
PROCEEDINGS Open Access

Impact of analytic provenance in genome analysis
Shatavia S Morrison1, Roman Pyzh1, Myung S Jeon1, Carmen Amaro2, Francisco J Roig2, Craig Baker-Austin3,
James D Oliver4, Cynthia J Gibas1*

From 9th International Symposium on Bioinformatics Reseaerch and Applications (ISBRA’13)
Charlotte, NC, USA. 20-22 May 2013

Abstract

Background: Many computational methods are available for assembly and annotation of newly sequenced
microbial genomes. However, when new genomes are reported in the literature, there is frequently very little
critical analysis of choices made during the sequence assembly and gene annotation stages. These choices have a
direct impact on the biologically relevant products of a genomic analysis - for instance identification of common
and differentiating regions among genomes in a comparison, or identification of enriched gene functional
categories in a specific strain. Here, we examine the outcomes of different assembly and analysis steps in typical
workflows in a comparison among strains of Vibrio vulnificus.

Results: Using six recently sequenced strains of V. vulnificus, we demonstrate the “alternate realities” of comparative
genomics, and how they depend on the choice of a robust assembly method and accurate ab initio annotation. We
apply several popular assemblers for paired-end Illumina data, and three well-regarded ab initio genefinders. We
demonstrate significant differences in detected gene overlap among comparative genomics workflows that depend on
these two steps. The divergence between workflows, even those using widely adopted methods, is obvious both at the
single genome level and when a comparison is performed. In a typical example where multiple workflows are applied
to the strain V. vulnificus CECT 4606, a workflow that uses the Velvet assembler and Glimmer gene finder identifies 3275
gene features, while a workflow that uses the Velvet assembler and the RAST annotation system identifies 5011 gene
features. Only 3171 genes are identical between both workflows. When we examine 9 assembly/ annotation workflow
scenarios as input to a three-way genome comparison, differentiating genes and even differentially represented
functional categories change significantly from scenario to scenario.

Conclusions: Inconsistencies in genomic analysis can arise depending on the choices that are made during the
assembly and annotation stages. These inconsistencies can have a significant impact on the interpretation of an
individual genome’s content. The impact is multiplied when comparison of content and function among multiple
genomes is the goal. Tracking the analysis history of the data - its analytic provenance - is critical for reproducible
analysis of genome data.

Background
Next generation sequencing has revolutionized the study
of microbial genomics. To handle the millions of
sequence read fragments produced by the next gen plat-
forms, a variety of assembly approaches have been devel-
oped[1-3]. In most instances the assembler produces a
set of contigs or scaffolds, which still leaves the genome

in pieces. It is no longer common to completely finish
and close a newly-sequenced genome. Usually, we evalu-
ate the “success” of the assembly with two metrics: the
number of contigs produced and the N50 value. Lower
contig counts and higher N50 values are considered opti-
mal. However, Parra et al. [4] and others [5] reported
that choosing assemblies with higher N50 values fre-
quently results in conserved genes going undetected in
benchmark studies. If a gene is missed due to errors at
the assembly stage it will not be annotated, leading to
inconsistencies in downstream analyses.
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There have been several efforts to assess the quality of
assemblies produced by de novo methods. GAGE [6]
and the Assemblathon [7] projects provided gold-
standard data sets and an environment for peer evalua-
tion of assembly methods. Recently, next generation
sequence assemblers were evaluated on bacterial data-
sets in the GAGE-B study. Magoc et al.[8] showed that
a single library prep and deep (100x-250x) sequencing
coverage is sufficient to capture the genomic content of
most bacterial species, but demonstrated wide variation
in the assemblies produced by different methods.
Analysis of genomes does not stop at assembly, however.

There exist a wide range of methods for annotation of the
assembled data. Genome annotation includes identifica-
tion of the gene sequences within a contig, and assignment
of function based on similarity to known genes or
sequence patterns. Ab initio gene finders and methods for
functional assignment each have their own associated
uncertainty, and results from one method are unlikely to
agree completely with those from another[5]. Assembly
and annotation are the two major components of the bac-
terial genomics workflow, and there are an astonishing
number of combinations of methods that can be used to
carry out just these two steps.
When we survey the literature in microbial genomics,

we find that investigators depositing microbial sequences
have not come to a consensus on the best pipeline for
genome analysis. Several different assemblers are in com-
mon use. Annotation methods may include anything

from simply comparing the genome to a reference by
using BLAST, to using ab initio genefinders, to using
integrated annotation pipelines provided by sequencing
centers. Despite over a decade of literature on the perfor-
mance of ab initio genefinders and annotation pipelines
[9-12] nearly any reasonable workflow seems able to pass
peer review (Figure 1), and so the genome annotations
found in the public databases vary widely in analytic pro-
venance. Especially in the absence of reference genomes
and bench work validation, the proliferation of analysis
options can lead to inconsistencies (comparing apples to
oranges) and ultimately to errors in biological interpreta-
tion. It is not possible to distinguish a true target, such as
a gene that differentiates one genome from its near rela-
tives, from an artifact introduced at the assembly or
annotation steps. Yet investigators often seem to remain
unaware of the impact of their choices, and how the
selection of Glimmer[13] rather than GeneMark [14] (for
example) may result in a greatly altered story when they
begin to analyze the apparent content of a newly
sequenced genome. Figure 1 is a summary of the major
elements of current genomic workflows based on a cen-
sus of 2013 bacterial genome announcements in recent
issues of the journal GenomeA (American Society of
Microbiology) [15].
In recent years, the biomedical research community

has increasingly recognized the failure of many studies
to achieve reproducibility [16] in data analysis protocols.
In experiments using NGS data, which rely entirely

Figure 1 Crosstab map of frequency levels of assembler and annotation method applied to Illumina data. Figure shows the frequency of
the number of times a particular combination of assembler and annotation method was used in 40 Genome Announcements from the
September 2012 Vol. 194, Issues 17 and 18 of Journal of Bacteriology and January and February 2013 Vol. 1., Issue 1 of Genome Annoucements.
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upon computational analyses for interpretability, the
ability to trace the history of and reproduce data analy-
sis is especially critical [17,18]. Innovation in this
domain is rapid and is ongoing, and best practices for
reproducibility in bioinformatics are increasingly widely
discussed[19]. The concept of workflow, originally used
to describe business processes, began to be used more
broadly in bioinformatics with the advent of high
throughput sequencing in the early 2000s [20]. Systems
such as Galaxy [21], Taverna [22], and MOLGENIS [23],
among others, have made reproducible workflows more
accessible to users of bioinformatics software, and many
workflow systems now include the means for tracking
analytic provenance,[19]but it is clear from our survey
of the literature that these innovations have yet to com-
pletely penetrate to end users of assembly and annota-
tion methods for microbial genome sequencing.
In this study, we assess the scope of the data interpreta-

tion problem caused by variation in pipeline choices. Start-
ing with five V. vulnificus strains for which paired-end
Illumina sequence was collected, and one V. vulnificus gen-
ome with a high quality finished sequence that has been
continually revised and updated [24], we apply well-
regarded assembly and annotation methods, in different
combinations, to the data. We have chosen to focus on only
a few of those most popular methods in each category,
because workflow construction from multiple options is a
combinatorial problem. The case study data demonstrate
the influence of choices made during the assembly and
annotation stages on biological interpretation of newly
sequenced genomes. Vibrio vulnificus is a bacterium com-
monly found in estuarine waters and mollusks. It is respon-
sible for 95% of all deaths resulting from seafood
consumption in the United States [25]. There are both clini-
cal isolates and environmental genotypes associated with
this bacterium, making it a prime candidate for comparative
genomics study. In the present study, we demonstrate the
direct impact of parameter and method choices on the bio-
logically relevant products of a comparative genomics analy-
sis among strains of Vibrio vulnificus. Comparative analysis
of gene content and function is a highly relevant case study,
as this analysis is a popular protocol among microbiologists,
and has been shown to be more effective than MLST for
bacterial strain characterization [26]. The results highlight
the influence of the assembly and annotation pipeline on
comparative content and function analysis, and emphasize
the need for contributors of genomic data to provide com-
plete information about the analytic provenance of their
assembled and annotated genomes, and for consistent
workflows, justified by benchmark testing where possible, to
be used throughout a project. Workflows used in this analy-
sis were constructed in the Taverna workflow system, and
are available as a workflow pack at http://MyExperiment.
org. [http://www.myexperiment.org/packs/625.html].

Results
Workflow dependent outcomes in a simulated assembly
case
As a basis for choosing an appropriate analysis pipeline for
newly sequenced V. vulnificus genomes, we first generated
simulated read data from the genome of V. vulnificus
CMCP6. This genome was initially sequenced using San-
ger sequencing and a traditional genome finishing
approach in 2003, [27] and was partially sequenced and
completely reannotated in 2011[24]. While the original
annotation relied primarily on a combination of ab initio
genefinders, the subsequent reannotation used additional
information from closely homologous genomes and public
databases of curated gene sequence patterns. The pub-
lished sequence and annotations for V. vulnificus CMCP6
are still not exhaustively validated by transcriptome data,
but they are the most heavily curated of the available
Vibrio vulnificus genome annotations, and therefore we
use them as the frame of reference for evaluating different
approaches to assembly and annotation.
We performed de novo sequence assemblies of the simu-

lated data with Velvet (V), ABySS (A), and SoapDenovo
(S). GeneMark.hmm (GeneMark)[14] and RAST[28] were
then used to identify gene sequences for each contig set.
We used OrthoMCL[29] with a stringent similarity cutoff
to cluster predicted genes with their counterparts in the
2011 V. vulnificus CMCP6 annotation.
The contig counts observed were 205, 144, and 269 for

the V, A, and S assemblies, respectively. Table 1 sum-
marizes gene counts obtained for each assembly followed
by each gene annotation method, for the simulated
V. vulnificus CMCP6 genomes. To avoid ambiguity, the
percentage of genes recovered refers only to predicted
genes, which clustered uniquely with one gene in the
reference annotation. Less than 1% of predicted genes
cluster with apparent paralogs in the reference genome
when clustered at a 95% threshold. The results presented
in Table 1 suggest that, while the Velvet assembler [1]
does not assemble the simulated data into the smallest
number of contigs, it produces the most accurate

Table 1 Assembly and Annotation of V. vulnificus CMCP6.

Assembly method Velvet ABySS Soap

# of contigs 205 144 269

Assembly+RAST performance

# of genes predicted 4684 5095 4720

# of genes with match in CMCP6 3890 3777 3863

% of known genes recovered 91.8% 89.2% 91.2%

Assembly+Genemark performance

# of genes predicted 4761 5051 4833

# of genes with match in CMCP6 4019 3754 3844

% of known genes recovered 94.9% 88.6% 90.7%
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assembly of the simulated V. vulnificus CMCP6 data.
Velvet, in combination with the GeneMark[14]ab initio
genefinder, may produce the best results on novel
V. vulnificus sequence data. This type of simple two-
step workflow is representative of genome analysis
workflows found in the genome announcements sur-
veyed in Figure 1. However, it should be noted that
the best-performing workflow still resulted in a loss of
over 200 previously annotated genes, when reanalyzing
simulated V. vulnificus CMCP6 data.

Workflow dependent outcomes on novel genome data
The published Vibrio vulnificus genomes are mainly
composed of 2 circular chromosomes, and some are
known to have plasmids. The size of the V. vulnificus
genome is estimated at 5.6 Mb-5.8 Mb of DNA, and
this size is consistent among known strains. The newly
sequenced isolates V. vulnificus CIP8190, CECT5198,
CECT4606, CECT5763, and CECT4886 are all known
to have 2 chromosomes and 2,3,1,2, and 2 plasmids,
respectively. Table 2 describes each genome used in this
study and its genomic characteristics, as well as the
number of sequence reads available for each genome.
Our analysis here is primarily focused on the perfor-

mance of the assembly and annotation steps typically used
during the construction of a draft genome. Biological find-
ings for these genomes will be the focus of another manu-
script, currently in preparation. Using the workflow
framework shown in Figure 2, we assembled contig sets
and annotation sets for each V. vulnificus strain. After the
removal of sequence reads containing ‘N’ characters, and
random sampling of read pairs to obtain 100x genome
coverage based on the Lander Waterman statistic [30],
there were 11,400,000 paired end reads in the final read
sets for each of the newly sequenced strains. The same
coverage depth was simulated for V. vulnificus CMCP6.
Using the same de novo assemblers we applied to the

simulated data set, we constructed contig sets ranging in
size from 180-630 contigs for each of the input gen-
omes. Table 3 summarizes the output of Velvet, Soap,

and ABySS assemblies for each V. vulnificus strain. We
then used MuMMer 2.3[31]to align the contig sets for
each strain, using an all-against-all alignment to identify
contigs that were similarly constructed between the
assemblers. Contig pairs that exceeded coverage and
sequence identity cut-offs of 95% were identified as
similarly constructed. Figure 3 summarizes the conser-
vation of contigs across assemblies. Although counts
varied from genome to genome, we observed on average
43 contigs constructed by all three assemblers, 133
found by any combination of two of the three assem-
blers, and 445 contigs that were uniquely constructed by
a specific assembler.

Table 2 Genomic Characteristics of Vibrio vulnificus CMCP6, CIP8190, CECT5198, CECT4606, CECT5763, and CECT4866.

Genomic Characteristic CMCP6 CIP8190 CECT5198 CECT4606 CECT5763 CECT4866

Biotype 1 2 2 2 2 2

Genotype C C E E E C

Chr Number 2 2 2 2 2 2

Plasmid Number None 2 3 2 2 2

Average G+C content 46.6 % 46.5% 46.5% 46.2% 46.3% 46.5%

# of reads generated 6620286* 26869740 14366914 23523786 18852452 33792718

N50 for Velvet 196375 71778 60906 316446 51991 65142

N50 for ABySS 187671 57867 66098 154882 54273 64876

N50 for Soap 196396 71391 62139 165040 52087 65144

Figure 2 Workflow framework of assembler and annotation
methods. Figure shows the assembly and annotation software
application applied to each of the V. vulnificus strains included in
this study.
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In our analysis of the novel Vibrio vulnificus genomes,
we included the Glimmer3.0[13]ab initio gene-finding
method in addition to GeneMark and RAST. Glim-
mer3.0 is demonstrated to be approximately 96% accu-
rate in gene identification,[13]which is similar to the
accuracy that we observed for GeneMark in the CMCP6
case study above. In Table 4, we summarize the gene
predictions by each of the three prediction methods
for each of the three assemblies constructed for each
V. vulnificus strain. We find that RAST and GeneMark
tend to identify more regions as putative genes
sequences than Glimmer for these strains. However, this
is not a case of simple over-prediction, since the Glim-
mer gene sequences are not strictly a subset of the pre-
dictions by other methods. As an example, in Figure 4
we detail the number of gene overlaps between all possi-
ble assembly-to-annotation permutations for V. vulnifi-
cus CECT4606.
Figure 4 summarizes the gene overlaps for Vibrio vul-

nificus CECT4606 datasets for different genefinders
applied to assemblies. Gene overlaps are defined as two
genes identified by different pipelines, which have the

same stop signals and strand orientation on the same
contig sequence. In prokaryotes, ab initio genefinder
predictions are known to be least reliable for very short
genes[32]. As an example, in Figure 5, we show the dis-
tribution of gene lengths for consensus and non-consen-
sus genes in a case were the RAST and Glimmer
genefinders were both applied to the genome of V. vul-
nificus CECT4606, with the SoapDenovo assembler.
Genes of length 500 and below are nearly entirely non-
consensus genes, while genes above 700 in length are
nearly entirely in consensus between the two methods.
It is in the region between 500 and 700 nucleotides
where potentially ambiguous cases are found, involving
several hundred genes. Glimmer tends to predict fewer
genes that are outside the common “core” of predictions
produced by all three genefinders. It is possible that this
reflects greater accuracy, or it may be that Glimmer
alone is more conservative in its gene-identification
model. RAST (which uses Glimmer in an initial annota-
tion pass) and GeneMark both make, and agree upon,
predictions that are excluded from the Glimmer predic-
tion set. It is possible that these two methods are poten-
tially capturing more species-specific genes.

Table 3 Total number of contigs assembled for
V. vulnificus CMCP6, CIP8190, CECT5198, CECT4606,
CECT5763, and CECT4866.

Strain Velvet Abyss Soap

V. vulnificus CMCP6 205 144 269

V. vulnificus CIP8190 284 364 507

V. vulnificus CECT5198 302 289 448

V. vulnificus CECT4606 129 148 267

V. vulnificus CECT5763 492 743 845

V. vulnificus CECT4866 404 366 519

Figure 3 Comparison count of highly conserved contigs for
V. vulnificus CMCP6, CECT4606, and CECT5198. Figure shows the
counts of the number of contigs that were identified by 1
assembler, by any combination of 2 assemblers, and by all three
assemblers.

Table 4 Total number of genes predicted for V. vulnificus
strains included in this study.

A.)

Glimmer Abyss Soap Velvet

V. vulnificus CMCP6 3226 3042 3047

V. vulnificus CIP8190 3233 3030 3032

V. vulnificus CECT5198 3289 2973 2977

V. vulnificus CECT4606 3465 3275 3275

V. vulnificus CECT5763 3253 3079 3083

V. vulnificus CECT4866 3301 3024 3031

B.)

Rast Abyss Soap Velvet

V. vulnificus CMCP6 5095 4720 4684

V. vulnificus CIP8190 4963 4600 4623

V. vulnificus CECT5198 5021 4554 4563

V. vulnificus CECT4606 5315 5015 5011

V. vulnificus CECT5763 5038 4732 4752

V. vulnificus CECT4866 5035 4605 4631

C.)

Genemark Abyss Soap Velvet

V. vulnificus CMCP6 5051 4833 4761

V. vulnificus CIP8190 5084 4912 4787

V. vulnificus CECT5198 5187 4795 4710

V. vulnificus CECT4606 5500 5311 5189

V. vulnificus CECT5763 5489 5346 5062

V. vulnificus CECT4866 5243 4931 4839
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Workflow dependent outcomes in functional analysis
An archetypal result presented in genomic analyses is the
categorization of genes into functional categories. This
type of analysis is frequently used to draw conclusions
about the energy sources an organism can use for survi-
val, or about the genome’s capacity to code for systems
related to pathogenicity. To illustrate the impact of work-
flow choice on interpretation of functional content, we
performed a comparative analysis among the results of
six assembly-to-annotation workflows applied to the gen-
ome of V. vulnificus CECT4866, refer to Table 5. We
used the GenoSets[33] analysis system to perform the
comparison of analysis outcomes, treating the annotation
set produced by each workflow as if it were an indepen-
dent “genome”.
Each workflow’s gene set was assigned Gene Ontology

(GO) terms [34,35]as described in Cain et al., 2012[33].
GO categories and individual genes having functionality
significant enrichment or depletion between the various
annotation versions were identified using the Gene Onto-
logizer[36]. See additional file 1 which summarizes the
complete GO enrichment set for each of the workflow
combinations examined. We first compared annotations

produced by a workflow that used the Velvet assembler,
followed by either Glimmer or GeneMark. 134 genes
appeared in the Glimmer predictions, but not in the
GeneMark predictions, resulting in the appearance of sta-
tistically significant enrichment or depletion in two GO
functional categories. Deoxyribose phosphate metabolic
process and deoxyribose phosphate catabolic process p-
values were 0.0066 and 0.0072, respectively. 120 genes
were identified solely with GeneMark annotations. Use of
GeneMark resulted in the appearance of enrichment in
GO terms associated with response to stress and iron ion
binding, with p-values at 5.99E-12 and 0.0017, respec-
tively. The GO terms associated with iron utilization are
especially of interest in the context of Vibrio vulnificus
genomics, because as a pathogen it is especially danger-
ous to hosts in a condition of iron overload[37]. Iron-
protein binding and stress response are potentially
regarded as factors contributing to V. vulnificus’s patho-
genicity. Several studies have reported on the correlation
between V. vulnificus infections and increased levels of
iron in animal models and infected individuals[25,37,38].
Wright et al.[37] showed the injecting mice with iron
prior to V. vulnificus infection significantly lowered the

Figure 4 Vibrio vulnificus CECT4606 gene overlaps counts. Figure shows we detail the number of gene overlaps between all possible
assembly-to-annotation permutations for V. vulnificus CECT4606. Gene overlaps are defined as two annotated genes from different pipelines that
have the same stop signals and strand orientation on the same contig sequence.

Morrison et al. BMC Genomics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2164/15/S8/S1

Page 6 of 11



LD50. Amaro et al.[38] showed that after the injection of
V. vulnificus to an iron-overload mice, they always died
within a 48 hour period of inoculation. In this case, chan-
ging the assembly-to-annotation analysis pipeline results
in a significant change in detected gene content, in a
category that is directly relevant to the biology of the
pathogen.
We next examined pipelines using the ABySS assem-

bler followed by RAST or Glimmer. 1880 genes were
unique to the RAST annotation. Of these, 132 signifi-
cant GO enrichment terms were identified. In this set
we find both iron-binding protein and terms associated
with response to stress, again suggesting that the choice
of assembly-to-annotation pipeline has the potential to

significantly alter biological interpretation. Only 148
gene clusters were unique to the Glimmer set, and only
5 functional categories showed apparent statistically sig-
nificant enrichment. Comparison of RAST and Gene-
Mark annotations on a SOAPdenovo assembly resulted
in approximately 10 statistically significant differences in
functional content in either direction, although none of
these categories were identified as significant to the biol-
ogy of V. vulnificus in a previous study[39].
While these results are not conclusive, they indicate

that at least in the case of V. vulnificus, RAST or Gene-
Mark predictions may best reflect the presence of genes
in key functional categories, known to be significant in
the biology of these organisms.

Workflow dependent outcomes in genome content
comparison
Another archetypal figure found in nearly every compara-
tive genomics analysis paper is the Venn diagram or its
conceptual equivalent. The Venn diagram provides a
convenient method to summarize what the microbiolo-
gist really wants to know: what is in strain (or species) A
that makes it function differently from strain B? In Figure
6, we show the effect on this commonly-generated analy-
sis product when different assembly-to-annotation pipe-
lines are used to generate the input data. As an
illustrative example, we performed gene content compar-
isons between V. vulnificus strain CMCP6 (clinical geno-
type) and strain CECT5198 (environmental genotype). In
each comparison, the same assembly-to-annotation pipe-
line was used on each of the genomes being compared.
We tested four combinations of assembler and genefin-
der. In Figure 6, we show that the majority of differences
are seen when different annotation methods are used. In
contrast, when different assemblers are used with the
same annotation method, the number of differential
genes are highly conserved. Given the large number of
non-identical genes found when different pipelines are
used on the same genome, as we saw in the previous
examples, the result is as expected - the valuable biologi-
cal “end product”, the set of differentiating genes around
which the biologist will build their scientific conclusions,
can vary by dozens if not hundreds of members.

Figure 5 Distribution of gene lengths for gene predicted using
RAST in Vibrio vulnificus CECT4606 with the SoapDenovo
assembly. Consensus gene lengths, which have a match in the
alternate annotation generated using Glimmer are plotted in blue,
while non-consensus gene lengths are shown in red.

Table 5 Workflow descriptions used in differential functional analysis of Vibrio vulnificus CECT4866.

Workflow Assignment Assembly Type Annotation Method Number of genes

A Velvet Glimmer 3031

B Velvet Genemark 4839

C Abyss Rast 5035

D Abyss Glimmer 3301

E Soap Genemark 4931

F Soap Rast 4605
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Discussion
Many factors can have an impact on the assembly of next
generation sequence data. Typical information captured
about the provenance of sequence data focuses on labora-
tory procedures and conditions, as we see in the MIGS
[40] standard for genomic data, or in the experiment
information preserved in, for example, the NCBI’s Gene
Expression Omnibus[41]. However, assuming that samples
were properly handled and prepared in the laboratory, and
that procedures and conditions are consistent, there is still
an entire layer of provenance information to be consid-
ered. Here, we have considered the analytic provenance of
genome sequence data, that is, the computational steps
that are executed to process the data and to attach features
and functional information that allows for interpretation.
Despite an attitude on the part of researchers and pub-

lishers that microbial genome analysis is a solved problem,
application of multiple assembly-to-annotation pipelines
to the same data demonstrates that analysis outcomes are
heavily dependent on pipeline choice. These choices carry
forward into comparative content analysis and functional
analysis of genomes, and have the potential to significantly
impact scientific conclusions.
It is now typical to report on novel microbial genomes

in terse genome announcements, abstract-style papers that
give little information about parameterization and execu-
tion of bioinformatics processes. A survey of these typical
papers shows that a wide variety of genome analysis pipe-
lines using combinations of bioinformatics tools, from
simple to sophisticated, will pass peer review. However, on
closer examination typical pipelines do not produce

identical or even similar results. And while in the hands of
trained bioinformaticians, the pipelines we tested in this
paper may be fine-tuned to produce somewhat more accu-
rate results, the literature surveyed suggests that this is not
what is happening “on the ground” in analysis of bacterial
genomes. If the protocols outlined in recent genome
reports are accurate, in many cases these protocols are no
more complex than the simple one assembler, one gene-
finder workflows we have analyzed here.

Conclusions
While in many cases, there is not a standardized set of
assembly and gene annotation tools as well as pipeline
workflows for novel genome assemblies and annotations
available, we recommend that creators of microbial gen-
ome datasets consider the following strategies to ensure
high quality, reproducible analysis. First, if possible, bench-
mark proposed analysis pipelines using simulated data
derived from a high-quality genome sequence that is as
closely related to the novel sequences as possible[42]. Sec-
ond, maintain an awareness of the variability of assembly-
to-annotation results. Perform parallel analyses and assess
downstream results for pipeline dependence. Finally,
maintain a detailed record of the analytic provenance of
the secondary data generated from your raw sequence
reads, including pipeline steps and parameters.

Methods
Genome sequencing
V. vulnificus strains were sequenced at The Genome
Analysis Centre (TGAC) using the Illumina HiSeq2000

Figure 6 Genome content comparison for Vibrio vulnificus CMCP6 and CECT5198. Venn diagrams represent the differential and shared
gene counts between V. vulnificus CMCP6 and V. vulnificus CECT5198 using the Velvet and SoapDenovo assemblies, each with Glimmer and
GeneMark annotations.
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platform. Sequencing was carried out on pooled
libraries, using pools of 12 strains in one lane of the
Illumina HiSeq 2000, and producing on average 100
base pair paired-end reads.

Sequencing simulation
V. vulnificus CMCP6 chromosome 1 and 2 genome
sequences were used to construct a simulated data set of
100 base pair paired-end reads. The simulated read set
was constructed with ART version 1.5.0 using the pro-
gram art_illumina[43]. The simulation parameters used
were as follows: data type “paired end”, read length “100”,
fold coverage “100”, and quality score “20” (forward and
reverse sequence reads). This dataset was used as a
benchmark to evaluate the performance of the de novo
assemblers, gene prediction algorithms, and annotation
methods to reproduce the published sequence and anno-
tations of the CMCP6 genome. V. vulnificus CMCP6 was
recently re-annotated and is regarded as the most com-
plete and accurate of the published V. vulnificus genomes
at the time of this writing.

Data cleansing
FastQC was used to evaluate the quality of the sequence
reads for each strain[44]. Any repetitive sequence identi-
fied by FastQC was removed from the dataset using an
in-house perl script. Reads containing ‘N’ characters
were also removed. After the data-cleansing steps were
completed we sampled a subset of reads for each strain
that was equivalent to 100x coverage based on the
Lander and Waterman statistic[30]. After the data-
cleansing steps were completed each newly sequenced
isolate read set contained 11,400,000 paired reads. In
the case of V. vulnificus CMCP6, the ART sequencing
simulation program art-illumina generated 6,620,286
paired reads for CMCP6 using an identical threshold.
This difference may be due to use of an alternative
mathematical formula for calculating genome coverage
in ART.

Sequence assembly
Initially, each read set was assembled with VelvetOpti-
miser version 2.2.0 and Velvet 1.0.17 in order to identify
an optimal kmer value for assembly and construct an
initial contig set. The optimal kmer values were 79 for
V. vulnificus CIP8190 and CECT5763, 83 for V. vulnifi-
cus CMCP6 and 87 for V. vulnificus CECT5198,
CECT4606, and CECT4886. The VelvetOptimiser para-
meters were then used to initiate the Velvet assembler.
The VelvetOptimiser hash value (kmer) was set to a
range of 73 to 93. The read description parameter was
set to “-shortPaired”. The VelvetOptimiser optimal kmer
value was also used as the input kmer value for ABySS
version 1.2.6 (abyss-pe) and SOAPdenovo version

SOAPdenovo127mer. The default paired-end parameters
were used for both assemblers.

Contig comparison
MuMMER 2.3[31] was used to create sequence align-
ments between assembled contigs, within collections of
assemblies for the same genome and among genomes.

Genome annotation
Ab initio gene-finding and functional annotation for each
contig set was performed using the in-house workflow
MAP (manuscript in preparation) constructed in the
Taverna workflow management system[22]. This workflow
executes parallel assembly-to-analysis pipelines on a geno-
mic data set. The ab initio annotation methods implemen-
ted include Glimmer3.02, GeneMark.hmm and the Rapid
Annotation using Subsystem Technology (RAST)[28] web
service. The training model used for ab initio gene-finding
with Glimmer and GeneMark was constructed based on
published Vibrio vulnificus annotations available in the
NCBI database. The RAST web service parameters used
were as follows: the genetic code was set to 11 for bacteria,
taxonomy id was set to 672 for genus Vibrio, and the cor-
responding sequencing statistics for each strain were pro-
vided to the web service.

Ortholog identification
OrthoMCL[29]was used to cluster gene predictions with
reference genes in the Vibrio vulnificus CMCP6 genome.
For this application a cluster threshold of 95% identity
was used. OrthoMCL[29]was also used to make connec-
tions between orthologs among sequenced Vibrio vulni-
ficus strains, with a clustering threshold of 70% identity.

Functional annotation
Gene ontology (GO) terms were assigned using the
BLAST2GO software[45]. BLAST2GO was used to per-
form a BLASTP against the nr (non-redundant) protein
database, with e-value cut-off set to 1E-6. GO annota-
tions were assigned based on the BLAST2GO database
version b2g_mar13. BLAST2GO assigns GO terms
based on a weighted system of evidence codes.

Content and functional comparison
For comparison of assembly-to-annotation workflow
outcomes and for comparisons of genomic content, we
used the GenoSets software application[33]. The annota-
tions produced by each workflow were loaded into the
GenoSets application, which enables comparisons
among multiple genomes. Each alternate annotation was
treated as a separate “genome” in the GenoSets system.
We followed the same gene clustering procedure used
in Morrison et al. 2012[39] to define sets of genes that
differentiate between genomes. To differentiate between
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the assembly-to-analysis pipeline outcomes, the
approach was modified to reflect the expectations that
gene sequences arising from different analysis workflows
would be highly similar. OrthoMCL clustering was per-
formed against the Vibrio vulnificus reference genome
CMCP6 and clusters were formed based on a shared
sequence similarity of 90%, instead of the OrthoMCL
default parameter of 50%. The increase in stringency to
90% shared sequence similarity results in tightly con-
strained gene clusters, and allows for the possible of
identified genes on the ends of contig that may have not
been predicted in their entirety.

Additional material

Additional file 1: Excel document that summarizes the complete list
of GO enrichment terms for the workflow description listed in
Table 5. GO enrichment terms were defined as significant with a p-value
above .005 cut-off.
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