Li and Xie BMC Genomics 2015, 16(Suppl 2):S1

http://www.biomedcentral.com/qc/1471-2164/16/52/S1 BMC

Genomics

PROCEEDINGS Open Access

MixClone: a mixture model for inferring tumor
subclonal populations

Yi Li', Xiaohui Xie'?**"

From The Thirteenth Asia Pacific Bioinformatics Conference (APBC 2015)
HsinChu, Taiwan. 21-23 January 2015

Abstract

Background: Tumor genomes are often highly heterogeneous, consisting of genomes from multiple subclonal
types. Complete characterization of all subclonal types is a fundamental need in tumor genome analysis. With the
advancement of next-generation sequencing, computational methods have recently been developed to infer
tumor subclonal populations directly from cancer genome sequencing data. Most of these methods are based on
sequence information from somatic point mutations, However, the accuracy of these algorithms depends crucially

coverage to achieve a reasonable level of accuracy.

on the quality of the somatic mutations returned by variant calling algorithms, and usually requires a deep

Results: We describe a novel probabilistic mixture model, MixClone, for inferring the cellular prevalences of
subclonal populations directly from whole genome sequencing of paired normal-tumor samples. MixClone integrates
sequence information of somatic copy number alterations and allele frequencies within a unified probabilistic
framework. We demonstrate the utility of the method using both simulated and real cancer sequencing datasets,
and show that it significantly outperforms existing methods for inferring tumor subclonal populations. The MixClone
package is written in Python and is publicly available at https://github.com/uci-cbcl/MixClone.

Conclusions: The probabilistic mixture model proposed here provides a new framework for subclonal analysis
based on cancer genome sequencing data. By applying the method to both simulated and real cancer sequencing
data, we show that integrating sequence information from both somatic copy number alterations and allele
frequencies can significantly improve the accuracy of inferring tumor subclonal populations.

Background

Tumor genomes have been shown to present extensive
cellular heterogeneity for decades since Nowell’s original
clonal theory for tumor progression [1]. Identifying
tumor subclonal populations is important for both
understanding the evolution of tumor cells, and for
designing more effective treatments as pre-existing
mutations occurring in some subclones could lead to
drug resistance [2]. For example, a research in lympho-
cytic leukemia has shown links between the presences of
driver mutations within subclones and adverse clinical
outcomes [3].
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With the advancement of next-generation sequencing
(NGS) and launch of large-scale cancer genome sequen-
cing projects [4], computational methods have recently
been developed to infer tumor subclonal populations
based on cancer genome sequencing data [5-9].

Most of these methods rely on sequence information
from somatic point mutations, such as PyClone [5],
EXPANDS [6], PhyloSub [7] and rec-BTP [8]. Methods
in this category leverage the cluster pattern of allele fre-
quencies at somatic point mutations to detect distinct
subclonal populations. However, as the determination of
somatic point mutations is imperfect and the inclusion of
false-positives is unavoidable [10], deep sequencing with
more than 100X coverage is often required for subclonal
inferences with high sensitivity and specificity [5,7,8].
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Other approaches utilizing the read depth information
from genomic segments with somatic copy number
alterations (SCNAs) to infer the cellular prevalences of
subclonal populations have also been developed, such as
THetA [9]. THetA explores all combinations of copy
number changes across all segments to infer the most
likely collection of subclonal populations [9]. However,
with the copy number information alone, THetA suffers
from the “identifiability problem”, where distinct combi-
nations of tumor purity and ploidy are able to explain the
read depth information from SCNAs equally well [9].
Additionally, the running time of THetA scales exponen-
tially with the number of genomic segments [9], and
often takes a prohibitively long time to run under certain
parameter settings.

In this article, we present a novel probabilistic mixture
model, MixClone, to infer the cellular prevalences of sub-
clonal populations. MixClone integrates both read depth
information from genomic segments with SCNAs and
allele frequency information from heterozygous single-
nucleotide polymorphism (SNP) sites within a unified
probabilistic framework. Such integrative framework has
been shown to significantly improve the accuracy of
tumor purity estimation in our previous work [11]. Here,
we present that MixClone achieves two major advantages
compared to the existing methods that (i) it does not
require deep sequencing data, (ii) it resolves the identifia-
bility problem. To demonstrate MixClone’s utility, we con-
ducted simulation studies and showed that it outperforms
existing methods. We also applied MixClone on a breast
cancer sequencing dataset [12], and showed that it was
able to discover subclonal events not reported before.

Methods

In this section, we introduce the generative mixture model
of MixClone, which is an extension of our previous work
on tumor purity estimation[11]. First, we introduce the
notations for input data. Then, we describe the probabilis-
tic models for sequence information of both SCNAs and
allele frequencies. Finally, we combine these two types of
data into a single likelihood model, and describe an algo-
rithm to solve the model.

Basic notations

The raw input data for MixClone are two aligned whole
genome sequencing read sets of paired normal-tumor
samples and a genome segmentation file based on the
tumor sample. Following the notations from our previous
work [11], we assume the tumor genome has been parti-
tioned into J segments. We also assume there are /; hetero-
zygous SNP sites within segment j in the corresponding
normal genome, and use (i, j) to index SNP site i within
segment j. For each SNP site (i, j) we define the A allele to
be the reference allele and the B to be the alternative allele,
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with respect to the reference genome. We also use a
superscript N to denote data from normal samples and
superscript T to denote data from tumor samples. Overall,
the observed data are summarized in the following nota-
tions [13]:

bfvj = number of reads mapped to the B allele in the
normal sample at site (i, /).

dﬁ\; = reads depth of the normal sample at site (i, /).
D]N = total number of reads mapped to segment j of
the normal sample.

The notations for the observed data from tumor sam-
ples are similarly defined, e.g. DjT denotes total number
of reads mapped to segment j of the tumor sample.

Modeling SCNAs

Next, we describe the probabilistic model for SCNAs
data. For each segment j, we define an allelic configura-
tion H; to represent its underlying allele-specific copy
number status. For example, if the absolute copy num-
ber of segment j is 2, then the compatible allelic config-
urations are PP, MM and PM, where P and M denotes
the paternal and maternal allele of the tumor genome,
respectively. Since PP and MM are not distinguishable
based on sequence information alone as the reference
human genome is not phased, we define the set of all
possible allelic configuration as

H; € H = { 0, P/M, PP/MM, PM, PPP/MMM, PPM/PMM}(1)

assuming the maximum copy number for each seg-
ment is 3. The corresponding copy number associated
with each allelic configuration in # is then

my =1{0,1,2,2,3,3} 2)

MixClone allows the user to specify the maximum
copy number and the default value is 6 in the released
package [11]. We further assume there are K subclonal
populations within the tumor sample, each of which has
an associated cellular prevalence ¢, € 0[1]. The subclo-
nal type of each segment j is denoted as

ZieZ=1{1,2,-,K) 3)

representing one of the K possible subclonal popula-
tions. Given the allelic configuration H; = /# and the sub-
clonal type Z; = k, the average copy number of segment
j within the tumor sample, taking into account the sub-
clonal cellular prevalence ¢y, is

Cj = ¢pnp + (1 — )2 (4)

Based on the Lander-Waterman model [14], the prob-
ability of sampling a read from a given segment j
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depends on three main factors: 1) its copy number, 2)
its total genomic length, and 3) its mappability, which
depends on factors such as repetitive sequence and GC
content [9]. For each segment j, we associate a coeffi-
cient 6; to account for the effect of its mappability and
genomic length. Thus the expected read counts mapped
to segment j, which is denoted as A;, is proportional to
C;6;. For example, for segment x and segment y, we have

ix — ?xex (5)
r o Gy

Because the mappability coefficients (0;'s) matter only
in a relative sense, we take 6,/0, = DxN /Di\], as these seg-
ments should have the same sequence properties
between the normal and tumor samples.

Additionally, to determine the absolute value of /"Lj, we
curate a list of segments which contain no loss of hetero-
zygosity according to their allele frequencies information.
Based on the observed number of reads mapped to each
segment, we further remove “outlier” segments from the
list if their copy numbers are different from the bulk of
the segments’ copy numbers in the list. Finally, we call the
remaining segments in the list as “baseline segments” and
denote the set of these segments as S. We assume the alle-
lic configurations of all the baseline segments are PM with
copy number 7, = 2. Other possible allelic configurations
for baseline segments, which have equal copy numbers for
each allele (e.g. ¢, PPMM), are likely to be rare, and cur-
rently we do not model them. Then based on #,, we spe-
cify 4; as follows

1 Cit
A= 71 pl 6
] |S| Sg;g nsgs N ( )

where D! denotes the number of reads mapped to
segment s of the tumor sample.

Finally, we model the number of reads mapped to seg-
ment j in the tumor sample as a Poisson distribution,
given H; and Z;

D{|Hj, Z; ~ Poisson (1)) 7)

Details on curating the baseline segments are given in
Supplementary, Additional file 1.

Modeling allele frequencies

Next, we describe the probabilistic model used for allele
frequencies of heterozygous SNP data. For each SNP site
i within segment j, we denote its tumor genotype as G,
which is selected from the set of all possible tumor geno-
types up to a maximum copy number alteration, e.g.

G ={¢,A, B, AA, AB, BB, AAA, AAB, ABB, BBB} (8)
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assuming the maximum copy number is 3. The corre-
sponding B allele frequencies (BAF) for all the genotypes
inG are

12
— €,€, 7 11_6} (9)

,€,1
33

1 1
Mg={2 —6,6,2,1
in which, ¢ << 1 is a small random deviation account-
ing for general sequencing errors. We choose E = 0.01,
which is equivalent to a Phred quality of 20 [15].

Given the tumor genotype G;; = g, the allelic config-
uration H; = 4, and the subclonal type Z; = k, the aver-
age BAF of site (i, j) within the tumor sample, taking
into account the subclonal cellular prevalence ¢y, is

__ Punnpg + (1 = ér)2uo0
K e + (1 — )2

in which go = 0.5 is the BAF of heterozygous SNP
sites in the normal sample. Finally, we model the distri-
bution of the B allele count bg at site (i, j) as a binomial
distribution, given G , H; and Z;

(10)

bjldy;, Gij, Hj, Z; ~ Binomial(dj, fiy) (11)

UK

Combining SCNAs and allele frequencies
Now, we combine sequence information from both
SCNAs and heterozygous SNP sites. For all the hetero-
zygous SNP sites within the same segment, their geno-
types should be consistent with the underlying allelic
configuration of the segment. We model this consis-
tency through a predefined conditional probability
Qqn = P(Gjj = g|H; = h). If the genotype g is inconsistent
with the allelic configuration /4, e.g. AA is inconsistent
with PM, we assign a small probability o as Qg, other-
wise we assign equal probabilities to genotypes that are
consistent with the allelic configuration.

Conditional on the underlying allelic configuration H;
and subclonal type Z;, the probability of observing B
allele read count bg at site (i, j) is given as

P(bj|Hj = h, Z; = k) = > QuuP(bj|Gij = 8 Hj = h, Z; = 1)(12)
8€g

We assume that conditional on the allelic configura-
tion H; , the B allele read counts {bg}f’; , at different sites
within the same segment j are independent of each
other, and are also independent of the total read count
D]-T of the segment. Then, the joint probability of obser-
ving the two types of read counts information of seg-
ment j is

P(D!, (b5)/.,1H; = h, Z; = k)

b (13)
=P(D]|H; = h,Z; = k) x ]‘[ ZQghP(bg\ci,- =g H=hZ=k)

i=1 geG
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Likelihood model

We have specified the joint distribution of the two types
of read counts information of segment j. We then
further model the allelic configuration H; and the sub-
clonal type Z; of segment j as random variables that fol-
low categorical distributions

Hj|pj ~ Categorical () (14)

Zj|lw ~ Categorical () (15)

p/ = (pj@’ ey ijPM/PMM): where Pjh = P(H] = h) is the
probability of observing /4 as the allelic configuration of
segment j. 7w = (53, ..., 7Tx), where m, = P(Z; = k) is the
probability of observing subclonal type k for all the seg-
ments. The model parameters ® is defined as

® = ({o)}_y, ity (Ddicy) (16)

And the model likelihood of observing all the data is
then

P(D] )]y, (B} 1110)

J K
=T1>_ > Pz = k)P(H; = h)P(D] |H;j = h, Z; = )

j=1 k=1 heH

Ij
x 1_[ ZQghP(b§|Cij =g Hi=hZ=k)
i=1 geg (17)

,
gy

J K A e
B IPSp T

j=1 k=1 heH j

L di \ _uf T T
x 1_[ ZQgh b% 'uij](l — iij)di; — by
i=1 gegG y
We use Expectation-Maximization (EM) algorithm
[16] to find the maximum likelihood estimation of ®.
The complete details of the EM updates are given in
Supplementary, Additional file 1.

Model selection

One of the key issues in subclonal analysis is to determine
the number of subclonal populations K. PyClone and Phy-
loSub use posterior sampling methods to estimate K [5,7],
while THetA requires users to specify K as an input [9].
Since the probabilistic model of MixClone is a generative
mixture model, the model complexity and the correspond-
ing log-likelihood increases as K increases. Therefore, we
use a criterion based on the increase of the log-likelihood
to select K. Practically, Mix-Clone allows the user to spe-
cify K. If K is not specified, MixClone runs the mixture
model five times with different K in range of 1 to 5. We
denote the log-likelihoods under the five different settings
as {Lk}_,, and the total log-likelihood increase as
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A=Ls—1L; (18)

If |A/L;| < 0.01, which means the ratio of total log-
likelihood increase is less than 0.01, MixClone predicts
there is no subclonal event in the tumor sample and
selects K = 1 as the number of subclonal populations. If
|A /Li| = 0.01, MixClone further calculates another

quantity

8 =|Li — L1|A,i € [2,5] (19)

which is the cumulative log-likelihood increase from
K =1 to K =i as a percentage regarding to the total
increase A. If §; > 0.9 and J;_; < 0.9, MixClone selects
K = i as the number of subclonal populations.

In practice, we suggest users use this criterion as a
heuristic guide when analyzing real data, and determine
the number of subclonal populations in conjunction
with regard to other external information.

MixClone software package

Figure 1 is the general workflow of MixClone. MixClone
is a comprehensive software package, including subclo-
nal cellular prevalences estimation, allelic configuration
estimation, absolute copy number estimation and a few
visualization tools. This package is implemented in
Python and is built on top of the PyLOH package, pre-
viously released by us [11]. It also utilizes some features
from the software package JointSNVMix [13], which
have been explicitly indicated in the source code.

Results

In this section, we evaluate the performance of Mix-
Clone on both simulated and real datasets and compare
its performance with two published algorithms: (i)
PyClone, a method based on somatic point mutations,
and (ii) THetA, a method based on somatic copy num-
ber alterations.

Results from simulated data

To generate simulation data, we simulated ten sets of
NGS reads from chromosome 1 of artificial paired nor-
mal-tumor samples, each with 60X coverage. Heterozy-
gous SNP sites from dbSNP [17] were inserted to the
reference human genome to create the artificial normal
genome. Both heterozygous SNP sites and somatic point
mutations from [18] were inserted to the reference
human genome to create artificial tumor genomes. Five
of the artificial tumor genomes contain two subclonal
populations and the other five contain three subclonal
populations. Each artificial tumor genome was randomly
assigned with segmentations, allelic configurations and
subclonal cellular prevalences. We used segmentations
based on both ground truth and BIC-seq [19] as the
input for MixClone. We used ground truth somatic point
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mutation sites and copy numbers as the input for
PyClone and THetA. Details on how reads were simu-
lated and preprocessed are given in Supplementary,
Additional file 1.

MixClone is able to identify the correct subclonal
populations for all the simulated datasets based on
ground truth segmentations. Figure 2 shows the result
of simulated dataset with two subclonal populations.
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Figure 2 Subclonal inference results by MixClone and PyClone on a simulated dataset with two subclonal populations. The x-axis are
the coordinates of Chromosome 1, and the y-axis are subclonal cellular prevalences. The blue horizontal bars represent the subclonal cellular
prevalences estimated by MixClone based on non-diploid segments. Cyan and red horizontal bars represent the ground truth subclonal cellular
prevalences of diploid and non-diploid segments. Yellow dots represent the subclonal cellular prevalences estimated by PyClone based on
somatic point mutations.

MixClone also correctly estimates the subclonal cellular
prevalences of all the segments with SCNAs except for
one small segment in tumor genome case 4 with three
subclonal populations. For results based on BIC-seq seg-
mentations, MixClone still correctly estimates the sub-
clonal cellular prevalences of the majority of the
segments with SCNAs, except for those with copy-
neutral loss of heterozygosity. This is likely due to the
incorrect segmentations of BIC-seq, as BIC-seq relies on
copy number changes and is unable to detect segments
with copy-neutral loss of heterozygosity when they are
adjacent to diploid segments. The complete results of all
the simulated datasets based on both ground truth and
BIC-seq segmentations are shown online through the
github website associated with MixClone. As a compari-
son, we also run PyClone and THetA on the same data-
sets. We were unable to obtain THetA results after
running it for more than 72 hours, likely due to its
exponential scalability with the number of segments. In

Figure 2, PyClone detects one of the two subclonal
populations, whose ground truth cellular prevalence is
20%, but misestimates the other subclonal population,
whose ground truth cellular prevalence is 80%, except
for a few segments. The performance of MixClone on
the other simulated datasets also significantly outper-
forms PyClone. One possible reason might be that the
reads coverage of simulated datasets is not deep enough
to support PyClone’s non-parametric method [5], thus
PyClone tends to report more subclonal populations
due to the statistical variance.

Results from breast cancer sequencing data
We also applied MixClone on a whole-genome breast
cancer sequencing dataset [12]. The details on data pre-
processing are described in Supplementary, Additional
file 1.

Figure 3a shows the subclonal inference results of sam-
ple MB-116. One estimated subclonal cellular prevalence
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Figure 3 Subclonal inference results of sample MB-116. (a) The subclonal cellular prevalences estimated by MixClone, the tumor purities
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represents a segment. The x-axis is the estimated absolute copy number of the segment, and the y-axis is the estimated subclonal cellular
prevalence of the segment. (b) The five log-likelihoods of MB-116 under different number of subclonal populations.

32% is consistent with the tumor purities estimated by
PyLOH and THetA [11], and another estimated cellular
prevalence 66% is consistent with the tumor purity esti-
mated by ABSOLUTE [20] reported in [12].

Figure 3b shows the five log-likelihoods of MB-116
under different numbers of sub-clonal populations. The
magenta, red and yellow curves represent the log-likeli-
hoods corresponding to number 1, 3, and 5, respectively.
Because the distance between the magenta and red
curves (the cumulative log-likelihood increase from 1 to
3) is greater than 0.9 of the distance between the
magenta and yellow curves (the total log-likelihood
increase from 1 to 5), MixClone selected K = 3 as the
number of subclonal populations for MB-116.

For samples without significant subclonal events, Mix-
Clone selected one as the number of subclonal popula-
tions, e.g. MB-106 (Figure 4). In Figure 4b, the ratio of
total log-likelihood increase from 1 to 5 is 1.4 x 1074
which is less than the threshold of 0.01. Therefore, Mix-
Clone selected K = 1 as the number of subclonal popu-
lations for MB-106. The estimated cellular prevalence of
this single population is 83%, which is also consistent
with the tumor purities estimated by PyLOH, ABSO-
LUTE and one result of THetA [11] (Figure 4a).

Besides MB-116, MixClone also detected significant
subclonal events in MB-45 and MB-123. Results of MB-
45 and MB-123 are given in Supplementary, Additional
file 1.

Discussion

In this article, we demonstrated MixClone’s utility using
whole genome sequencing data. However, most of the
existing cancer genome sequencing data are from exome
sequencing. An important future direction is to extend
the current methodology to handle the exome sequen-
cing data. Yet, extending MixClone to whole exome
sequencing data is not trivial, as reads coverage on tar-
geted exonic regions are no longer randomly distributed
due to probe’s variable efficiency [21]. Instead of Poisson
distribution, using Gaussian distribution to model reads
depth ratios between tumor and normal samples might
be more appropriate to account for such additional var-
iances, which has been demonstrated in whole exome
sequencing based copy number analysis [21].

Another important future direction to extend Mix-
Clone is to implement joint analysis based on multiple
samples, which is supported by PyClone and PhyloSub
[5,7]. Multiple samples have been obtained for a single
heterogeneous tumor tissue both temporally and spa-
tially, and joint analysis based on these samples may
reveal additional patterns of the history of tumor pro-
gression [5].

Currently, MixClone runs the subclonal analysis five
times with different number of subclonal populations in
range of 1 to 5 by default. In reality, larger numbers of
subclonal populations may coexist within one tumor
sample, but in this case some of the populations are
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Figure 4 Subclonal inference results of sample MB-106. (a) The subclonal cellular prevalences estimated by MixClone, the tumor purities
estimated by PyLOH, THetA [11], and the tumor purities estimated by ABSOLUTE [20] reported in [12] of sample MB-106. Each blue dot
represents a segment. The x-axis is the estimated absolute copy number of the segment, and the y-axis is the estimated subclonal cellular
prevalence of the segment. (b) The five log-likelihoods of MB-106 under different number of subclonal populations.

very likely to share similar cellular prevalences. Since
Mix-Clone defines different subclonal populations based
on distinct cellular prevalences, those populations with
similar cellular prevalences may not be differentiated by
MixClone. To achieve finer resolution of subclonal
populations, subclonal lineages information would be
necessary to further differentiate each population in
addition to cellular prevalences. And phylogenetic meth-
ods may be possible solutions to explicitly incorporate
subclonal lineages information [7].

Conclusions

In summary, we have developed a new method for infer-
ring tumor subclonal populations by integrating
sequence information gathered from SCNAs and hetero-
zygous SNP sites. We showed that our method outper-
forms existing ones on simulation data, and applying it
to a real breast cancer dataset is able to reveal new sub-
clonal events not discovered before. Compared with
existing methods, our method requires no additional
deep sequencing of somatic point mutation sites.

Additional material

Additional file 1: Complete details of (1) detecting heterozygous SNP
sites, (2) curating the baseline segments, (3) the EM updates of MixClone,
(4) reads simulation for simulated data and (5) reads preprocessing for
both simulated data and breast cancer sequencing data.
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