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Abstract

In order to have a better understanding of unexplained heritability for complex diseases in conventional Genome-Wide
Association Studies (GWAS), aggregated association analyses based on predefined functional regions, such as genes
and pathways, become popular recently as they enable evaluating joint effect of multiple Single-Nucleotide
Polymorphisms (SNPs), which helps increase the detection power, especially when investigating genetic variants with
weak individual effects. In this paper, we focus on aggregated analysis methods based on the idea of Principal
Component Analysis (PCA). The past approaches using PCA mostly make some inherent genotype data and/or risk
effect model assumptions, which may hinder the accurate detection of potential disease SNPs that influence disease
phenotypes. In this paper, we derive a general Supervised Categorical Principal Component Analysis (SCPCA), which
explicitly models categorical SNP data without imposing any risk effect model assumption. We have evaluated the
efficacy of SCPCA with the comparison to a traditional Supervised PCA (SPCA) and a previously developed Supervised
Logistic Principal Component Analysis (SLPCA) based on both the simulated genotype data by HAPGEN2 and the
genotype data of Crohn’s Disease (CD) from Wellcome Trust Case Control Consortium (WTCCC). Our preliminary results
have demonstrated the superiority of SCPCA over both SPCA and SLPCA due to its modeling explicitly designed for
categorical SNP data as well as its flexibility on the risk effect model assumption.

Introduction
Genome-wide association studies (GWAS) aim to detect
the association of genetic variants across the whole gen-
ome with traits of interest such as disease phenotypes.
They have been successful in identification of susceptibility
loci through association analysis of individual single
nucleotide polymorphism (SNP) markers with common
diseases [1]. Limited by small sample size, however, these
analyses are not always reproducible [2,3]. The associated
common variants at the identified susceptibility loci have
been found with only modest individual effect [4]. It has
always been a challenge for GWAS to detect those SNPs
with weak individual effects but may affect disease out-
come by strong epistatic effect. In addition, as GWAS
focus on single-marker association tests, the obtained
results may not provide clear insights into which genes

have significant association, how they interact with other
genes and/or environment, and what is the underlying dis-
ease mechanism. In order to get a better understanding of
complex disease, more comprehensive association analysis
methods considering interactions among SNPs as well as
gene- or pathway-based GWAS have recently attracted
researchers’ attention [5-7]. For example, multi-locus ana-
lysis methods such as multivariate regressions have been
proposed to simultaneously test multiple SNPs belonging
to a functional region as well as the interactions among
them [8]. However, these methods suffer from high
degrees of freedom in the statistical tests if a large number
of SNPs are simultaneously tested. Alternatively, two
groups of aggregated association analysis methods [7,9-13]
focus on testing multiple SNPs with a reduced number of
degrees of freedom resulting from: (1) a combined test
statistic based on the individual statistical significance for
all SNPs; or (2) a combined signal directly derived across
all SNPs.
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Several popular methods have been proposed to gener-
ate a combined test statistic for multiple SNPs/genes for
gene- or pathway-based association tests [9,10,14-16]. The
statistical significance for a gene or pathway is estimated
based on its combined test statistic and the corresponding
null distribution. Fisher’s combination is a simple way to
combine p-values of all SNPs or genes into a summary
statistic determining the gene- or pathway-wise signifi-
cance [9]. However, the independence assumption may be
violated because of linkage-disequilibrium (LD) among
SNPs or correlation among genes. Fisher’s exact test is
another method to aggregate the significance of multiple
SNPs or genes in a functional region [17]. Take pathways
for example, the test statistic calculates the enrichment of
specific significant genes in the given pathway. Similarly,
gene set enrichment analysis (GSEA) evaluates association
evidence of pathways by calculating and testing an enrich-
ment score of each pathway based on how its constituent
genes are ranked by their statistical significance associated
with disease [10]. Although these methods have been
widely used for pathway-based association analysis, they
may lose their power if there are interactions among
genes. A potential problem in them is that their combined
test statistics are calculated without considering the rela-
tionships among SNPs or genes in functional regions of
interest.
The second category of aggregated association analysis

methods focus on deriving combined signals to aggregate
information from multiple SNPs or genes whose joint
effect can then be tested by analyzing the relationship
between their corresponding combined signal and the
trait of interest. The combined signal is mostly generated
based on non-linear or linear transformation of indivi-
dual SNP genotypes to extract the maximum relationship
among them [8,11-13,18,19]. Kernel-based approaches
typically study all the SNPs in a gene or pathway together
based on a kernel function that takes the similarity
between individuals while maintaining the relationships
among SNPs [11,12,20]. Basically, these methods carry
out the association analysis by comparing the pairwise
genotypic similarity after transformation with the pair-
wise trait similarity. Test statistics are thus generated
with small degrees of freedom based on the adopted ker-
nel functions. Depending on the adopted kernels, these
approaches may explore general non-linear interactions
among SNPs. In addition to the non-linear modeling of
SNP effect based on kernel methods, linear modeling
approaches directly combine the original genotypes to
summary statistics as combined signals. A key issue for
linear approaches is how to choose optimal weights for
all the SNPs to derive the combined signal. Prior LD
information has been taken advantage of for calculating
the weights of SNPs to account for the correlations
among SNPs, but it will lose the power if most SNPs only

contribute small to moderate effects to the trait of inter-
est, which is often the case as shown in several studies of
complex diseases [18,21]. As a popular linear approach in
dimension reduction, principal component analysis (PCA)
based methods have been applied for pathway based
GWAS [13,19]. By performing optimal linear combina-
tions of SNP genotypes, it could aggregate SNP effects
with optimal weights accounting for their relationships.
Although both PCA based methods and kernel meth-

ods could explore the interaction among SNPs for high
power in association studies, they share a potential bias
since they always have the inherent assumptions that the
risk of a SNP is proportional to the number of minor
alleles. This bias arises from their data modeling based
on the common SNP genotype representation, in which a
SNP genotype is represented by numerical values in the
domain {0, 1, 2} representing the number of minor alleles
for either homozygous or heterozygous allele pairs. How-
ever, the induced risk by genotypic mutants may not be
directly proportional to the number of minor alleles in a
SNP. Instead of the data representation in {0, 1, 2}, it may
be more appropriate to represent the SNP data with three
different genotypes {00, 10/01, 11}, representing whether
we see minor alleles at the corresponding allele pairs. It
may not be appropriate to inherently introduce numeri-
cal information related to the genetic variation by taking
numerical values of this genotype representation as typi-
cally done in the existing methods. Therefore, it is more
reasonable to analyze SNP data on a premise that SNP
data is categorical data except that we have high confi-
dence on the underlying risk effect model, such as com-
monly adopted additive models. Another challenge with
SNP data is the transformation from the quantitative
intensity generated during genotyping, into the biologi-
cally known underlying number of SNP alleles at a locus.
This transformation is performed using calling algo-
rithms, which are specific to genotyping technologies. All
subsequent analysis of data, such as GWAS, is dependent
on the accuracy and ability of the calling algorithm, sev-
eral of which were reviewed and improved on by Shah et
al [22]. The WTCCC developed an algorithm, CHIAMO,
to process their data [23], the results of which are used in
our study.
We have previously developed logistic PCA (LPCA)

methods [13,24] for geneand pathway-based analysis of
SNP data by explicitly modeling the categorical nature of
SNP data. For LPCA, we first transform the genotype data
from the domain {0, 1, 2} to binary data {0, 1}, which is
assumed to follow a Bernoulli distribution. We have
obtained promising results compared with traditional
PCA-based SNP analysis that inherently assumes continu-
ous normally distributed SNP data. However, due to the
data transformation, LPCA also has an inherent assump-
tion that the risk effect takes either recessive or dominant
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model. The important information in the original SNP
data, especially when we have more general underlying risk
effect models, may be lost due to the transformation.
In this paper, we develop a more general PCA denoted

as categorical PCA (CPCA) that does not make any spe-
cific model assumptions of the effect of genetic mutants
on the given trait. We first derive an optimization algo-
rithm for CPCA suitable for categorical data analysis.
Similar as conventional PCA, CPCA finds the optimal lin-
ear combinations that best explain the observed data but
may not derive the principal components that are the
most associated with a trait of interest. In order to derive
the best principal components capturing the maximum
combined effect from multiple SNPs with respect to a
given trait of interest, we then apply it in a supervised fra-
mework. The best principal components are achieved with
the highest correlation with a given trait and are further
used in a logistic regression model for association analysis.
The supervised framework is similar to the supervised
PCA (SPCA) method first proposed for pathway-based
gene expression analysis and GWAS based on traditional
PCA [19,25]. By our supervised CPCA (SCPCA), the
resulting principal components have the most discriminat-
ing power and can be further taken as aggregated predic-
tors for the disease outcome. It ensures that the principal
components obtained by CPCA are not deteriorated by
noisy SNPs that are irrelevant with the trait. With a more
general data model and direct integration of trait informa-
tion for identifying the most influential SNPs in a func-
tional region, our preliminary results on both simulated
genotype data and the Wellcome Trust Case Control Con-
sortium (WTCCC) Crohn’s Disease (CD) genome-wide
SNP data [23] have demonstrated the advantages of our
supervised CPCA over traditional SPCA and supervised
LPCA for gene-based and pathway-based aggregated asso-
ciation analysis.

Methods
Interplaying among disruptions to multiple SNPs or
genes has been conjectured to be systems impairments
that cause complex diseases, such as cancer and dia-
betes. In this paper, we develop CPCA to extract opti-
mal combined signals from multiple SNPs without any
specific genotype-phenotype model assumptions, which
allows more appropriate association analysis of categori-
cal SNP data.

Principal component analysis
PCA has been implemented in gene expression analysis
and GWAS to alleviate the problems in analyzing small
sample and high dimensional high-throughput profiling
data which is often highly correlated, for example, due
to LD. Specifically, PCA finds the orthogonal linear pro-
jection that minimizes the mean squared distances from

the data points to their low-dimensional projections
[26]. Suppose x1, ..., xn ∈ Rd are the n data points and

consider that z′
1, . . . , z

′
n ∈ Rl are their projections in a

l-dimensional (l < d) linear manifold spanned by a basis
W ′ = [w′

1, ...,w
′
l] with a mean vector μ’. PCA minimizes

the following reconstruction error:

n∑

i=1

||xi − (μ′ +W ′z′i)|| (1)

subject to the constraint that Z′ = [z′
1
T ; . . . ; z′

n
T] has

orthonormal columns. Equivalently, a probabilistic inter-
pretation of PCA assumes that the data points follow a
normal distribution with an unknown mean vector μ’.
The mean vector, bases, and the corresponding projec-
tions can be estimated by maximizing the data likeli-
hood which is an optimization problem equivalent to
minimizing (1). Based on the derivation of PCA, it is
obvious that PCA is inherently only suitable for continu-
ous variables by making the normal distribution
assumption. Therefore, it is not appropriate to directly
apply PCA on SNP data which is categorical and does
not follow a normal distribution.

Categorical principal component analysis
It is desirable to develop variants of PCA based on
respective modelings for different types of data such as
integer, categorical, binary, and nonnegative data. PCA
has been extended to the exponential family in previous
work [27-29] by assuming data follows a general form of
exponential family distributions:

p(xi|θ i) = exp (θTi xi + log p0(xi) − G(θ i)). (2)

Here, xi ∈ Rd is the ith data point and θi ∈ Rd is the
“natural parameter” of the corresponding distribution. G
(θi) is a function of the form log

∑
xi∈X p0(xi) exp(θ

T
i xi) to

ensure that the sum of p(xi|θ i) over the domain of xi
equals to 1 and p0 is a function depending only on xi .
Different members in the exponential family have their
respective G functions specified in [27], which results in
different distributions and different generalization of
PCA. To generalize PCA based on the distributions of
exponential family, it starts from an important assump-
tion of θi where it is assumed to be a linear combination
of bases W = [w1, ...,wl] with the minimum reconstruc-

tion loss represented as θ i =
∑l

q=1 ziqwq + μ. The bases

and their corresponding weights zi = {ziq} are called as
principal component loading vectors and principal com-
ponent scores respectively. Given the distribution for
data points xi and the representation of θi, the condi-
tional log-likelihood function of the n data points with
respect to their principal components can be written as:
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� =
n∑

i=1

(θT
i xi − G(θ i)) (3)

=
n∑

i=1

((zTi W
T + μT)xi − G(Wzi + μ)), (4)

where p0 can be considered as a constant term and
ignored here. The principal components resulted from a
generalized PCA can then be estimated by maximizing (3).
In a special case of the data following a normal distribu-
tion, it turns to be the tranditional PCA derived by maxi-
mizing this log-likelihood with G(θi) having a form
of θT

i θ i/2 where the corresponding parameters are zi , W ,
and μ. As mentioned earlier, the SNP data in GWAS only
has three different genotypes {00, 10/01, 11}. We focus on
the derivation of exponential family PCA for categorical
data denoted as CPCA in the equivalent categorical
domain {0, 1, 2} instead of taking numerical values.
For categorical SNP data which follows a multinomial dis-
tribution, each observation xi is expressed as a set of
observation vectors x0i , x

1
i , x

2
i with only 1 and 0 elements.

A 1 or 0 in xki , k ∈ {0, 1, 2} denotes the corresponding out-

come equals to k or not. Each observation vector xki corre-

sponds to a natural parameter vector θ k
i determining the

success probabilities of the outcomes belonging to cate-
gory k. Each θ k

i is projected to a low-dimensional space

spanned by its respective basisWk = [wk
1, . . . ,w

k
n], sharing

the common principal component scores zi . It can then
be represented as θ k

i = Wkzi + μk. For multinomial distri-

butions, the corresponding G function for θ ′k
i s is

∑d
j=1 log

∑c
k=1 exp(θ

k
ij), where θij is the j-th element of θi

and c equals to 3 here denoting the number of categories.
By substituting this G function into (3) and replacing θ k

i by

the actual parameters zi , Wk , and μk, the log-likelihood
function to be maximized for CPCA is rewritten as:

� =
n∑

i=1

{
c∑

k=1

θkTi xki − G({θ k
i })} (5)

=
n∑

i=1

d∑

j=1

{
c∑

k=1

(Zi:W
kT
:j + μk

j )X
k
ij − log

c∑

k=1

exp(Zi:W
kT
:j + μk

j )}(6)

Where Xk = [xkT1 ; . . . ; xkTn ], Z = [zT1; . . . ; z
T
n] and

Zi:. Zi:, W
kT
:j and μk

j represent the i-th row of Z , the

j-th column of WkT and the j-th element of μk

respectively.
The principal component scores Z and principal

component loading matrix W could be estimated by
maximizing this log-likelihood function with the

constraint that Z has orthonormal columns. We imple-
ment Newton’s method for gradient ascent search for
the local maximum as the objective function is not
jointly concave with respect to Z , W , and μ. Given the

objective function (5) with respect to Zi:,WkT
:j and μk

j ,

we update Zi:,WkT
:j and μk

j by computing their respective

first-partial derivative and Hessian matrix for each itera-
tion in Newton’s method. Specifically,

Z′
i: = Zi: − H(Zi:)−1g(Zi:), (7)

where Z′
i: represents the updated principal component

scores in each iteration; g(Zi:) and H(Zi:) denote the
first derivative and Hessian matrix of the objective func-
tion ℓ with respect to Zi:. By basic calculus, g(Zi:) is
computed as:

g(Zi:) =
∂l

∂Zi:
=

d∑

j=1

c∑

k=1

(Wk
j:X

k
ij − Wk

j:P
k
ij) (8)

=
c∑

k=1

(Xk
i: − Pk

i:)W
k, (9)

where Pk
ij =

exp(Zi:WkT
:j )∑c

k=1 exp(Zi:WkT
:j )

. Similarly, H(Zi:) is

computed as:

H(Zi:) =
d∑

j=1

c∑

k=1

(Pk2
ij − Pk

ij)W
kT
:j W

k
j: (10)

In each iteration, we also alternatively update WkT
:j

and μk
j based on the following equations:

W ′kT
:j = WkT

:j − H(WkT
:j )

−1g(WkT
:j ), (11)

μj
′k = μk

j − H(μk
j )

−1g(μk
j ), (12)

and we have:

g(WkT
:j ) =

∂l

∂WkT
:j

=
n∑

i=1

(ZT
i:X

k
ij − ZT

i:P
k
ij) (13)

= ZT(Xk
:j − Pk

:j). (14)

H(WkT
:j ) =

n∑

i=1

(Pk2
ij − Pk

ij)Z
T
i:Zi: (15)

g(μk
j ) =

n∑

i=1

(Xk
ij − Pk

ij) (16)
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H(μk
j ) =

n∑

i=1

(Pk2
ij − Pk

ij) (17)

The optimal solution of the corresponding parameters
Z,WkT , and μ can be estimated by the following Algo-
rithm 1. As any non-convex optimization problem, our
algorithm is not guaranteed to converge to a global
maximum. To overcome the problem of being trapped
by local optima, we randomly start the algorithm with
different initialization values several times and find the
best solution with the maximum likelihood value. The
time complexity for this whole procedure is O(ks3)
where s = min(n, d) and k is number of iterations it
takes to converge. Specifically, the calculation of the
first derivatives and Hessian matrices takes O(dnl) and
O(dnl2) respectively. The update of Z , W and μ takes
O(ql3) where q = max(n, d). The whole time complexity
is mainly determined by QR decomposition procedure
which takes O(s3) in each iteration. Our CPCA is in the
same magnitude of time complexity as LPCA. Although
PCA has a lower time complexity O(nd2 + d3) if n > d,
one should be aware that our algorithms are designed
for more general risk effect models and may achieve
better performance with reasonable sacrifice on running
time.
Algorithm 1 Categorical PCA (CPCA)
1. Initialize with μ = (μk

1, . . . ,μ
k
d)

T, Z = [Z1:; ...;Zn:]
and Wk = [Wk

1:; . . . ;W
k
d:] by random values. Compute

the transpose of Wk : WkT = (WkT
:1 , . . . ,W

kT
:d ).

2. Compute g(Zi:) , H(Zi:) , g(WkT
:j ), H(WkT

:j ), g(μk
j ),

and H(μk
j ) respectively.

3. Update Z by Z = [Z1:; ...;Zn:] where each Zi: is
updated based on (7) respectively. Compute the QR
decomposition Z = QR and replace Z by Q for ortho-
normality constraints.
4. Update WkT by WkT = [WkT

:1 , . . .W
kT
:d ] where WkT

:j ’s
are updated by (11) respectively.
5. Update μk by μk = [μk

1, . . . ,μ
k
d]

T based on (12)
respectively.
6. Repeat steps 2 through 5 until convergence.

Supervised CPCA for aggregated association analysis
With the principal component scores Z derived by CPCA,
we can take the first R columns of Z as the top R princi-
pal component scores for combined signals from multiple
SNPs and Zj

r denotes the j-th element Zr . For subsequent
aggregated association analysis with respect to a trait y,
the statistical significance for the corresponding SNPs can
be estimated by analyzing the association of these derived
combined signals with the trait. Specifically, we learn a
logistic regression model with the R principal components
as predictors and y as the outcome:

log(
πj

1 − πj
) = β0 +

R∑

r=1

βrZ
j
r , (18)

where πj is the posterior probability of the jth subject
exhibiting y given R combined signals and the coeffi-
cient br reflects the joint effect size of a combined signal
Zr on y. The statistical significance of multiple SNPs
associated with y is estimated based on a test statistic
t = β̂1/s.e.(β̂1). In this paper, we take the first principal
component Z1 as the only predictor in the model (18)
to estimate the joint effect for simplicity as it contains
the largest proportion of information hidden in data.
When we take more than one principal components, we
may be able to further improve the power when esti-
mating the significant association of multiple SNPs as
more information is involved in the model. We will
further study this in our future work.
The principal components in CPCA are derived only

based on the categorical data distribution with an aim
to extract maximum information from the original data,
which is not guaranteed to have the most significant
association with the trait. Any individual SNP with no
correlation with the trait may impair the joint effect
estimate in the SNP set to which it belongs since CPCA,
as traditional PCA, only focuses on approximating the
underlying data distribution. Ideally, we desire a model
for aggregated association analysis in which the principal
components are derived only based on an optimal SNP
subset significantly associated with the trait. However,
prior to association analysis, we do not know which
SNPs have risk effect on the outcome. In order to solve
this problem, a heuristic search procedure is employed
to search for an optimal subset of the most significantly
associated SNPs with the trait by testing all candidate
SNP subsets {S1, ..., Sv} based on the model (18). We set
v as 20 here. A subset is selected as the optimal subset
if its derived principal component scores has the highest
discriminating power, which corresponds to the maxi-
mum absolute value of the test statistic t from (18). For
a given SNP set S, its test statistic M is set as the t sta-
tistic of its optimal subset, represented as:

M = {t� : |t�|} = max1≤�≤20|t�|}, t� = β̂�
1/s.e.(β̂

�
1), (19)

The statistical significance of a SNP set S is estimated
based on a permutation test of M as the distribution of
M can not be approximated well by any known distribu-
tion due to the selection of SNPs.
In summary, based on the categorical data assumption

of SNP data, our supervised CPCA takes the following
steps to perform aggregated association analysis of a
trait for a SNP set S:
(1) Generate candidate SNP subsets for a SNP set S
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For each individual SNP in S, its statistical signifi-
cance reflected by the corresponding p-value can be
computed by fitting a logistic regression model. Given
all SNPs in S, we generate 20 incremental candidate
subsets by setting 20 thresholds at each increment of 5
percentiles of p-values for those SNPs. Hence, 20 sub-
sets of SNPs {S1, ..., S20} are formed by sequentially
grouping SNPs with p-values less than each correspond-
ing threshold.
(2) CPCA on candidate SNP subsets
CPCA can be implemented to compute the first PC

scores for 20 candidate subsets respectively.
(3) Calculate M statistic for a SNP set S
For each candidate subset Sv(1 ≤ v ≤ 20), we fit the

logistic regression model (18) using the corresponding
first PC scores and estimate t-statistic t� = β̂�

1/s.e.(β̂
�
1).

Let M = {tv : |tv| = max1 ≤ v ≤ 20|tv|}.
(4) Estimate the null distribution of M statistic
We perform a permutation test by generating random

trait status for each sample from a Bernoulli distribution
with the success probability set to the disease prevalence.
Based on randomly generated outcomes, the empirical
null distribution of M statistic can be estimated by
repeating steps (1) to (3) and pooled together as a ran-
dom sample from the null distribution of M.
(5) Calculate p-value for a SNP set S
Given a null distribution of M statistic and the M

value based on true trait, an empirical p-value for S can
be calculated to estimate its significance.
By deriving principal components based on the more

general categorical model of the SNP genotype data,
CPCA can eliminate the potential bias inherently intro-
duced in PCA and LPCA, In addition, our CPCA is
embedded in a supervised framework integrating the trait
information for searching and aggregating those relevant
SNPs so that we refine the principal components to best
discriminate a given trait. With these two methodological
contributions, we expect our supervised CPCA can aggre-
gate information accurately from multiple SNPs and
achieve higher power in subsequent association analysis by
the supervised selection procedure.

Results
We evaluate our supervised CPCA method by a simula-
tion study for gene-based association analysis as well as
pathway-based GWAS for Crohn’s disease using WTCCC
case-control genome-wide data.

Simulation experiments
To simulate SNP genotype data with real allele frequen-
cies and linkage disequilibrium (LD) structure patterns,
we use the HAPGEN2 [30] simulation tool to generate
case and control samples based on a reference set, for
which we choose Caucasian cohort (CEU) population on

human chromosome 22 from 1000 Genomes project
[31]. HAPGEN2 simulates genotype data by resampling
this reference set of population haplotypes and an esti-
mate of the fine-scale recombination rate across the
region, so that the simulated data has the same LD pat-
terns as the reference data [30]. Unlike other simulation
tools simulating a single “disease SNP” on the same hap-
lotype, such as HAPSAMPLE [32], HAPGEN [30], and
GWAsimulator [33], HAPGEN2 can simulate multiple
SNPs associated with the disease outcome on the same
chromosome, which is often the case for many complex
diseases [30]. First, we map a total of 6,129 SNPs geno-
typed with Affymetrix array 6.0 in the chosen reference
set to their neighboring genes: SNPs within 5 KB
upstream or downstream from a gene are assigned to
that gene based on the Ensembl database (Release 67).
We randomly select 50 genes with their constituent
SNPs as genotyped SNPs for our simulation. These
selected genes have 11 to 175 constituent SNPs. Among
them, five genes are randomly selected as causal genes
for the simulated disease outcome. They contain
56,168,30,12, and 99 SNPs respectively, within which
three SNPs for each causal gene are randomly selected
as their corresponding disease SNPs respectively. The
other 45 genes are considered as null genes with no risk
effect on the outcome.
HAPGEN2 models the probability πi = P(Yi = 1|Gi)

that subject i has disease given SNP genotype Gi ∈ {0, 1,
2}, for which πi could take three values: f0, f1(= f0 × rr1),
or f2(= f0 × rr2) corresponding to the genotype with dif-
ferent number of minor alleles (Gi = 0, 1, or 2). In this
general disease model, f0, f1 and f2 are the corresponding
penetrance of the disease and rr1, rr2 are the relative
risk for heterozygous (Gi = 1) or homozygous ((Gi = 2))
pairs, respectivly. Under a null hypothesis SNP Gi has
no effect on disease, rr1 = rr2 = 1. To test the power of
our supervised CPCA method for detecting causal
genes, we studied three different settings for risk effect
sizes for disease SNPs in those causal genes. In order to
model more general risk effect from different SNPs, we
set the homozygote risk for a disease SNP slightly bigger
than its corresponding heterozygote risk to avoid any
proportional relationship assumptions between its geno-
type and risk effect size. For example, if we assume a
commonly adopted additive model, the relative homozy-
gote risk for a disease SNP is inherently assumed to be
equal to the square of its relative heterozygote risk,
which may not capture the actual genotype-phenotype
relationships in real data. Therefore, we set the relative
heterozygote risk and homozygote risk for all disease
SNPs at three different levels at (rr1, rr2) = (1.2, 1.3),
(1.3, 1.4), and (1.5, 1.6). In our simulation study, 500
case and control samples are generated respectively in
100 replicates for each causal gene under different risk
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levels. The same number of cases and controls are also
randomly generated in 100 replicates for 45 null genes.
In summary, we simulate 500 (5 × 100) causal genes
and 4500 (45 × 100) null genes for each scenario in
total.
The performance of our supervised CPCA (SCPCA)

method on this set of simulated data is evaluated by
comparing with the results obtained by SPCA and
supervised LPCA (SLPCA) based on two criteria: statis-
tical power and receiver operating characteristic (ROC)
curves. The statistical power is computed as the propor-
tion of detected causal genes that are significantly asso-
ciated with the case-control outcome, for which we have
the ground truth as we simulate the outcome based on
selected “causal” SNPs. Table 1 provides the statistical
power at the significance level 0.05 from different meth-
ods, which shows that our method has achieved consis-
tently higher power than the other two methods. Due to
explicit modeling of categorical data, our SCPCA per-
forms better than SPCA, which inherently assumes that
the data follows a normal distribution. We note that the
performance of SLPCA is slightly worse than SPCA in
this set of simulation experiments because it loses infor-
mation when transforming the original categorical geno-
types {0, 1, 2} into a binary representation {0, 1} by
assuming an inappropriate dominant/recessive model.
To further validate the superiority of our SCPCA
method, we plot the ROC curves by these three meth-
ods for all three risk effect sizes as shown in Figure 1.
The ROC curves by SCPCA are always on top of those
from SPCA and SLPCA for all scenarios, which demon-
strates that its statistical power is consistently higher
than the others at different significant levels. In addition,
both Table 1 and Figure 1 have illustrated that our
SCPCA has achieved more significant performance
improvement over the other two methods when the risk
effect is small. This demonstrates that SCPCA can per-
form better due to its explicit modeling of categorical

Table 1 Comparison of statistical power obtained by
SCPCA, SPCA and SLPCA at significance level 0.05 for
three risk levels: (relative heterozygote risk, relative
homozygote risk) = (1.2,1.3); (1.3,1.4); (1.5,1.6) in gene-
based association analysis on simulation data.

Power Method

Risk level SCPCA SPCA SLPCA

(1.2,1.3) 0.30 0.24 0.14

(1.3,1.4) 0.37 0.37 0.30

(1.5,1.6) 0.75 0.71 0.68

Figure 1 ROC curves for SCPCA, SPCA, SLPCA at risk level
(relative heterozygote risk, relative homozygote risk) = (a)
(1.2,1.3); (b) (1.3,1.4); and (c) (1.5,1.6) in gene-based association
analysis on simulation data.
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SNP data with more general model assumptions, espe-
cially when we have difficult cases where the causal
genes are more difficult to detect with smaller risk effect
from their constituent disease SNPs. As we expect,
based on the results from this simulation experiment,
SCPCA is clearly superior to SPCA and SLPCA.

Analysis for Crohn’s disease
We further apply our SCPCA method for a pathway-based
association analysis of Crohn’s Disease (CD) based on the
GWAS case-control data from Wellcome Trust Case Con-
trol Consortium (WTCCC) [23]. In this CD dataset, there
are 2,005 case samples and 3,004 control samples consist-
ing of 1,504 individuals from the 1958 British Birth Cohort
and 1,500 individuals from the UK blood services. After
quality control, there are 1,748 cases and 2,938 controls in
total with 469,557 SNPs in each sample [23].
To analyze the joint effect from multiple SNPs in func-

tional regions that may be associated with Crohn’s disease,
we first map all the SNPs in the CD dataset into their cor-
responding pathways and thus implement SCPCA on each
pathway to identify those pathways that are statistically
significantly associated with the disease outcome. Specifi-
cally, we first download the pathway information from
Molecular Signature Database (MSigDB: http://www.
broadinstitute.org/gsea/msigdb) and collect two categories
of pathways as the prior biology knowledge: C2-CP and
C5-BP, corresponding to annotated canonical pathways
(CP) from online pathway databases such as KEGG, Bio-
Carta and Reactome pathway databases and GO biological
processes (BP), respectively. We further filter out those
pathways with more than 250 genes to increase the specifi-
city by avoiding overly broad pathways, which has been
similarly done in literature [13,19]. The resulting 866 CP
and 751 BP pathways are taken as candidate functional
regions for our aggregated association analysis of Crohn’s
disease. With the same procedure as in [13], we map SNPs
in the preprocessed CD data to these pathways based on
the Homo sapiens Variation (dbSNP 130) and Homo
sapiens genes (GRCh37.p7) datasets in the Ensembl data-
base (Ensembl 67) using BiomaRt (http://www.biomart.
org/). SNPs are first assigned to their neighboring genes
and then mapped to their corresponding pathways accord-
ing to the previously described pathway information. With
the WTCCC CD data and mapped SNPs in all pathways,
we implement SCPCA to each pathway and calculate nom-
inal p-values from permutation tests. To correct for the
multiple-testing issue, we estimate the adjusted p-value for
each pathway based on the Benjamini-Hochberg method.
Significant pathways are identified at false discovery rate
level 0.05.
We list 30 representative significantly associated pathways

in Additional file 1. Those significant pathways are mostly
involved in the following cellular functions: (1) initialization,

activation and regulation of transcription factor activity;
(2) lipid metabolism or lipid biosynthetic process; (3) regu-
lation of protein kinase activity and protein transport; (4)
regulation of cytokine secretion; (5) cellular catabolic pro-
cess; (6) interleukin production; (7) response to inflamma-
tory and virus; (8) epidermis and muscle development.
Many of these pathways are related to the development of
human immune system. Their alteration could cause poten-
tial malfunctioning of immune system that leads to CD.
To be more specific, those pathways with functions in

regulation of cytokine secretion and initialization, activa-
tion and regulation of transcription factor are closely
related with innate immunity and also have been claimed
as statistically significant pathways associated with CD in
previous SPCA and SLPCA based analysis [13,19]. Among
these pathways, their common gene NOD2 is the first
identified gene associated with CD in previous analysis
[34]. It plays an important role in immune response by sti-
mulating immune activity through activating NF-�B.
Another common group of causal pathways in these three
methods includes gene categories related to response to
bacteria and inflammatory. The overly aggressive immune
response to bacteria causes inflammatory and is more
likely a factor causing CD [35]. Our results also have some
other overlap with the previous reported results based on
SLPCA [13] in those pathways related with lipid metabo-
lism and interleukin secretion and production including
genes: APOA1, IL18, NOD2, CARD8, PYCARD, NLRC4,
NLRP12, NLRP3, PYDC1, NLRP2, TLR8 and others.
These findings agree well with the recent literature of mul-
tiple GWA studies [7,36,37]. Substantial alternation of
lipid metabolism has been shown in patients with acute
CD associated with metabolic disturbances [38]. In addi-
tion, our SCPCA found a set of statistically significant
pathways related with regulation of protein kinase activity.
The mitogen activated protein kinases have been shown
with a role in inflammatory bowel disease such as CD by
acting as instigative controllers of many signaling path-
ways regulating the innate and adaptive immune system
[39]. We also identified several pathways related with cel-
lular catabolic process and muscle development. Abnor-
mal cellular metabolic process could cause increased
energy expenditure, which are typically shown in patients
with CD and could further alter muscle mass and function
with persist nutritional deficiencies [40]. However, given
the fact that there still lacks a complete understanding of
the etiology of CD, it is difficult to provide a conclusive
evaluation, which will be studied in our future research.

Conclusions and future work
We have derived CPCA for aggregated association ana-
lysis of categorical SNP data, which is further extended
to SCPCA in a supervised framework. Our SCPCA cap-
tures more relevant information from SNP data based
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on a better data modelling and aggregates genotypic
information from multiple SNPs into a combined signal
that is the most associated with the trait by a heuristic
selection procedure. By explicitly modeling SNP data as
categorical data instead of continuous data with inherent
assumptions on numerical effects related with geno-
types, our SCPCA has shown higher power compared
with SPCA and SLPCA in the gene-based simulation
study as well as pathway-based Crohn’s disease analysis.
On the other hand, SCPCA will lose power if SNP data
is indeed under the additive model assumption for
introduced risk that affect the trait of interest. When
the underlying model is dominant/recessive model or
unknown, SLPCA or SCPCA is preferred as they make
no assumptions on the numerical effects related with
genotypes by assuming SNP data is either binary or cate-
gorical. Our future work includes more comprehensive
performance evaluation of our SCPCA by comparing
with other state-of-the-art methods for association stu-
dies based on aggregated statistics including kernel meth-
ods [11,20] as well as hierarchical Bayesian methods [41].
We are also studying new optimization algorithms for
more efficient computation, especially when we have
large sample size together with millions of SNPs. Another
future research direction is to derive methods to simulta-
neously perform SNP selection when deriving summary
statistics by imposing structured sparsity constraints [42].

Additional material

Additional file 1: Top 30 representative pathways identified by
SCPCA in WTCCC Crohn’s Disease data set. This table lists the top 30
statistically significant pathways as well as the number of enriched genes
and SNPs for each pathway. Overlapped pathways with those detected
by SPCA or SLPCA are also indicated. In the table: The pathways marked
as “Yes” have similar functions as the statistically significant pathways
detected by SPCA or SLPCA.
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