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Abstract

late stage pancreatic cancer.

Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths worldwide with
less than a 6% 5-year survival rate. PDAC is associated with poor prognosis based on the late stage diagnosis of the
disease. Current diagnostic tests lack the sensitivity and specificity to identify markers of early staging. Metabolomics
has provided biomarkers for various diseases, stressors, and environmental exposures. In this study we utilized the
p48-Cre/LSL-Kras®'*® mouse model with age-matched wild type mice. This model shows malignant progression to
PDAC analogous to the human disease stages via early and late pancreatic intra-epithelial neoplasia (PanIN) lesions.

Results: Serum was collected from mice with early PanIN lesions (at 3-5 months) and with late PanIN or invasive
PDAC lesions (13-16 months), as determined by histopathology. Metabolomics analysis of the serum samples was
conducted through UPLC-TOFMS (Ultra Performance Liquid Chromatography coupled to Time-of-flight Mass
Spectrometry). Multivariate data analysis revealed distinct metabolic patterns in serum samples collected during
malignant progression towards invasive PDAC. Animals with early or late stage lesions were distinguished from
their respective controls with 82.1% and 81.5% accuracy, respectively. This also held up for randomly selected
subgroups in the late stage lesion group that showed less variability between animals. One of the metabolites,
citrate, was validated through tandem mass spectrometry and showed increased levels in serum with disease
progression. Furthermore, serum metabolite signatures from animals with early stage lesions identified controls and
animals with late stage lesions with 81.5% accuracy (p<0.01) and vice-versa with 73.2% accuracy (p<0.01).

Conclusions: We conclude that metabolomics analysis of serum samples can identify the presence of early and

Background

Identification of a circulating marker that can signal the
onset of pancreatic ductal adenocarcinoma (PDAC)
lesions in patients who have no outward clinical symp-
toms would be a great improvement with the prospect of
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earlier and potentially curative treatment. PDAC is the
fourth leading cause of cancer death in the United States
and currently has a devastating prognosis due to a <6%
5-year survival rate. Many patients initially present with
advanced disease, which then limits available treatment
options. Attempts have been made at establishing a
method of detecting pancreatic cancer earlier through
the use of biomarkers that can signal the presence of dis-
ease. The CA 19-9 assay detects a carbohydrate antigen
that is elevated in patients with PDAC, but the specificity
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and sensitivity are not adequate for regular screening of
at-risk subjects or the general population [1,2]. Other
biomarkers such as Carcinoembryonic Antigen (CEA) or
cell surface associated mucin 1 (MUC-1) have also
shown promise in detecting pancreatic cancer by sam-
pling the circulation, but they have suffered from the
same lack of specificity and sensitivity that prevent them
from being routinely recommended for patients [3,4].
Separate approaches using a global analysis of varying
proteomic profiles [5-7], genomic DNA concentrations
[8,9], or microRNA profiles [10] in the circulation have
shown initial success in identifying the presence of
PDAC in patients or in animal models, but further work
has not yet been reported on the application of these
assays in clinical settings.

Advances in chromatography and mass spectrometry
technologies have allowed the identification of metabolites
in a variety of clinical specimens. Altered metabolite con-
centrations can indicate aberrant enzymatic function or
altered clearance mechanisms as the cause or consequence
of disease. We have shown that metabolite concentration
differences in biofluids such as urine and blood were effec-
tive in identifying patients with pneumonia [11], mice
exposed to lipopolysaccharide [12], and as a gauge of bio-
dosimetry during radiation treatment [13]. More studies
are showing the benefits of a metabolomic approach to
the identification of cancer disease states. Metabolomic
analysis has offered new understanding of the pathophy-
sioloy and diagnosis of prostate cancer [14], breast cancer
[15], and colorectal cancer [16], to name a few examples.

A genetically engineered mouse model of PDAC that
takes advantage of a mutated Kras protein selectively
expressed in the developing pancreas has been shown in
numerous studies to be an excellent model of pancreatic
carcinogenesis [17]. Mice with mutant Kras®'?P expressed
in ductal epithelia (p48-Cre/LSL-Kras®'*") develop early
pre-malignant pancreatic intra-epithelial neoplasia (PanIN
[18]) followed by progression to late PanIN (in situ carci-
noma), invasive adenocarcinoma (PDAC) and metastasis
over discrete time periods. We hypothesized that circulat-
ing metabolites in the serum of p48-Cre/LSL-Kras®**P
mice reveal expression profiles that could distinguish
between mice with PanIN or PDAC pathology and mice
with no pancreatic disease. Here we report on the overall
patterns of metabolites and elevated citrate levels as one of
the metabolites that was validated and shown to be related
to altered expression of citrate synthase in the malignant
lesions.

Methods

Studies in mice

All experimental procedures and animal handling were in
accordance with animal protocols approved by the Geor-
getown University Animal Care and Use Committee
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(GUACUC Protocol #08-028). The p48-Cre/LSL-KrasS'*P
mouse model has been described previously [17].
Briefly, a mouse strain was genetically engineered with a
knockin cassette containing the Kras gene with a muta-
tion coding for an amino acid change of aspartic acid to
glycine at codon 12 and downstream of a stop sequence
flanked by loxP excision sequences. This mouse strain
was mated to another strain with the cre-recombinase
enzyme under the control of the p48 promoter that is
expressed in the developing pancreas. Resulting progeny
show preferential expression of the mutated Kras®'?P
protein in pancreatic ductal epithelial cells under its
endogenous promoter.

Sample collection and analysis

Mice were housed at Georgetown University under stan-
dard 12 h light and 12 h dark cycles, and given food and
water ad libitum. Two cohorts of male and female mice
were sacrificed at either 3-5 months of age or 13-16
months of age. See Table 1 for the n of each group.
Immediately before sacrifice, approximately 1 mL of
blood was drawn via intra-cardiac puncture. The blood
was centrifuged for 1 minute at high speed and the
serum was decanted and stored at -80° C. Mice pancreata
were dissected from the animals, bisected from tail to
head, and fixed in formalin. A pathologist scored the
highest PanIN grade per lobule of all lobules counted in
a representative hematoxylin and eosin (H&E) stained
slide of each mouse’s pancreas as per a similar protocol
described in [17]. “Normal” includes any normal and
reactive ductal change. PanIN-1 and -2 were combined
into a single category of ‘early’ lesions while tissues with
PanIN-3 were included in a separate category of ‘late’
lesions due to their high likelihood of malignant progres-
sion. There were three samples with invasive adenocarci-
noma (PDAC) and were labeled as such.

Serum samples were analyzed using Ultra Performance
Liquid Chromatography (UPLC) coupled to time-of-
flight mass spectrometry (TOFMS) from Waters (Mil-
ford, MA). Samples were deproteinized by 1:40 dilution
in 66:34 % acetonitrile:water containing 4pM debriso-
quine sulfate (Sigma Aldrich, St. Louis, MO) ([M+H]" =
176.1188) and 30 pM 4-Nitrobenzoic acid (Sigma

Table 1 Kras®'P mice of different ages have different
pancreatic pathology. Shown are the numbers of mice used
to measure circulating serum metabolites

Age Group Pancreatic Pathology Genotype n
3-5 months PanIN 1 and 2 Kras©'2P 17
normal Wildtype 39
13-16 months PanIN 2 and 3 Kras®'2P 11
normal wildtype 16
13-16 months PDAC Kras®'2P 3
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Aldrich) ([M-H] = 166.0141) as internal standards.
Liquid chromatography and mass spectrometry condi-
tions were according to published material [11]. Samples
were run in both positive and negative ionization modes
with mass accuracy correction based on intermittent
injections of sulfadimethoxine as a lockmass ((M+H]" =
311.0814 and [M-H]™ = 309.0658). Chromatograms and
ion spectra were acquired in centroid format with the
software MassLynx (Waters) and data were deconvo-
luted with the software MarkerLynx (Waters). Signifi-
cant markers were extracted with the supervised
decision tree algorithm Random Forests (RF), as
explained in detail in previous studies [11,12]. Putative
identities of markers were acquired through online
searches with the “Madison Metabolomics Consortium
Database” with a 20 ppm tolerance and the “Human
Metabolome Database” with a molecular weight toler-
ance of 0.01 Da. Validation of the putative metabolites
was performed with tandem mass spectrometry against
commercially available pure chemicals. Putative markers
that were tested included citrate, isocitrate, uracil, uri-
dine, AMP, phenylpyruvate, phosphorycholine, UMP,
and cytidine. All chemicals were purchased from Sigma
Aldrich.

Quantification of validated markers

Quantification was performed with the triple quadrupole
spectrometer ABI QTRAP 4000® LC/MS/MS system
(Applied Biosystems Inc, Foster City, CA) coupled to a
Waters UPLC identical to the one coupled to the TOFMS.
Samples were prepared in 66% acetonitrile in 1:20 dilution.
All chromatographic conditions remained the same as in
the discovery part. Multiple reaction monitoring (MRM)
transitions were monitored on negative ionization mode
for 4-NBA (m/z 166—122) and citrate (m/z 191—>111).
The software Analyst (Agilent Technologies, Santa Clara,
CA) was used for the analysis and calculate the absolute
concentrations (uM) from a standard curve of the pure
chemical. Graphical representations of means + SEM were
prepared through GraphPad Prism (GraphPad Technolo-
gies, Inc.) and analysis was performed using a two-tailed
Student’s T test.

Predictions and statistical analysis

Two additional separate types of analysis were conducted
with RF. A training set was developed from one third (13
wild type and 6 Kras) of the early (3-5 months) or late
(13-16 months) datasets (5 wild type and 4 Kras) by ran-
domly selecting samples and a metabolic signature was
developed through RF. Based on the m/z and retention
time (RT) of the 50 metabolites (signature), their intensi-
ties were picked from the dataset for the remaining two
thirds of the samples (validation set). For 3-5 months 26
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wild type and 8 Kras samples were utilized, while for the
13-16 months 11 wild type and 6 Kras samples were uti-
lized. RF was performed again and through MDS we
tested how accurately this signature could classify the
remainder of the samples.

A separate analysis was performed through RF, gener-
ating an early metabolomic signature (3-5 months) by
combining the results from both ionization modes and
applying it to the later dataset (13-16 months) for classifi-
cation. The reverse analysis was also conducted to pre-
dict whether a late signature exists in the early samples
for prediction of outcome. For p-value generation, non-
parametric approaches were used (Chi-square test or
Dixon-Mood estimates).

Immunohistochemistry

Formalin fixed tissue specimens were sectioned and paraf-
fin embedded. Sections were deparaffinized by overnight
incubation at 60°C. Slides were submersed in xylene fol-
lowed by 100%, 95%, and 70% ethanol. Antigen retrieval
was performed by submerging sections in boiling citrate
buffer, pH 6. Sections were washed with phosphate buf-
fered saline (PBS) followed by quenching of endogenous
peroxidase with 3% H,O,. Sections were washed and incu-
bated in primary citrate synthase antibody (Proteintech,
Chicago, IL) at dilutions recommended by the manufac-
turer for 1 h at room temperature in a humidified chamber.
Sections were washed and incubated in rabbit conjugated —
horseradish peroxidase (Dako, Denmark) diluted 1:1000 for
30 min at room temperature. DAB substrate (Dako, Den-
mark) was added to the sections and the reaction allowed
to develop for 2-7 min. The reaction was terminated by
quenching with water. Sections were counterstained with
hematoxylin, dehydrated with 70%, 95%, and 100% ethanol
washes and xylene submersion, followed by mounting with
a glass coverslip with Drop ClearMount Solution (Zymed).
All microscopy and imaging was performed using an
Olympus BX40 microscope and Scion Visicapture software.

Results

Serum was collected from p48-Cre/LSL-Kras mice that
were 3-5 months old, 13-16 months old, and three older
mice that developed PDAC along with age matched wild
type controls. Table 1 describes the age groups of mice
whose serum was analyzed, their genotypes, and the pan-
creatic pathology. The 3-5 month old mice had mostly
PanIN 1 and 2 lesions, but no PanIN 3 lesions. The 13-16
month old mice had PanIN 3 lesions in ~10% of pancreatic
ducts, and all control mice had a normal pancreas. The
samples from different stages of progression towards PDAC
reflect the state of pancreatic disease that we are most inter-
ested in identifying if they were to present in the asympto-
matic state and before invasive PDAC is fully established.

G12D
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Multivariate analysis of mass spectrometry data

Serum samples were run on UPLC-TOFMS in both posi-
tive and negative ionization mode. Random Forests (RF)
multivariate analysis was utilized to identify significant
metabolites from the mass spectrometry of the serum
samples. The RF analysis was concentrated on 3-5 month
old p48-Cre/LSL-Kras©'*P (designated as Kras) mice
with 3-5 month old control mice (designated as Neg),
and 13-16 month old p48-Cre/LSL-Kras®**® mice with
their respective age matched controls. Positive and nega-
tive ionization mode data were combined to perform the
analysis. The separation of groups showing the metabolic
profiles of the serum samples were visualized in multidi-
mensional scaling (MDS) plots. The accuracy of each
analysis was assessed by the percentage of mice correctly
assigned to the group, when including the top one hun-
dred metabolites, as determined by RF. The metabolic
profile detected in 3-5 months, separated the p48-Cre/
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LSL-Kras®'?P mice from control mice with 82.1% accu-
racy (Figure 1A). In the 13-16 month analysis, the per-
cent classification accuracy was 81.5% (Figure 1B).

To illustrate the differences between the groups, the top
fifty metabolites determined by RF were organized in a
heatmap. The metabolites were hierarchically clustered by
complete linkage using the Euclidean distance. Differential
metabolic profiles were more prominent in the 13-16
month group (Figure 1D) as compared to the 3-5 month
group (Figure 1C), making evident that distinct metabolo-
mic profile differences become more prevalent as pancrea-
tic cancer progresses.

Validation, quantification, and immunohistochemistry

A number of metabolites identified by RF were validated
through tandem mass spectrometry against pure chemi-
cals (see table S1, additional filel). One marker from
the negative ionization mode with m/z of 191.0188 at a
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Figure 1 Separation of p48-Cre/LSL-Kras®'? (Kras) and wild type mice based on circulating metabolite concentration profiles and heatmaps of the
top 50 metabolites as classified through Random Forests (RF). Kras and wild type (Neg) mice at each time point were separated based on the
measurement profile of over five thousand circulating metabolites in a Random Forests multivariate data analysis. The top 100 ions, as determined
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retention time of 0.4274 min was identified through
online database searches as either citrate or the isobaric
isocitrate. Tandem mass spectrometry revealed that the
marker in question was citrate. Quantification of citrate,
with the development of a standard curve (r=0.9991)
using the pure chemical, revealed differential levels in the
disease groups. In particular, the concentration of citrate
was higher in the p48-Cre/LSL-Kras®'*” mice of 13-16
months of age compared to all other groups and citrate
levels were found to be increased in mice with histo-
pathological evidence of PDAC (Figure 2). Additionally,
lower citrate levels were found in the serum of mice with
normal pancreatic ducts when compared to mice with
either PanIN or PDAC pathology.

Immunohistochemistry of pancreatic tissue for the enzyme
citrate synthase showed barely detectable synthase protein
in the ducts of wild type mice and increased expression in
PanIN and PDAC tissue (Figure 3). Analysis of published
data with human tissue samples also showed a significant
increase in expression of citrate synthase in PDAC versus
normal pancreas tissues in two independent studies (see
figure S1, additional file2) corroborating the findings in
the preclinical model used here.

Predictions
A metabolic signature of fifty ions was generated from the
3-5 month sample sets with combination of the positive

serum citrate concentration

500+
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Figure 2 Quantification of citrate. The levels of citrate (UM citrate / uM
4-Nitrobenzoic acid) were increased in the circulation of 13-16 month
old p48-Cre/LSL-Kras®"?® mice with PDAC compared to mice with
PanIN lesions without PDAC and wild type mice. *, P<0.05 for p48-Cre/
LSL-Kras®"?® with PDAC vs wild type at 3-5 months. Mean + SEM.
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and negative ionization data. This signature (top fifty
ranked ions) was extrapolated to the 13-16 month samples
for classification of the groups, as described in Figure 4.
The classification accuracy of the early analysis was 82.1%
(p<0.01) and at 13-16 months with extrapolation from the
early time points, 81.5% (p<0.01). The reverse analysis was
conducted, where a metabolic signature was created for
the 13-16 month datasets (classification accuracy 85.2%,
p<0.001) and extrapolated to the early time points (classifi-
cation accuracy 73.2%, p<0.01).

A training set (test set, one third of the samples in each
group) and a validation set (the remaining two thirds of
the samples) were utilized to test how stable and predic-
tive the identified metabolic signature was across the sam-
ples (Figure 5). The classification accuracies for the
training sets were 89.5% (p<0.01, two samples misclassi-
fied) for the early time points and 88.9% (p<0.05, one sam-
ple misclassified) for the late times points. The top fifty
ranked ions were used from each analysis as a means of
constructing a metabolic signature. This signature was uti-
lized in the validation set to determine the stability of the
metabolic changes. For the 3-5 month set classification
accuracy dropped to 62.2%, with no statistical significance
and fourteen samples misclassified, whereas for the later
time point group classification accuracy remained high
(83.3%, p<0.01, with three misclassified samples).

Discussion

We demonstrate in this study that metabolites detected
in the circulation can be used to differentiate between
mice with precursor lesions of PDAC and mice with nor-
mal pancreas. More specifically, the concentration of one
metabolite, citrate, was found increased in the circulation
of mice with PDAC lesions compared to mice with nor-
mal pancreata, which is related to the increase in citrate
synthase expression in diseased pancreatic ducts and was
also seen in an analysis of data generated with human
samples. Additionally, prediction analyses indicated that
presence of a metabolic signature (i.e. fifty metabolites) as
early as 3-5 months can be utilized as an early predictor
of the cancer phenotype. Moreover, the utilization of a
training and a validation set showed that diagnostic mar-
kers in a biofluid such as serum become more dominant
with the progression of the disease.

There is evidence to suggest that the metabolomic
profiles of patients with pancreatic cancer can be used
to distinguish them from healthy subjects. Using 1H
NMR and 2D NMR spectroscopy, 58 different metabo-
lites detected in the serum of 56 pancreatic cancer
patients had concentration differences that favored their
separation from 43 patients with benign pancreatic
lesions, such as glutamate and acetone[19]. Metabolites
detected by 1H NMR in rat pancreatic tissue, such as
decreased phosphocholine and glycerophosphocholine,



LaConti et al. BMC Genomics 2015, 16(Suppl 1):S1
http://www.biomedcentral.com/1471-2164/16/51/51

Page 6 of 10

3-5 months Early PanIN

13-16 months Late PanIN

13-16 months PDAC

Kras G12D

wild type

3-5 months wildtype

PDAC, but not wild type duct epithelia.

N

13-16 months wildtype

Figure 3 Expression of citrate synthase (CS) in immunohistochemistry. CS is detectable in PanIN ductal lesions (13-16 months old animals) and

also displayed varying concentrations that allowed the
separation of rats with pancreatic cancer from healthy
controls [20]. Using a similar technical approach to our
own involving tandem mass spectroscopy, Urayama et.
al. reported the separation of patients with pancreatic
cancer from healthy controls based on metabolites
detected in the circulation [21]. Their reported list of
metabolites whose identities could be confirmed
included compounds of cell membrane synthesis, aero-
bic respiration, and bile acid production, but did not
include citrate. Wen et. al, found citrate levels to be
increased in bile samples of patients with biliary tract
cancers compared to control patients, but they did not
study any cases of pancreatic cancer [22]. The evidence
we present here that mice with pancreatic ductal lesions
can be separated from control mice based on metabolite
concentrations parallels the findings of other reports in
human samples, and support the use of this genetic
mouse model to test and validate future hypotheses
regarding metabolomics of pancreatic tumorigenesis.
This, however, is the first report of circulating citrate as a
marker of pancreatic cancer progression in a mouse
model, showing a connection between elevated enzyme
levels in the tissue and the metabolite product in the
serum. Metabolomic profiling in the serum of a pancrea-
tic rat model has also identified increased levels of circu-
lating citrate [23]. Given that current existing individual
markers offer low specificity and sensitivity, it is essential
to consider creating a panel of markers, i.e. signature, for
early diagnosis and disease progression of PDAC. Meta-
bolomics has the potential to contribute to this in a rapid
and efficient way.

Alterations in enzymatic structure, function, or regula-
tion can lead to a distinct change in the concentration
levels of the enzyme’s substrates or products. The meta-
bolomic analysis of biofluids for changes in metabolite
concentration can imply aberrant function of a key enzy-
matic process. For example, isocitrate dehydrogenase 1
(IDH1) gene was found mutated in over 70% of WHO
grade II and III astrocytomas and oligodendrogliomas
and in glioblastomas that developed from lower grade
lesions [24,25]. Metabolomic profiling of U87MG glio-
blastoma cells expressing these mutations in IDH1 deter-
mined the structural change of the mutated protein
results in acquisition of the ability to convert a—ketoglu-
tarate to R(-)-2-hydroxyglutarate (2HG). The authors
concluded that the accumulation of 2HG commonly seen
in brain tumors may be a mechanism of cellular transfor-
mation by increasing reactive oxygen species [26].

To determine if the levels of citrate were elevated in
PanIN and PDAC mice as a result of increased production
by citrate synthase, we examined the expression level of
the enzyme in pancreatic tissue. Other reports have deter-
mined that the activity of citrate synthase was increased in
pancreatic cancer cells in comparison to adjacent normal
tissue [27]. Our finding that citrate synthase shows
increased expression in ductal cells that have transformed
to PanIN lesions provides a likely source for the increased
levels of citrate found in the circulation. Analysis of
mRNA levels using the Oncomine [28] database revealed
increased expression in PDAC also in clinical specimens
[29,30] see Figure S1 Additional file 2 suggesting that the
findings in the mouse model translate to the human
disease. PanIN and PDAC transformed cells may increase
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their activity of citrate synthase as a result of increased cel-
lular metabolism associated with malignant transformation
and the citrate product could serve as one of the markers
of the presence of incipient PDAC.

However, one biomarker may not be enough for early
diagnosis of a disease. Instead, a metabolic signature, a
collection of markers, needs to be developed that will be
far more informative. The p48-Cre/LSL-Kras®*” model
that was utilized in this study shows progression from
early stage lesions that resemble PanIN1/2 with a low
risk of progression to invasive and metastatic cancer. On
the other hand during the lifetime of the animals, high

risk, late stage PanIN3 lesions as well as frank invasive
and metastatic PDAC will appear. We asked whether
serum metabolomic profiles of animals with low risk or
early lesions would contain signatures reminiscent of late
stage lesions. We also asked whether the late stage
lesions contained signatures that could separate control
animals from those with early stage lesions. To test these
hypotheses, we generated a signature of fifty metabolites
that would distinguish between control animals and
those carrying early stage lesions or the respective age-
matched control animals and ones with late stage lesions.
It was quite striking that the serum metabolic signature
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in animals with early lesions was able to distinguish con-
trols from diseased animals at the late stage. Corroborating
this finding, fifty metabolites that distinguished animals
with late stage lesions best were also able to identify ani-
mals with or without early lesions. We conclude from this
that the serum metabolic signature at early stage of precur-
sor lesions of PDAC contains sufficient changes to distin-
guish controls and late stage lesions. Future work will
focus on refining this signature and generating a panel of
biologically relevant markers. Still, there will be additional
changes as is evident when running a cross-comparison
between early and late stage lesion metabolites.

We also tested how stable the metabolic changes are
across a diagnostic group. For this we randomly selected
1/3 of the respective early or late stage lesion animals
and the respective controls (training set) and generated a
metabolomics profile. We then applied that profile to the
other 2/3 of the group and tested how well it was able to
classify the respective animals (validation set). For the

late stage lesions, a subgroup of 1/3 of the animals
already carried the signature that was sufficient to sepa-
rate controls and diseased animals in the other 2/3 of the
cohort. In contrast, for early lesions no significant pre-
dictability was seen. This is likely due to less striking
changes in early stage lesion animals. This analysis also
indicates that with progression of the disease diagnostic
metabolites become more dominant in their expression
either due to the extent of the disease or the extent of
changes that occur in the diseased organ. It remains to
be seen whether this signature can identify animals that
will progress to pancreatic cancer at an intermediate
point, i.e. between 3-5 and 13-16 months.

Conclusions

In conclusion, our work shows that distinct metabolomics
profiles in serum samples as pancreatic ductal epithelia
undergo progression towards invasive cancer and suggests
that metabolomics profiling could provide a sensitive,
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blood-borne diagnostic signature for the presence of pan-
creatic cancer or its precursor lesions.

Additional material

Additional file 1: Supplementary Table 1 Putative markers tested
through tandem mass spectrometry, but not validated. Putative identities
were picked based on the possible biological significance through
searches on online databases.

Additional file 2: Supplementary Figure 1 mRNA expression of citrate
synthase (CS) in archival clinical tissue samples. Published cDNA arrays
(Grutzmann et al [29]; Segara et al [30]) deposited in the Oncomine data
base [28] and provided as median-centered, normalized data sets were
downloaded and analyzed. Mean values are shown on a log2 scale +
SEM. A significant increase of CS expression in PDAC versus normal
pancreatic tissues is seen.
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