scores and can be validated
via a literature review
A score function, considering peak heights, frequency of
TFBS on SUMO-1 peaks, and number of TFBS, was
designed to predict SUMO-1 targeted TFs. Table 6 lists

the 19 potential SUMO-1 targeting TF candidates pre-
dicted by the M*C*T method with Z-score using a cut-
off value of 2.24. Literature-verified SUMOylation of the
19 potential SUMO-1 targeting TFs are presented in
Table 6. The top five potential SUMO TFs, ELK-1 [30],
E2F [31], NFY [32], and CREB [33], have all been con-
firmed to be SUMO substrates by literature review and
the percentage of SUMO-verified TFs shown in Figure 6
indicates that the most favorable result is obtained when
using the M*C*T combination.
Among the 19 potential SUMO TFs, 17 of them have

been previously identified as SUMO substrates. For
example, Elk-1, the top 1 SUMOylated TF candidate in
our analysis, can be SUMO modified at its R motif [30].
Overall, 30% of the SUMO peaks (149/482) containing
the Elk-1 TFBS that were identified in the present study
are also found in another Elk-1 ChIP-seq data (GEO
ACCESSION: GSM608163). Although no previous study

Figure 2 Promoter region of NOSIP as explored by different peak detection methods with TFBS annotation.

Table 3 Precision indices for the single methods

Index M C T B

PTFBS 19.1% 37.5% 8.2% 14.7%

Ppromoter 28.6% 22.2% 21.7% 42.7%

Ptp_p 38.3% 38.4% 54.7% 26.0%

Ptp_t 25.5% 64.9% 20.7% 8.9%

AP 27.8% 40.8% 26.3% 23.3%

Table 4 Precision indices for the union (+) of two or
three methods

Index M+C+T M+T M+C C+T

PTFBS 6.7% 8.3% 49.7% 9.4%

Ppromoter 21.6% 21.8% 26.9% 21.7%

Ptp_p 49.4% 54.6% 22.7% 47.8%

Ptp_t 15.3% 20.7% 41.9% 20.7%

AP 23.2% 26.3% 35.3% 24.9%
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reports have indicated that hRFX1 and NSCL1 are
SUMOylated, we cannot rule out the potential of these
two proteins to form a SUMO complex and/or to bind a
SUMOylated cofactor.

Validation of SUMO-1 enrichment in ELK-1 binding site
identified in HeLa cells
Recently, a ChIP-seq report has pinpointed the global
chromatin localization of ELK-1 in human HeLa cells

Table 5 Precision indices for the intersection (*) of two or
three methods

Index M*C*T M*T M*C C*T

PTFBS 48.3% 34.0% 48.0% 39.5%

Ppromoter 23.8% 30.2% 23.7% 22.5%

Ptp_p 36.6% 54.0% 36.7% 38.9%

Ptp_t 74.6% 61.0% 74.3% 68.4%

AP 45.8% 44.8% 45.7% 42.3%

Figure 3 Confirmation of ChIP-seq data for ELK1-binding sites with SUMO-1 enrichment in BCBL-1 cells using ChIP-qPCR. Confirmation
of data derived from ChIP-seq for ELK1 binding sites with SUMO-1 enrichment in BCBL-1 cells. The ELK1 binding sites within the SUMO-1 peak
of the promoters of (A) TARS2, (B) NDUFB7 and (C) ADAMTS10 genes were amplified using qPCR. (D) SNRPE, (E) INO80B and (F) LYSMD1 genes
identified in our SUMO-1 ChIP-seq result and GSM608163 ChIP-seq data were analyzed by qPCR with their specific primer pairs. All reactions
were run in triplicate and normalized against the input. Nonspecific IgG was used as the control ChIP antibody.
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(GEO ACCESSION: GSM608163). We selected three
high quality ELK-1 binding sites identified in HeLa cells
overlapping with our SUMO-1 enriched regions and
validated by ChIP-qPCR. As shown in Figure 3D to 3F,
there is a significant increase of SUMO-1 enrichment in
ELK-1 binding sites of SNRPE, INO80B and LYSMD1
promoter identified from previous study of others in HeLa
cells. However, ChIP-reChIP data shows no co-localization
of ELK-1 and SUMO-1 in the promoter region of SNRPE,
INO80B and LYSMD1 genes (Figure 4C to 4E). Consistent
with the ChIP-reChIP data, the transcription of all three
genes showed no changes during K-Rta induced KSHV
reactivation after SUMO-1 knockdown comparing to the
control cells (Figure 5D to 5F). The results were similar to
the negative control genes, MCL-1 and IRF-3, which have
ELK-1 binding site but not SUMO-1 enrichment in their
promoter regions (Figure 5G and 5H). The inconsistency
between our results and the findings in HeLa cells may be
due to the cell type specificity. Together, taking ELK-1 as
an example, the result here suggests that our pipeline is
able to identify the potential chromatin region bound by
SUMO modified transcription factors successfully. The

biological role of SUMOylation in regulating the function
of ELK-1 was also identified in a cell type-specific manner.

Discussion
Comparisons of the different methods available for the
global identification of SUMO-1 peaks
As revealed in Figure 7, different algorithms returned
disjointed sets of peaks, which indicate that these diver-
gent approaches and algorithms recognize distinct peaks.
This finding creates a challenge as to how to integrate the
results from different tools. Pepke et al. [20] classified the
density profile of ChIP-seq result into three categories: (1)
punctate regions; (2) broader regions; and (3) broad
regions. Different strategies should be employed when
delineating different profiles. Interestingly, evidence shows
that SUMO-mediated transcription regulation not only
involves covalent SUMO modifying transcription regula-
tory proteins, but also non-covalent associated co-regula-
tory proteins that contain the SUMO interacting motif
(SIM). In most cases, SUMO formed complexes seems to
result in regions that extend beyond a single TFBS, there-
fore rendering traditional peak calling methods inadequate

Figure 4 Colocalization of ELK1 and SUMO-1 in the promoters of TARS2 and NDUFB7 genes. Sequential chromatin immunoprecipitation
(ChIP-reChIP) assay using control IgG and anti-SUMO-1 antibody for the first ChIP and anti-ELK-1 antibody for the reChIP was performed in
formaldehyde-fixed chromatin derived fromTREx-F3H3-K-Rta BCBL-1 cells. Quantification of first ChIP and reChIP DNA recovered from (A) TARS2,
(B) NDUFB7 and (C) SNRPE, (D) INO80B and (E) LYSMD1 by real-time qPCR using the promoter-specific primers.
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when studying the binding sites for SUMOylation within
long regions. An accurate characterization of the SUMOy-
lation binding patterns will be of real significance to the
study of SUMO binding sites across the entire genome, as
well as any analysis of their correlation with transcriptional
regulation.

Evaluation of system fusion result
We performed two kinds of combination, intersection
and union, with the four mainstream peak detection
tools, namely MACS, T-PIC, BayesPeak and CisGenome

(see Methods section). Intersection of two systems is
expected to improve specificity, while union is expected
to improve sensitivity. When evaluating each system or
combination, we viewed the results with respect to com-
binatorial peaks using four percentage indices, Ppromoter,
PTFBS, Ptp_p, and Ptp_t (see Methods section). To evaluate
these four indices, we created an average precision (AP).
The results are shown in Tables 3 to 5. Table 3 lists the
four indices from the four individual tools and each of
thefour tools has its own strengths. MACS, T-PIC, Baye-
sPeak and CisGenome detected the highest percentages

Figure 5 Regulation of ELK-1 activity by SUMO-1 modification. (A) TREx-F3H3-K-Rta-shSUMO-1 BCBL-1 cells were treated with Dox for
48 hours. TCLs were analyzed by immunoblotting using anti-SUMO-1 antibody. (B to H) Two ELK-1 targeted genes, TARS2 (B) and NDUFB7 (C),
showing SUMO-1 enrichment at the promoter region identified in our study and three genes, SNRPE (D), INO80B (E) and LYSMD1 (F), that have
high quality ELK-1 binding sites identified in HeLa cells overlapping with our SUMO-1 enriched regions were chosen. Two genes, MCL-1 (G) and
IRF-3 (H), with ELK-1 binding site at the promoter region showing no SUMO-1 enrichment were chosen as control. RNA samples derived from
TREx-F3H3-K-Rta BCBL-1 and TREx-F3H3-K-Rta shSUMO-1 BCBL-1 cells before and after 48 hours of Dox induction were subjected to reverse
transcription (RT) reaction. Following the RT reaction, the ELK-1 target genes were amplified by qPCR using gene-specific primer sets. All
reactions were run in triplicate and normalized against GAPDH.
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of PTFBS, Ptp_p, Ppromoter and Ptp_t, respectively. Table 4
showed that all combinations by union are negative
cases with respect to the individual methods, due to an
abundance of un-annotated peaks and intergenic peaks.
As highlighted in Table 5, all combinations by intersection
are positive cases, especially the M*C*T method. Collec-
tively, each type of tool providing information beneficial to
identify SUMO-1 peaks and the pipeline design here pin-
points potential SUMO-1 targeting TFs from others
according to the scoring step. As shown in Figure 6,
though the top 10 SUMO-1 targeting TF candidates are

identified by M*C*T, the C+T, C*T, C and T methods
provide similar SUMO verification rates. The verification
rate for the following groups, namely top 15 to top 35,
became lower compared to the M*C*T rate, C rate (the

Table 6 Potential SUMO-1 TF list

Rank Transfac Name of TF SUMO related Hampel identifier Reference

1 V$ELK1_02 ELK1 Yes 9.88 [30]

2 V$E2F_02 E2F Yes 7.01 [34]

3 V$E2F_03 E2F Yes 5.97 [34]

4 V$NFY_01 NFY Yes 5.90 [32]

5 V$CREB_Q2 CREB Yes 5.55 [33]

6 V$CETS1P54_01 CETS1P54 Yes 4.14 [40]

7 V$NFY_Q6 NFY Yes 3.93 [32]

8 V$SP1_01 SP1 Yes 3.89 [15]

9 V$STAT1_01 STAT1 Yes 3.72 [41]

10 V$AHRARNT_01 AHR Yes 3.69 [42]

11 V$ATF_01 SP1 Yes 3.43 [42]

12 V$AHR_01 AHR Yes 3.09 [42]

13 V$ELK1_01 ELK1 Yes 3.08 [30]

14 V$E2F_01 E2F Yes 2.66 [34]

15 V$EGR1_01 EGR1 Yes 2.54 [43]

16 V$YY1_01 YY1 Yes 2.53 [44]

17 V$RFX1_02 hRFX1 Unknown 2.43 -

18 V$HEN1_02 NSCL1 Unknown 2.42 -

19 V$AP2_Q6 AP-2 Yes 2.40 [36]

Figure 6 Potential SUMO-1 TF verified result. The percentage of
literature verified SUMO-1 TFs predicted by the C, T, M*C*T, C*T, C
+T and M+C+T methods, from top1 to top 35, plotted on a curve.

Figure 7 Peak calling by different software. The Venn diagram
showing the overlaps among the peaks called by MACS, T-PIC and
CisGenome, together with the numbers of peak presented. The
numbers for the union and intersection of the peaks, and the
mapped genes as obtained by the software can also be found in
Table 4.
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best individual method), C+T rate (the best union
method) and M+C+T rate (the worst method of all). The
results suggest that while all the methods are able to pre-
dict potential SUMO-1 targeted TFs when there is a
strong peak score, the M*C*T method predicts SUMOy-
lated TFs with a lower peak score in a more effective man-
ner. In addition, we also compare the combination of all
four methods of MACS, T-PIC, BayesPeak and CisGen-
ome. As shown in Figure 8, combinational methods of
M*C*T *B is not superior than M*C*T. The result indi-
cates that the choice of peak calling tool is important.
Using intersection strategy can filter the false positive
peaks, however intersecting too many peak calling tools
may let the unfit tool filter out the good peaks.

Conclusions
Decoding how PTMs impacts the TF regulatory system
that governs diverse cellular responses remains challen-
ging. Taking SUMO modification as an example, we have
developed a computational pipeline for predicting puta-
tive SUMOylated TFs from a group of TFBS. Using the
combinatorial fusion methods described here, there is no
need to depend on a single “best” algorithm. The merge
detection method is able to find peaks with greater accu-
racy than any other peak calling software alone using
ChIP-seq data retrieved from targeted PTMs. SUMO-1
target TFs are predicted well using our pipeline. In total,
89% of the 19 potential SUMOylated TFs were found to
be SUMOylated after confirmation by literature review.
In summary, our observations includes: (1) based on the

criteria and performance evaluations used, there are no
single answer to the selection of the best available
method for ChIP-seq peak detection when identifying
PTMs; (2) combinations of different tools are able to
improve results in many cases; and (3) M*C*T is the
superior prediction method when detecting putative
SUMOylated TFs. More than 60% of the peaks identified
in this study have not been annotated. One of the reasons
for this is that the human cell contains thousands of TFs,
and many of them are able to be SUMOylated. The TFBS
data set from the UCSC genome browser only includes
binding sites for 258 TFs out of these thousands of TFs.
In the future, our work should help researchers to
achieve a greater understanding of SUMOylated TFs
once a better TFBS database become available. Moreover,
we intend to explore the non-TFBS-annotated SUMO
peaks in order to identify chromatin remodeling mole-
cules that are not TFs. Most importantly, our pipeline
here provides a platform for all researchers who want to
study the relation between PTM and epigenetic regula-
tion using their own chromatin binding data.

Materials and methods
Experiment design and sample preparation
The epigenetic study underling this paper’s aim is an
investigation of the impact of SUMO/TF interaction in a
primary effusion lymphoma (PEL) cell line, BCBL-1. To
this end, we generated ChIP-seq data using anti-SUMO-1
antibodies and BCBL-1. In general, the results of a
SUMO-1 ChIP-seq experiment were anticipated to reflect

Figure 8 Potential SUMO-1 TF verified result by the combinational methods of M, C, T and B. The percentage of literature verified SUMO-
1 TFs predicted by the combinational methods of M, C, T and B from top1 to top 35, plotted on a curve.
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indirectly the SUMO regulatory genome via SUMOylated
TF binding and chromatin. In parallel to this, another sce-
nario is that SUMO-1 antibody identifies SUMOylated
cofactors that are recruited to TFs and TF-occupied DNA
sequences. The cross-linked SUMO-TF-DNA complexes
were extracted and contained the DNA that interacts with
either the SUMOylated-TFs or the SUMOylated transcrip-
tion complexes. After purification of ChIP-enriched DNA,
a library was developed to allow sequencing on a NGS
platform (Figure 1).
Cell culture
KSHV infected primary effusion lymphoma (PEL) cell line,
TREx-F3H3-K-Rta BCBL-1 was grown in RPMI 1640 con-
taining 15% FBS, 50 μg/ml blasticidin and 100 μg/ml
hygromycin(Invitrogen, Carlsbad, CA) in the presence of
5% CO2.
The shRNA cassette of SUMO-1 (5’-CACCCAACA-

CATCTCAAGAAACTCACGAATGAGTTTCTTGA-
GATGTGTTG-3’) was inserted into pLenti4-T/O-shRNA
plasmid and introduced into TREx-F3H3-K-Rta BCBL-1
cells by lentiviral transduction. Cells were selected for
14 days by 300 μg/ml zeocine (InvivoGen, ant-zn-1) and
purified by Ficoll. Knockdown efficiency of SUMO-1 by
shRNA were tested by treated the cells with doxycycline
(Dox) for 48 hours. TREx-F3H3-K-Rta-shSUMO-1 BCBL-1
cells were maintained as described for TREx-F3H3-K-Rta
BCBL-1 and supplemented with 300 μg/ml zeocine.
Chromatin immunoprecipitation-sequencing (ChIP-Seq),
ChIP-reChIP assay and real-time quantitative PCR (qPCR)
1 × 107 cells were harvested and ChIP assays were per-
formed following the protocol described by the Farnham
laboratory (provided at http://genomics.ucdavis.edu/
farnham). ChIP-reChIP assays were performed by Re-
ChIP-IT kit (Active Motif, Carlsbad, CA) following the
manufacturer’s instruction. ChIP-verified rabbit polyclone
antibodies specific against SUMO-1 (Abcam, Cambridge,
MA) and rabbit non-immune serum IgG (Alpha Diagnos-
tic International) were used for the ChIP and ChIP-reChIP
assays.
ChIP-seq library construction was carried out following

the sample preparation protocol from Illumina. Short
reads (100 bp) from both ends (paired-end sequencing)
were sequenced on an Illumina® Genome AnalyzerIIX
System. The binding sites were verified by SYBR® Green
Based qPCR using a CFX connect™ real-time PCR detec-
tion system (Bio-Rad, Richmond, CA). Specific primer
sets were designed around the identified binding sites for
this purpose. Enrichment of SUMO-1 and IgG samples
were normalized with the input.

Data analysis
Input datasets
The reads within the SUMO-1 ChIP-seq data sets were
aligned by BWA with default parameters [37]. hg19 was

used as the reference genome, having been downloaded
from the UCSC genome browser [38]. The Ensembl
database was used to define gene regions [34]. Promoter
regions are defined as the area that stretches from 5 kb
upstream to 1kb downstream of a transcription start site
(TSS).
Scoring system for TFBS in SUMO peaks
Peak calling was the last, perhaps most pivotal and
dynamic step in the process of the ChIP-seq pipeline after
fragmentation, immunoprecipitation, sequencing and
aligning. Figure 9 describes our pipeline for the SUMO-1
ChIP-seq experiment and the analytical workflow. The
initial stage of peak detection was to identify the enriched
regions with a large number of mapped reads. Subse-
quently, the peak calling tools had to determine if these
regions were significant enough to represent a protein-
DNA binding site across various peak heights and/or
directionality score. This approach ensured that the peak
heights are a scoring function in which the system
assigned a number to each possible region. We propose
that the peak detection for each of the binding sites be
viewed as a scoring system on sets of all possible SUMO
binding site regions, and the UCSC TFBS data set be
viewed as known TFBS regions when annotating the
SUMO binding site regions. The TFBS dataset was down-
loaded from the UCSC genome browser database, and
includes a total of 5,797,266 TFBS for 258 TFs in Track
TFBS [35].
Let T = [t1, t2... t258] be the set of TFs, and TBi, i = 1

~258 be the set of TFBSs of ti. A range of SUMO peak
detection scoring systems were developed using different
algorithms. Using multiple scoring systems that were
defined by the set of possible TFBS regions on the set
of SUMO possible peaks, we were able to study the
reproducibility of peak calls among different replicate.
Multiple scoring systems were also used to develop and
design new pipelines that had greater accuracy, effi-
ciency and scalability when detecting SUMOylated pro-
tein binding sites during ChIP-seq data analysis. We
drew from recent research on combinatorial fusion and
applied this to ChIP-seq data analysis. Since peak
heights were found to be the most consistent and best
performing feature of peak calling methods, peak
heights was selected as the score function to represent
each method’s scoring of the region identified. Let Dx be
the set of peak regions identified by tool X, and Di

x be
the intersection of Dx and TBi. The score function is
defined as

S
(
Dx

i

)
= � peak heights ofDx

i ∗ |Dx
i |

|TBi|

It means the sum of the peak heights Di
x weighting

with the percentage of Di
x in all TBi. Let the rank
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function R(Di
x ) be the function from 1 to 258 that is

obtained by sorting the values in S(Di
x ) into descending

order and converting the function S(TBx) into the func-
tion R(TBx) using the rank as its function value.
Combined two peak detection systems
Union In the union of two systems, x and y, Dx+y is the
set of regions that contains all peaks identified by X and
all peaks identified by Y, where the overlapping regions
between the two tools are merged to gather and form
new compound regions, and non-overlapping peaks are

allowed to maintain their genome position. Let Di
x+y be

the intersection of Dx+y and TBi. The score function is

S(Dx+y
i ) = � peak heights ofDx+y

i ∗ | Dx+y
i |

| TBi|

and R(Dx+y) is the rank function obtained as R(Dx+y).
Intersection The intersection of two system, X and Y,
Dx*y is the set of SUMO TFBS that are detected both by
X and Y.

Figure 9 Diagram of the SUMO-1 ChIP-seq analysis workflow. Scheme used for the modified high-resolution ChIP-seq method and its
validation. The literature was used to verify 17 of the top 19 SUMO-1-TF candidates. The SUMO-1-TF candidates were predicted by the following
steps: (1) filtering poor and repeat reads out, and aligning reads to the human genome (hg19); (2) calling peaks using three tools MACS, T-PIC
and CisGenome; (3) combining three peak sets; (4) annotating peaks using TFBS; (5) scoring and ranking SUMO-1 TF candidates; and finally (6)
verifying SUMO-1 TF candidates via the literature.
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Dx*y ⊆ Dx+y where Dx+y = Dx∩Dy

The score function is

S
(
Dx∗y

i

)
= � peak heights ofDx∗y

i ∗ | Dx∗y
i |

| TBi |
and R(Dx*y) is the rank function obtained as R(Dx*y).

Identifying potential SUMO-1 target TFs using the Hampel
Identifier
Hampel identifier is a measure for the robustness of an
estimator against outliers. It is regarded as one of the most
robust and efficient outlier identifiers [36,37]. The higher
value of Hampel identifier means much more different
from the main part of the data. We use Hampel Identifier
[38] to identify the potential SUMO-1 targeting TFs. We
apply Hampel Identifier on the score function S(Di

x*y)
which are estimates of and treat any observation as a
potential SUMO-1 targeting TF for which the following is
true:

Z =
|S(Dx∗y

i ) − M|
MADN

> 2.24

where, M is the median of S(Dx∗y
1 ), S(Dx∗y

2 ),...
S(Dx∗y

258)observations.
MADN = MAD/0.6745, and MAD is the median of

the values |S(Dx∗y
1 ) − M|, |S(Dx∗y

2 ) − M| ,..., |S(Dx∗y
258) − M|.

0.6745 is 0.75 quantile of standard normal distribution,
and 2.24 is 0.975 quantile of chi-square distribution
with one degree of freedom.
Performance evaluation methods
For many TFs, the majority of binding sites can be
found near the TSS of expressed genes. Therefore,
whether or not the peak is in the promoter region (pro-
moter peak) can be an index when evaluating ChIP-seq
software systems, and different combination methods.
Thus, when, a peak overlaps with a TFBS, as a TFBS
peak, this indicates that this is a functional peak. Thus,
potentially, there is a percentage of TFBS peak found
for all peaks and for promoter peaks, both of which
represent evaluation indices. In this evaluation, we
defined four indexes to compare the peaks identified by
a particular tool and by combination of the three tools.

Ppromoter =
Peak # inpromoter

Total peak #

PTFBS =
TFBS peak#
Total peak#

Ptp p =
TFBS peak # in promoter

Peak # in promoter

Ptp t =
TFBS peak # in promoter

TFBS peak#

Meanwhile, average precision (AP) for a system is
defined as

AP =
Ppromoter + PTFBS + Ptp p + Ptp t

4
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