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Abstract

Background: Although the needs for analyses of secondary structures of RNAs are increasing, prediction of the
secondary structures of RNAs are not always reliable. Because an RNA may have a complicated energy landscape,
comprehensive representations of the whole ensemble of the secondary structures, such as the probability
distributions of various features of RNA secondary structures are required.

Results: A general method to efficiently compute the distribution of any integer scalar/vector function on the
secondary structure is proposed. We also show two concrete algorithms, for Hamming distance from a reference
structure and for 5′ − 3′ distance, which can be constructed by following our general method. These practical
applications of this method show the effectiveness of the proposed method.

Conclusions: The proposed method provides a clear and comprehensive procedure to construct algorithms for
distributions of various integer features. In addition, distributions of integer vectors, that is a combination of
different integer scores, can be also described by applying our 2D expanding technique.

Background
Recent investigations of coding and non-coding RNAs
have proved that RNA molecules have more important
roles in the regulation of living cells than those of our
previous knowledge. It has also become clear that the
structures of RNAs, especially the secondary structures,
are one of the important features to identify the func-
tions of RNAs. While the high-throughput methods to
determine the secondary structures of RNAs are spread-
ing, the importance of computational analyses of RNA
sequences including prediction of secondary structures
is increasing [1,2].
The free energy of each structure is connected to its

existence probability. The existence probability of a sec-
ondary structure St of an RNA is given by the following
canonical distribution:

PSt =
1
Z
e−ESt/(kBT) (1)

Z =
∑
St
e−ESt/(kBT), (2)

where PSt and ESt are respectively the existence probabil-
ity and the free energy of the structure St, kB is the Boltz-
mann constant and T is the temperature constant. Z is the
normalizing factor known as the partition function, which
is the summation of Boltzmann factor e−ESt/(kBT) among all
the possible structures. The partition function of an RNA
sequence and the free energy of each structure can be
obtained by dynamic programming algorithms on the
parameters determined experimentally [3,4].
The equation (1) shows that the structure with the high-

est existence probability is the structure of the minimum
free energy. Therefore, it is natural to treat the secondary
structure of the minimum free energy as the estimate of
the secondary structure. The probability that an RNA
folds into a particular structure is, however, generally
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extremely low even if it is the structure of the minimum
free energy, because of the combinatorial explosion [5].
For example, the probability of a particular secondary
structure of some rRNAs are less than 10−22 no matter
which structure is chosen. This means that the prediction
of the secondary structure of an RNA and subsequent ana-
lyses based on the predicted secondary structure are not
always reliable. It is therefore desirable to investigate prop-
erties of the probability distributions of the whole ensem-
ble of the possible structures.
We propose in this paper a general method to effi-

ciently compute the exact distribution of any integer
quantity of the feature on each secondary structure. The
proposed method has been motivated by the framework
and its application to sequence alignments by [6]. Their
framework is generally valid for integer functions on
Boltzmann distributions whose partition function can be
calculated by a linear dynamic programming. For the
case of secondary structures of RNAs, however, the
recursions in the dynamic programming of the partition
function have more complicated forms including the
products of combinations of DP matrix elements, which
inhibits direct application of their framework. We have
overcome the difficulty by expanding McCaskill algo-
rithm, which is a well-known dynamic programming of
the partition function of the secondary structures of
RNAs using the energy parameters experimentally deter-
mined [7].
Naive implementations of our proposed method

requires computational complexities of O(n3|S|2α) in
time and O(n3 + β|S|) in space, where n is the length of
the sequence, |S| is the size of the integer score varia-
tion, which depends on the objective distribution while
they never exceed n in the case of example problems in
this paper, and a and b is the costs depending on the
objective score. By adapting Discrete Fourier Transform,
we can reduce those complexities to O(n3|S|α) in time
and O(n3 + β) . The DFT in our method on RNA struc-
tures achieves an order-level improvement of the com-
plexity, which could not achieved by the DFT on linear
dynamic programmings in [6]. We can further reduce
time complexity to O(n3|S|α/U) by parallel computing
using U computational units.
We demonstrate the effectiveness of the proposed

method in several practical problems. The first example
is the distribution of the Hamming distances from a
reference structure. A practically equivalent algorithm
and its acceleration have been implemented as RNAbor
by [8] and [9], while we have reconstructed the algo-
rithm by deducing from our general principle. The sec-
ond example is the exact distributions of 5′ - 3′
distance. Conventional methods for analysing 5′ - 3′ dis-
tance only calculate mean length or assume over-simpli-
fied models. We propose here a novel algorithm to

compute the whole distribution of 5′ - 3′ distance con-
sidering the thermodynamic properties of the RNAs.
The final example is acceleration of RNA2Dfold, which
is included in ViennaRNA package [10].In this example,
the distribution of the Hamming distances from two
specified reference structures are calculated. We show
our method reduces computational complexity from O
(n7) in time and O(n4) in re-space to less than O(n5/U )
in time and O(n2U ) in space, which is a similar idea
proposed recently [11]. These examples indicate that
our method offers a way to obtain a wide variety of dis-
tributions of integer quantities.

Methods
We first show the fundamental concepts of our pro-
posed method in this section.

Definition of integer score distribution
Let us assume that s represents a mapping from x ∈ U
to an integer score s(x) ∈ Z . In our case of RNA sec-
ondary structures, the U is the space of all the possible
secondary structures for a given RNA sequence, and an
integer score s(x) represents a feature or a property
assigned to each structure x. The integer score distribu-
tion is defined as the probability distribution p(s) of s(x)
derived from the probability distribution p(x) of x:

p(s) =
∑

{x|s=s(x)}
p(x) (3)

In this paper, we discuss on how to efficiently com-
pute integer score distributions in general and in the
specific cases for RNA secondary structures. Our pro-
posed method for RNA secondary structures efficiently
computes the exact distribution when p(x) and p(s) can
be calculated by the dynamic programming algorithms
sharing a same form.

A conventional model for integer score distribution
For a certain class of problems, including distributions
of integer score of each sequence alignment, the parti-
tion function of the objective distribution can be calcu-
lated abstractly by Algorithm 1. Z is the partition
function shown in equation (2). Z is a scalar array of
length N representing the partition function of the pro-
blem size N , whose components for the dynamic pro-
gramming are aligned in the computing order. t(k|i) is a
quantity proportional to the probability of the transition
from state i to state k, which can be quite sparse in
values.
Algorithm 1 An abstract form of calculating the parti-

tion function
1: Z[0] = 1
2: for k = 1 to N do
3: z[k] = �k−1

i=0 Z[i]t(k|i)
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4: end for
5: Z = Z[N ]
[6] showed that if the partition function can be com-

puted by Algorithm 1, integer score distributions are
obtained by Algorithm 2, where Z(x) is an array of poly-
nomials of x, and s(i, k) is the gain of the integer score
in the transition from i to k.
Algorithm 2 A polynomial approach to integer score

distributions proposed in [6]
1: Z(x)[0] = 1
2: for k = 1 to N do
3: Z(x)[k] = �k−1

i=0 Z(x)[i]t(k|i)xs(i,k)
4: end for
5: Z = a sum of coefficients of polynomial Z(x)[N ]
In Algorithm 2, Z(x)[N] represents a polynomial in x

whose factor zS of xi is proportional to the sum of the
probabilities of obtaining score i among all the paths:

Z(x)[N] =
Smax∑
j=0

zjxj, (4)

where Smax is the maximum score.
The pS, the probability of obtaining score S, is finally

calculated by the following equation:

pS =
zS
Z
, (5)

A general model for integer score distribution of RNA
secondary structure
In the case of RNA secondary structures, the dynamic
programming for the partition function does not match
to Algorithm 1. Therefore, we have to construct an
algorithm different from Algorithm 2 for the calculation
of integer score distributions on RNA secondary struc-
tures. As pseudo-code is shown in Algorithm 3, pro-
ducts of combinations between DP matrix elements and
constant term ck are required for the computation. The
detailed description of this derivation is shown in the
additional file 1 (Section S1).
Algorithm 3 A general polynomial approach to inte-

ger score distributions for the ensemble of RNA second-
ary structures
1: Z(x)[0] = 1
2: for k = 1 to N do
3: Z(x)[k] = �k−1

i=0 Z(x)[i]t(k|i)xs(i,k)+
�k−2

i=0 �k−1
j=i+1Z(x)[i]Z(x)[j]t(k|i, j)xs(i,j,k) + ckxs(k)

4: end for
5: Z = a sum of coefficients of polynomial Z(x)[N ]
The partition function is dispersed according to the

score of each secondary structure included in the whole
ensemble. In other words, the coefficient of xS in Z(x)[N]
represents proportional to the probability that the RNA

structure has score S. After the calculation by Algorithm
3, pS can be derived from equation (5).
Algorithm 3 requires computational complexities of

O(n3S2maxα) in time and O((n2 + β)Smax) in memory,
where a and b is the complexities in time and in space
respectively for the calculation of each integer score.

Adopting Discrete Fourier Transform (DFT)
Discrete Fourier Transform (DFT) is a Fourier Trans-
form on a discrete sampling interval, which is employed
in improving the efficiency of various computational
problems as well as frequency analysis. According to [6],
by applying DFT distributed processing is available for
computing integer score distributions on sequence
alignments. On RNA secondary structures, DFT reduces
time complexity of computations in order-level as well
as merely decentralize the procedure.
DFT F satisfies the following equation:

z = F(ζ ), (6)

where

z = (z0, z1, · · · , zSmax) (7)

ζ = (ζ0, ζ1, · · · , ζSmax) (8)

ζk =
�

Smax
j=0 zj

(
exp

[
2π i

k
Smax + 1

])j

Smax + 1
.

(9)

In DFT approach, each x in the polynomials is
replaced by a complex number on the unit circle to
calculate ζ instead of z directly. The relation of the
two quantities are derived by comparing equations (4)
and (9)):

ζk =
Z

(
exp

[
2π i

k
Smax + 1

])
[N]

Smax + 1
.

(10)

After ζ is obtained, DFT extracts z from ζ by O(S2max)
time.
Algorithm 4 shown below is the modification of our

naive Algorithm 3 by adopting DFT approach.
Algorithm 3 suffers from heavy computations of

O(S2max) in time for products of polynomials if the
degree Smax is large. In the recursions for ζ in Algorithm
4, however, each computation for polynomial products
is replaced to a computation of products of complex
numbers, which requires only a constant time. While we
still need to extract z from ζ by O(S2maxα) time, the
total time complexity is reduced from O(n3S2maxα) to
O(n3S2maxα) . In addition, each ζk can be calculated
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Algorithm 4 DFT-adopted approach for integer score
distribution
1: /* DP phase (distributed processing is available) */
2: for S = 0 to Smax do

3: x = exp
[
2π i

S
Smax + 1

]

4: Z[S][0] = 1
5: for k = 1 to N do
6: Z[S][k] = �k−1

p=0 Z[S][p]t(k|p)xs(p,k)+
�k−2

p=0 �k−1
q=p+1Z[S][p]Z[S][q]t(k|p, q)xs(p,q,k) + ckxs(k)

7: end for
8: ζS = Z[S][N]
9: end for
10: /* DFT phase*/
11: for S = 0 to Smax do

12: zS = �
Smax
r=0 ζr exp

[
−2π i

rS
Smax + 1

]
/(1 + Smax)

13: end for
14: Z = �

Smax
S=0 zS

individually so we can replace the computational cost
to O(n3α) time and O((n2 + β)Smax) space by adopting
maximum parallelization, using ether multi-core units
or cluster machines. Accordingly, the practical efficiency
by utilizing DFT depends on parallelization environment
strongly (Table 1).

McCaskill model
According to the above approach, we next construct and
implement concrete formulas of computing a general
integer score distribution for RNA secondary structures
based on McCaskill model. McCaskill model is a stan-
dard procedure for computing partition function in
equation (2) by a dynamic programming based on
energy parameters. In this model, the partition function
is obtained as Z1,n from the following recursive scheme
of polynomial order:
Initialization (1 ≤ i ≤ n):

Zi,i = 1.0 (11)

Z•
i,i = Zm

i,i−1 = 0, (12)

Recursion (1 ≤ i ≤ j ≤ n):

Zi,j = 1.0 +
j−1∑
k=i

Zi,kZ1
k+1,j (13)

Z1
i,j =

j∑
k=i+1

Zb
i,k (14)

Zb
i,j = ef1(i,j) +

j−2∑
k=i+1

j−1∑
l=k+1

Zb
k,le

f2(i,j,k,l)

+
j−1∑
k=i+2

Zm
i+1,k−1Z

m1
k,j−1e

f3(i,j)

(15)

Zm
i,j =

j−1∑
k=i

(
ef4(k−i) + Zm

i,k−1

)
Zm1
k,j (16)

Zm1
i,j =

j∑
k=i+1

Zb
i,ke

f4(j−k), (17)

where each fk (·) (k = 1 · · · 4) is the function corre-
sponding to the energy contribution to each state, and
the parameters of the functions are determined experi-
mentally [3,4].

fk(·) = − �E

kBT
(18)

Although the second factor in the right hand side of
the equation (15) indicates that this procedure requires O
(n4) in time, it is usually reduced to O(n3) by assuming a
reasonable threshold of the length of the internal loops.

Score accumulable McCaskill model
We modify McCaskill model recursions (equations (13)-
(17)) to calculate integer score distribution under the
concept described in the Approach section.

Zi,j = xg1(i,j) +
j−1∑
k=i

Zi,kZ1
k+1,jx

g2(i,j,k) (19)

Z1
i,j =

j∑
k=i+1

Zb
i,kx

g3(i,j,k) (20)

Zb
i,j = ef1(i,j)xg4(i,j)

+
j−2∑
k=i+1

j−1∑
l=k+1

Zb
k,le

f2(i,j,k,l)xg5(i,j,k,l)

+
j−1∑
k=i+2

Zm
i+1,k−1Z

m1
k,j−1e

f3(i,j)xg6(i,j,k)

(21)

Zm
i,j =

j−1∑
k=i

(
ef4(k−i)xg7(i,j,k) + Zm

i,k−1x
g8(i,j,k)

)
Zm1
k,j (22)

Zm1
i,j =

j∑
k=i+1

Zb
i,ke

f4(j−k)xg9(i,j,k), (23)

Table 1 Required time and space

Polynomial DFT DFT with U* units

Time O(n3S2maxα) O(n3Smaxα) O(n3Smax α/U)
Space O((n2 + β)Smax) O(n2 + β) O((n2 + β)U)
*The number of parallelization units must be equal to Smax or less. If U = Smax,
DFT with U units requires O(n3a) in time and O((n2 + β)Smax) in space.
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Results
In this section, we show three examples to demonstrate
how to construct algorithms for practical problems. The
first and the second examples are the case to which our
general model is directly applicable, where all we have
to do is defining scoring functions. In the third example,
we expand our model into two dimensions in order to
describe a distribution of two dimensional integer
vector.
We practically implemented and evaluated the con-

crete algorithms for those three examples with a distrib-
uted processing application by OpenMP on a dual
quad-core Intel® Xeon® E5540 @2.53GHz with 17.6 GB
RAM. The run time was measured as a mean of 10 ran-
dom sequences by single or eight cores.

A distribution of the Hamming distance from a reference
structure
Conventional RNA secondary structure estimation pro-
duces the most stable and possible structure or the repre-
sentative structure such as a centroid in the whole
ensemble. Those point estimations of the secondary
structures, however, have a risk to neglect the informa-
tion on the thermal fluctuations or significant suboptimal
structures [12]. Some local structures might be relatively
stable only at certain global structures, and some struc-
tures such as ribo-switches might have multiple distinct
stable global structures besides the predicted structures
[13]. RNAbor [8] is a software which exactly calculates
the probability that RNA folds into the structures that
have the same distance from a given structure. It informs
us concentration of existence probability around a struc-
ture predicted by conventional software, which will help
deeper understanding about biological behavior of RNA
molecules. Our model is applicable for this problem
since the distance between RNA secondary structures
can be defined as an integer function. Here we recon-
struct the algorithm from a viewpoint of our general
principle described in the Approach section, motivated
by the work by Newberg et al., while practically equiva-
lent algorithm has been independently presented in [9].
Definition of distance
We employ the distance measure of RNA secondary
structures used in RNAbor, which is defined as the
Hamming distance between binary vectors representing
the structures as described below.

S[i][j] =
{
1 (if i - th and j - th bases make a pair)
0 (otherwise)

.(24)

Let us call S a structure vector. The dimension of a

structure vector is
(
n
2

)
= n(n − 1)/2 for an RNA of

length n.

Now we define the Hamming distance d of two struc-
tures by the Hamming distance of their structure vec-
tors S1 and S2:

d =
n−1∑
i=1

n∑
j=i+1

S1[i][j] ⊕ S2[i][j]

⊕ : exclusive disjunction.

The Hamming distance between RNA structures never
exceeds its sequence length n in spite of the high
dimensions of structure vectors, we obtain dmax ≤ n as
the exact maximum of d by cubic time (See the Section
S3 in the additional file 1).
Scoring functions
Recursions for calculating the distribution of d are easily
derived by defining gk (·) (k = 1 · · · 9) in the equations
(19)-(23) as appropriate integer functions. For instance:

g6(i, j, k) =
j−1∑
p=k

S[p][j] +
j∑

q=i+1

S[i][q]

+
k−1∑
p=i+1

j∑
q=k

S[p][q] + 1 − 2S[i][j]

(26)

This g6(·) returns an integer value that is newly accumu-
lated as the gain of the Hamming distance from the refer-
ence structure by the corresponding transition (Figure 1).
Although naive implementation for computation of gk(·)
requires quadratic order in time, a slight pre-calculation
reduces this to constant time. We show full description of
gk(·) and O(1) time calculation in the additional file 1 (Sec-
tion S2). Accordingly, the total complexity using DFT is

O
(
n3dmax

)
in time and O(n2) in space, since Smax = dmax,

a = 1, and b = O(n2). It can be reduced to O
(
n3dmax/U

)
in time and O(n2U ) in space if parallelization of U-units is
available(U ≤ dmax).

A distribution of RNA 5′- 3′distance
Recently, Yoffe et al. found that the distance of 5′ end
and 3′ end of the RNA molecule tended to be short, lar-
gely independent of molecule lengths or sequence pat-
terns [14]. They pointed out the relevance of these
observations and biological interpretation especially
about in viral RNA evolution. Clote et al. proposed a
method for calculating an expected distance [15], but it
might be helpful for RNA structure analysis to reveal
the population of structures shorter than some thresh-
old as well as mean length. A method for counting the
5′-3′ distances over all secondary structures has been
proposed by [16], but their method assumes that all
structures occur by the same probability and every base
can make pairs with an arbitrary base except for pseu-
doknots. We propose the first algorithm for computing
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the exact probability distribution of the 5′-3′ distances
based on the McCaskill model.
Definition of 5′ - 3′ distance
We follow the work by Yoffe and colleagues as the defi-
nition of 5′ - 3′ distance d5′−3′ :

d5′−3′ = cext + hext, (27)

where cext is the number of covalent bonds in the
exterior loop and hext is the number of hydrogen bridges
in the exterior loop (See Figure 2 for example).
Scoring functions
As with the case of the previous section, defining gm(·)
(m = 1 · · · 9) enables us to calculate the 5′-3′ distance
distribution as following:

g1(i, j) = j − i (28)

g2(i, j, k) = 1 (29)

g3(i, j, k) = 1 + j − k (30)

gm(·) = 0 (for m = 4, . . . , 9) (31)

The g1(i, j) is the 5′ - 3′ distance of the chain struc-
ture, which contains no base pairs. The g2(i, j, k) is the
newly accumulated 5′ - 3′ distance, that is the junction
of k-th and k+1-th bases. The g3(i, j, k) represents the
sum of a hydrogen bridge by i-th and k-th bases and
length of a chain structure from the k + 1-th base.
Other functions gm(·), m = 4, . . . , 9) are irrelevant to 5′
- 3′ distance because their corresponding transitions for
internal structures.
Total computational complexity using DFT with U par-

allel computing units, is O(n4/U ) in time and O(n2U ) in
space (Smax = n − 1, a = b = 1). In addition, since Zb

i,j ,
Zm
i,j , and Zm1

i,j do not contain variable x, therefore we can
reduce the total amount of calculation by pre-computing
them (See the Section S4 in the additional file 1).

A distribution of 2D RNA folding landscapes
RNA2Dfold is an application for 2D projections of RNA
folding landscapes which are the two-dimensional prob-
ability distributions whose axis correspond to the Ham-
ming distances from two independent given reference
structures [10]. Such distributions provide profound
information on the whole ensemble through the med-
ium of landscapes depending on the given structures.
The RNA2Dfold, however, has difficulty of computa-
tional cost; it requires O(n7) in time and O(n4) in space
though the computational time can be drastically
improved by utilizing sparse matrices. On the other

Figure 1 A simple concept illustration of the way to calculate the newly accumulated distance. Left and right pictures illustrate the vector
of the reference structure and the transition which corresponds to the third term on right side of equation (21) respectively. g6(i, j, k) returns the
Hamming distance between green and blue regions. Gray regions have been already considered in Zm

i+1,k−1 and Zm1
k,j−1.

Figure 2 An example for introducing the definition of d5′ - 3′.
The red arch represents the 5′ - 3′ distance, in this case, we have
d5′ - 3′ = cext + hext = 3 + 8 = 11.
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hand, extension of our proposed method reduces the
complexity to less than O(n5) in time and O(n2) in
space. Our method only calculate the distribution
though RNA2Dfold also computes the minimum free
energy structure of every combination of distances from
the given structures. While a similar simplified algo-
rithm has been proposed by [11], we construct an effec-
tive algorithm using DFT by expanding general principle
described in previous sections.
Expanding the original model to two dimensions
The problem of computing the 2D folding landscape of
an RNA, is defined as a natural expansion to two
dimensions of the algorithm mentioned in the section.
In this case, the objective distribution is defined on the
two-dimensional discrete sample space which represents
the Hamming distances from two given reference struc-
tures. Accordingly, we expand original model in equa-
tions (19)-(23) to two dimensions for the purpose of
corresponding to two-dimensional score vectors. As
shown in Algorithm S2, a vector variable x = (x1, x2) is
employed to accumulate each component of a score
vector S = (S1, S2) instead of applying a scalar variable
x. The computational complexity of this model is O
(n3S1maxS2maxa1a2/U ) in time and O((n2 + b1 + b2)U )
in space, where U (≤ S1maxS2max) is the number of paral-
lel processing units, and ak and bk are time and space
complexity for computing scoring function of k-th
component.
Scoring functions
Now we can construct a model for the distribution of the
Hamming distance from the two given structures by
assigning S1 and S2 to the Hamming distance from the
first and the second structures respectively. The total
cost of this algorithm is O(n3d1maxd2max/U) in time and
O(n2U) in space. A concrete description is not shown
here but in the Section S5 and S6 in the additional file 1.

Run time evaluation and sample outputs
Next we show the run time of the above three algo-
rithms. We adopt the minimum free energy (MFE)
structures as the reference structures for the algorithms
in the section 4.1 and 4.3. The other reference structure
for the algorithm in the section 4.3 is the open chain
structure, that is a completely no base pairing structure.
We measured the run time by single or 8 cores, though
theoretically we can distribute the process up to Smax or
S1maxS2max.
As we can see in Figure 3, the curves of run time in each

algorithms follow their theoretical orders, O(n3dmax/U),
O(n4/U), and O(n3d1maxd2max/U), where we consider d· to
be proportional to RNA sequence length.
By way of example, we also illustrate outputs of our

algorithms by using a sequence of tRNA. The secondary
structure of tRNA is one of the most well-known

structures called the cloverleaf structure (Figure 4(a)).
However, prediction of the structure of a tRNA does
not always have that shape. The CentroidFold [17],
which is listed as one of the most accurate software
tools in CompaRNA [18], predicts quite a different
structure (Figure 4(b)). This disappointing example
implies the limitation of RNA secondary structure
predictions.

Figure 3 Run time along the sequence lengths compared with
theoretical curves. Solid lines colored blue and green are run time
measured as a mean of ten random sequences by single or eight
cores respectively. Dashed lines are fitted curves theoretically
expected.
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The probability distribution computed by the algo-
rithm in the section 4.1 using the sequence and the
reference structure illustrated in Figure 4(b) is shown in
Figure 5. This probability landscape provides us an
implication that this RNA might have sub-optimal struc-
tures around 25nt Hamming distance from the reference
structure.
The peak around 25nt in Figure 5, however, may not

form a concrete sub-optimal cluster, because the peak is
just the sum of the probabilities of the structures that have
the similar Hamming distances around 25nt. The number

of such structures is very large and those structures may
distributed widely in the structure space because of the
combinatorial explosion of base pairs (See the Section S7 in
the additional file 1). In order to illustrate the distribution
more precisely, we show in Figure 6, the 2D distribution
computed by the algorithm in the section 4.3 using the clo-
verleaf structure (Figure 4(a)) and the CentroidFold struc-
ture (Figure 4(b)) as the references. In Figure 6 there seems
to exit quite a high potential barrier between the Centroid-
Fold structure and the cloverleaf structure. Although the
biological reason why there is such a large structure cluster
other than the cloverleaf structures remains unclear, it
might be related to tRNA base modification, which is
known to contribute to structure stability [19,20].
We also draw a distribution of 5′- 3′ distance for the

tRNA sequence, which is obtained by the algorithm in the
section 4.2 (Figure 7). We can see almost all the structures
(more than 99.7%) have the same 5′- 3′ distance although
Figure 6 implies various structures are included in the
ensemble. It indicates this tRNA is expected to fold into a
certain compact structure near the 5′- 3′ ends.

Discussion and conclusions
Unreliable predictions of the RNA secondary structure
have been prevented us from integrated analysis of RNA
based on the estimated RNA structures. The energy model
of the RNA secondary structure, however, offers rich
information about the target RNA if we use appropriate
algorithms to extract it. Such information is useful for ana-
lyzing not only the 3D structure prediction as a natural
extension of secondary structure, but also the stabilities,
the interactions with the other molecules, and so on.
In this paper, we proposed a general method to con-

struct fast and accurate algorithms to compute the exact
probability distributions of integer-valued features on
the energy model of RNA secondary structures. We
have shown that two useful algorithms, for Hamming

Figure 4 Estimated structures of a tRNA sequences. (a) A well-
known cloverleaf structure, (b) a structure predicted by
CentroidFold.

Figure 5 The landscape of the probability distribution of
Hamming distance. X-axis represents the length of Hamming
distance from the selected structure as a reference, and y-axis
represents the probability that RNA folds into a structure which has
each Hamming distance in the whole ensemble. We took a
structure in Fig. 4(b) as the reference structure in this figure.
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distance from a reference structure and for 5′- 3′ dis-
tance, can be constructed by just assigning the score
functions gk (·). We extended the general method of an

integer score to the method of an integer vector (2D),
for the distributions of Hamming distances from two
reference structures. We also applied those algorithms
to tRNA as an example, and demonstrated the useful-
ness of observing the landscapes of probability distribu-
tions of the features. Although in some applications
there have been proposed practically equivalent algo-
rithms, the proposed method offers a clear and compre-
hensive guideline to design algorithms for a wide variety
of integer features. The web server for the distributions
of the Hamming distances is available at http://rtools.
cbrc.jp/cgi-bin/index.cgi. We don’t show the precise
implementations for the other applications, but the pro-
posed method is applicable to the integer features such
as number of base pairs, or frequency of specific struc-
ture motifs by a little modification of original McCaskill
model. In addition, distributions of combination of dif-
ferent integer scores can be also visualized by applying
the 2D expanding technique described in the previous
section.

Figure 6 2D expansion of tRNA structure existence probability landscape. The landscape is drawn from the cloverleaf structure (Fig. 4(a))
and the predicted g-centroid structure(Fig. 4(b)). We can see isolated population clusters around the both structures respectively.

Figure 7 The 5′- 3′ distance distribution of the tRNA. Although
Fig. 6 implies this RNA can be fold into various structures, almost all
the elements have the common feature from the point of view of
5′-3′ distance.
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Additional material

Additional file 1: Supplementary.pdf. We explained the detail of our
algorithms or a little ingenuity in this file.
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