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Abstract

Background: Next generation sequencing (NGS) technologies have made it possible to exhaustively detect
structural variations (SVs) in genomes. Although various methods for detecting SVs have been developed, the
global structure of chromosomes, i.e., how segments in a reference genome are extracted and ordered in an
unknown target genome, cannot be inferred by detecting only individual SVs.

Results: Here, we formulate the problem of inferring the global structure of chromosomes from SVs as an
optimization problem on a bidirected graph. This problem takes into account the aberrant adjacencies of genomic
regions, the copy numbers, and the number and length of chromosomes. Although the problem is NP-complete,
we propose its polynomial-time solvable variation by restricting instances of the problem using a biologically
meaningful condition, which we call the weakly connected constraint. We also explain how to obtain experimental
data that satisfies the weakly connected constraint.

Conclusion: Our results establish a theoretical foundation for the development of practical computational tools
that could be used to infer the global structure of chromosomes based on SVs. The computational complexity of
the inference can be reduced by detecting the segments of the reference genome at the ends of the
chromosomes of the target genome and also the segments that are known to exist in the target genome.

Background
Next-generation sequencing (NGS) technologies have
drastically reduced the cost of genome sequencing [1]. As
more genomic sequences have become available, it has
become clear that genomes contain many structural varia-
tions (SVs), which include large insertions, deletions, tan-
dem duplications, and translocations. SVs have already
been associated with diverse diseases [2]. For example, the
fusion genes BCRABL and EML4-ALK play key roles in
the development of cancer, and it is believed that other
recurrent rearrangements remain to be discovered [3]. In
cancer genomes, many SVs are occasionally concentrated
in a small region of the genome [4-6]. It has been sug-
gested that a single catastrophic mutational event, known
as chromothripsis [6], causes these concentrations. A study

of prostate cancer also uncovered a distinct type of com-
plex rearrangement termed chromoplexy [7,8], wherein
rearrangements are unclustered but involve multiple chro-
mosomes. Complex genomic rearrangements have even
been observed in germline mutations, resulting in serious
congenital diseases [9]. Because of their importance in
functions of the genome, various methods have been
developed for finding SVs [10-16]. When genomic rear-
rangements are complex, enumerating only individual SVs
is insufficient for elucidating the global structure of chro-
mosomes, i.e., how the segments in a reference genome are
extracted and ordered in an unknown target genome.
Here, the reference genome is known and is a pre-existing
sequenced genome of the same organism, such as the
GRCh38 build of the human genome [17].
In this study, we address the problem of inferring the

global structure of chromosomes based on SV data, which
refer to aberrant adjacencies of genomic regions and copy
number variations (CNVs) in this study. By solving this
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problem, we can determine the order of the genomic
regions in the target genome. This order affects the struc-
ture of proteins if the genomic regions contain coding
regions, and regulation of genes if the genomic regions
include promoters or enhancers. In addition, raw SV data
could be corrected by inferring the global structure of
chromosomes because an optimal global structure would
ignore false positive detection of aberrant adjacencies or
correct wrongly estimated copy numbers. The task of
inferring chromosomes is formulated as an optimization
problem on a graph, which we term as a chromosome
graph. Our contributions are summarized as follows:

• To infer the global structure of chromosomes, we for-
mulate a computational problem that takes into
account the number and length of chromosomes, as
well as aberrant adjacencies and CNVs caused by geno-
mic rearrangements. By taking SV data as the input,
relatively low-depth NGS sequencing can be used.
• We prove that the problem is NP-complete.
• We propose a biologically meaningful restriction that
makes the problem solvable in polynomial time. We
also show an algorithm that solves the restricted
problem.

Oesper et al. [18] presented a pioneering work that
aimed to infer the global structure of chromosomes from
SV data. They formulated the copy number and adjacency
genome reconstruction problem. Their formulation is based
on graphs that they termed interval-adjacency graphs.
These graphs are essentially the same as our chromosome
graphs, except that we used bidirected graphs [19,20]
while they used alternating paths to exclude paths on the
graph that do not correspond to chromosomes. They also
implemented an efficient algorithm called paired-end
reconstruction of genome organization (PREGO) that solved
their problem and obtained promising results. Our work
includes the following results that were not addressed by
Oesper et al. First, we present a formulation that takes
into account the number and length of chromosomes
determined experimentally. Second, we prove that the pro-
blem is NP-complete. Finally, we propose a variation of
the problem that can be solved in polynomial time.
Some methods can also be applied to analyze the global

structure of genomes by using non-SV data. First, de novo
sequence assembly aims at reconstructing target genomes
from raw NGS sequences [19,21-25]. It includes a step to
order fragments of genomes obtained by assembling NGS
sequences. The step is usually implemented as an optimi-
zation problem, involving searching for paths that cover
all vertices or all edges corresponding to substrings of gen-
ome sequences [19,21]. By contrast, we allow some ver-
tices and edges to be ignored because some portions of
the reference genome might not appear in the target

genome. Second, reference-assisted assembly [26], also
known as comparative assembly [27], aims at ordering seg-
ments of an unknown target genome by using known gen-
omes of other organisms. By contrast, we order segments
so that the chromosomes in the solution are most consis-
tent with the SV data and the experimentally determined
number and length of chromosomes. Finally, methods
based on permutations of integers [28] compare two gen-
omes represented by two sequences of integers corre-
sponding to genes or markers in the genome. Instead of
using such sequences, we exploit SV data.
The rest of this paper is organized as follows. First, we

present types of experimental data from which we infer the
global structure of chromosomes. Next, we give our formu-
lation of the problem of inferring the global structure of
chromosomes, and show that the problem is NP-complete.
Then, we show a variation of the problem that is solvable
in polynomial time. Finally, we discuss our results and state
our conclusions.

Results
Experimental data
We assume the following experimental data as input.
Aberrant adjacencies
In the target genome, distant segments in the reference
genome may be adjacent because of rearrangements
(Figure 1). Such aberrant adjacencies are detected by using
NGS technologies as follows. First, NGS technologies can
generate read pairs that are a few hundred bases apart from
each other in the target genome. If two reads of a pair are
not mapped to the reference genome with the expected
orientations and mapped distance, the pair is called a
discordant pair and is likely to be caused by SVs [12-14].
Second, if the alignment of a read and reference genome is
split into more than one portion, such a split read also indi-
cates a rearrangement [16]. A breakpoint is a position at a
boundary of a rearrangement. Here, we ignore small differ-
ences between the real breakpoints and their estimations.
Copy numbers
The number of occurrences of a subsequence in the refer-
ence genome may change because of rearrangements. This
phenomenon results in copy number variations (CNVs).
Traditionally, CNVs have been analyzed by using DNA
microarrays [11]. Several recent methods detect CNVs by
finding changes in the depth of coverage of NGS sequences
[4,15]. Although tumor samples are usually a mixture of
normal cells and various tumor cells, the copy numbers of
a cancer cell can still be estimated by single-cell analysis
[29]. In this paper, for the sake of conciseness, the bound-
aries of CNVs are also called breakpoints.
Number of chromosomes and truncations
Identifying chromosomes and finding aberrant chromo-
somes by microscopy is an important part of clinical
diagnostics [30]. The number of chromosomes, denoted
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by nN in this paper, is available after inspection.
Throughout this paper, we assume that nN ≥ 1. In addi-
tion, we also take into account the number of chromoso-
mal truncations, which we denote as nT. Chromosomal
truncations are detected as a decrease in copy numbers
without aberrant adjacencies. We consider nN and nT to
improve the inference of the global structure of chromo-
somes from SV data.
Chromosome length
The length of chromosomes can be estimated experi-
mentally from flow karyotyping, and, approximately,
from microscopic images [31]. Here, the estimated
length is denoted by li for 1 ≤ i ≤ NL, where NL(≥ nN)
is the maximum possible number of chromosomes.

Problem definition
Any instance of our problem is modeled as a graph that
we term a chromosome graph. The graph contains ele-
ments derived from the reference genome and experimen-
tal data. Each vertex corresponds to a location in the
reference genome. In addition, each edge corresponds to
either a segment in the reference genome, an adjacency of

flanking segments in the reference genome, or an aberrant
adjacency in the target genome caused by rearrangements.
We assume that the target genome is a set of chromo-

somes, each of which is a concatenation of segments in
the reference genome. Each chromosome in the target
genome is represented as a path on the graph, and these
paths explain how segments in the reference genome are
incorporated into the target genome. The goodness of
the estimated target genome is measured by a cost func-
tion, and we search for an optimal set of chromosomes
that minimizes this cost function.
We first define a graph that contains some of elements

described above. Then, we extend the graph to a chromo-
some graph. Finally, we present the formal definition of
the problem.
Prototype chromosome graph
We first construct an undirected graph called a prototype
chromosome graph, G = (V,E) (Figure 2). Let NC be the num-
ber of chromosomes of the reference genome and ni be the
number of breakpoints in the i-th chromosome of the refer-
ence genome. Then, V contains the following vertices.

Figure 1 Aberrant adjacencies of genomic regions. Thick vertical
lines represent chromosomes in the reference genome, circles
represent breakpoints, small black boxes represent NGS reads, solid
curved lines represent paired-reads, dashed curved lines represent
split reads, and thin solid oblique lines represent aberrant
adjacencies. Aberrant adjacencies are detected by using two types
of NGS reads abnormally mapped to the reference genome:
discordant pairs (three pairs from above), and split reads (two pairs
from below). Yasuda and Miyano Page 11 of 11

Figure 2 An example of a prototype chromosome graph. Thick
vertical edges represent edges in ES that correspond to segments in the
reference genome, oblique edges represent edges in EL that correspond
to aberrant adjacencies. Vertices surrounded by dashed lines belong to
V5, VM, and V3, read from the bottom of the graph to top.
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• Vertices corresponding to breakpoints:

VM = {vi,j|1 ≤ i ≤ NC, 1 ≤ j ≤ ni}.
• Vertices corresponding to the beginning of chro-
mosomes in the reference genome:

V5 = {vi,0|1 ≤ i ≤ NC}.
• Vertices corresponding to the end of chromosomes
in the reference genome:

V3 = {vi,ni+1 |1 ≤ i ≤ NC}.
Then, we define V = V5 ∪ V3 ∪ VM.
Next, we define a set of edges, E. We make the follow-

ing two types of edges.

• Edges corresponding to segments between two
breakpoints that are next to each other in the refer-
ence genome. For each 1 ≤ i ≤ NC and 0 ≤ j ≤ ni, we
make an edge ei,j = (vi,j, vi,j+1).
• Edges corresponding to aberrant adjacency of two
segments in the reference genome. Let NA be the
number of detected aberrant adjacencies. For the
k-th aberrant adjacency (1 ≤ k ≤ NA) that links posi-
tions corresponding to vi1,j1 and vi2,j2, we make an
edge eLk = (vi1,j1 , vi2,j2).

Then, we define

ES = {ei,j|1 ≤ i ≤ NC, 0 ≤ j ≤ ni},
EL = {eLk|1 ≤ k ≤ NA},
E = ES ∪ EL.

Chromosome graph
In a prototype chromosome graph, a path might visit two
edges in EL contiguously. Such a path does not correspond
to a real chromosome. To exclude such a path we use a
technique similar to that of Oesper et al. [18]. Although
Oesper et al. [18] used alternating paths, their formulation
can be represented by using a bidirected graph whose
edges have directions at both ends [19,32]. We directly
define our graph by using a bidirected graph (Figure 3).
Let d(e, v) ∈ {+,−} be the direction of an edge e at a vertex
v, and −d(e, v) be the opposite direction of d(e, v).

• Each vertex vi,j ∈ VM is split into two vertices v+i,j
and v−i,j. The set VM is redefined as

VM = {v−i,j, v+i,j|1 ≤ i ≤ NC, 1 ≤ j ≤ ni}.

Vertices in V5 and V3 are renamed so that

V5 = {v−i,0|1 ≤ i ≤ NC},
V3 = {v+i,ni+1 |1 ≤ i ≤ NC}.

• An edge ei,j = (vi,j, vi,j+1) ∈ ES is reconnected to v−i,j and
v+i,j+1. In addition, d(ei,j, v−i,j) = − and d(ei,j, v+i,j+1) = +.
• Let e ∈ EL be an edge connected to vi,j in the pro-
totype chromosome graph. If e corresponds to an
aberrant adjacency involving the segment that
stretches toward vi,j+1, e is reconnected to v−i,j and
d(e, v−i,j) is set to ‘+’. Otherwise, e is reconnected to
v+i,j and d(e, v+i,j) is set to ‘−’.
• We add the following set of new edges:

ER = {êi,j = (v+i,j, v
−
i,j)|1 ≤ i ≤ NC, 1 ≤ i ≤ ni}.

Directions are set so that d(êi,j, v+i,j) = − and
d(êi,j, v−i,j) = +.

The modified graph represents a chromosome graph.

Figure 3 An example of a chromosome graph. Thin vertical
edges represent edges in ER. Arrowheads represent the ‘+’-direction,
whereas ends of edges without arrowheads represent ‘−’-direction.
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Paths and chromosomes
A path c = v1e1v2e2v3 ... elvl+1 on a chromosome graph
G is an alternating sequence of vertices and edges,
which has the following properties:

• The first and the last of c are vertices.
• Any subsequence of the form ekvkek+1 (1 ≤ k ≤ l)
means that d(ek, vk) = −d(ek+1, vk).

A path c is said to visit an edge e if c contains e. Simi-
larly, c is said to visit a vertex v if c contains v. When a
path is written as a sequence of vertices and edges, for
simplicity, we omit the notation of the vertices if they are
clear. Let C = {c1, c2,..., c|C|} be a multiset of paths on G.
We define C as a multi-set so that more than one identical
path can exist. In addition, let m(c, e) be the number of
times c visits an edge e, and m(C, e) =

∑
ci∈C m(ci, e).

A cycle is a path whose first and last vertices are identical
and the directions of the first and the last edges at the ver-
tex are opposite. A chromosome on G is a path whose first
and last edges are both in ES.
Copy numbers and lengths
Two integers are assigned to each e ∈ E. First, n(e) for
e ∈ ES represents an experimentally estimated copy
number of the corresponding segment in the reference
genome. Second, |e| for e ∈ ES represents the length of
the corresponding segment in the reference genome.
For e ∈ EL ∪ ER, we set n(e) and |e| to 0. The length of
a path c is defined as |c| =

∑
e∈E |e|m(c, e). To simply

describe all properties of e together, we use the follow-
ing notation:

e = 〈d(e, v1)v1, d(e, v2)v2, n(e), |e|〉.

Upper bound on parameters
Campbell et al. [4] presented examples of amplified
regions in cancer cells. The copy numbers were less than
100 in these regions. Therefore, we assume that the copy
numbers are in at most hundreds. We also assume that
short repeat elements are masked in advance in order to
exclude segments that appear spuriously. Based on the
details given above, we assume that nN, nT, and n(e) for
e ∈ ES are all less than a fixed constant U. The value of U
does not have to be determined because U is only used in
the analysis of computational complexity.
Formulation of the problem
To find an optimal set of chromosomes, we define an
optimization problem over a chromosome graph. We
define a cost function to be used as a target function of
the optimization problem. This function imposes costs
on the number of chromosomes, the number of chro-
mosomal truncations, and the number of visits to edges,
penalizing for deviations from those that are experimen-
tally expected.

Let C = {c1, c2,..., c|C|} be a multi-set of chromosomes
on G, and wN(C) be the cost of the difference between
nN and |C|. Also let Tr(C) be the number of ends of
chromosomes in VM, and wT (C) be the cost of the dif-
ference between nT and Tr(C). In addition, w(e, x) for
e ∈ ES is defined as the cost when e is visited x-times.
For e ∈ EL ∪ ER, w(e, x) is set to 0.
We assume that wN(C), wT(C), and w(e, x) for e ∈ ES

monotonically increase as ||C| − nN|, |Tr(C) − nN|, and
|x − n(e)| increase, respectively. Then, we define the
cost function W(C) as follows:

W(C) = wN(C) + wT(C) +
∑
e∈E

w(e, m(C, e)). (1)

We assume that each term is 0 if and only if

|C| = nN ,

Tr(C) = nT ,

m(C, e) = n(e) for e ∈ ES.

⎫⎪⎬
⎪⎭

(2)

With these notations, we formulate the problem of
inferring the global structure of chromosomes as
follows:
Definition 1 (Chromosome problem (ChrP)) Suppose

that we are given a chromosome graph G = (V,E), a cost
function W(C), and parameters li (1 ≤ i ≤ NL), where NL

is the maximum possible number of chromosomes. Then,
find a multi-set of chromosomes C on G that minimizes
W(C) under the constraint that |ci| ≤ li for ci ∈ C.
Although a similar problem was proposed previously

[18], its computational complexity was not analyzed.
Theorem 1 ChrP is NP-complete.
In the Methods section, we prove Theorem 1.

Polynomial-time solvable variation
We propose a variation of ChrP that is solvable in poly-
nomial time. For e ∈ EL ∪ ER, it is highly likely that m
(C, e) ≥ 1 if e is supported by a large number of paired-
reads. Therefore, it is worth considering a variation in
which some edges in EL∪ ER must appear in the target
genome. We refer to the edges as required edges. In
addition, because chromosomal truncations can be
detected, it is also worth considering a variation in
which we know where the ends of the chromosomes of
the target genome exist in the reference genome.
Because the definition of W(C) is abstract, we focus on
a cost function such that

wN(C) = QN||C| − nN|,
wT(C) = QT|Tr(C) − nT |,
w(e, x) = |e||x − n(e)|,

⎫⎪⎬
⎪⎭

(3)

where QN and QT are constants given as parameters.
The values of QN and QT are tuned in advance so that
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known global structures of genomes are well
reconstructed.
Weakly connected constraint
Let G = (V, E) be a general bidirected graph. A sub-
graph g of G is a weakly connected component if g is a
connected component when all directions are removed
[33]. In addition, g is maximal if g is not a subgraph of
a larger weakly connected component. For a subset E’ of
E, we define CC(G,E’) as a set of maximal weakly con-
nected components of a graph induced from G by
removing the edges not in E’.
Definition 2 (Weakly connected constraint (WCC))

Let G = (V, E) be a chromosome graph. Also let VW and

EW be subsets of V and E, respectively. Each g ∈ CC(G,
EW) is good if g contains at least one vertex in VW.
Then, G satisfies the weakly connected constraint
(WCC) if all g ∈ CC(G, EW) are good.
We use WCC by setting VW to a set of vertices that cor-

respond to ends of chromosomes in the target genome,
and EW = {e ∈ ES|n(e) ≥ 1} ∪ {e ∈ EL ∪ ER|e is required}.
See Figure 4 for an example. An instance that satisfies
WCC can be obtained as follows. First, VW is obtained by
finding the positions of chromosomal truncations, as well
as the ends of the chromosomes of the reference genome
that remain in the target genome. Because a chromosome
that does not include detected ends can be in a solution,

Figure 4 An example of a chromosome graph that satisfies WCC. Gray circles are vertices in VW and thick arrows are edges in EW.
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VW does not need to contain all ends of chromosomes in
the target genome. We assume that nT ≥ |VW|. Next, if
g ∈ CC(G, EW) is not good, edges e ∈ E on some path con-
necting g and good g’ ∈ CC(G, EW) are added to EW.
To do this, if possible, we experimentally confirm that n
(e) ≥ 1 if e ∈ ES or that e is required if e ∈ EL ∪ ER. Finally,
if some g ∈ CC(G,EW) that are not good still remain, edges
in g are forcibly removed from EW by setting n(e) to 0 if
e ∈ ES or by changing e not required if e ∈ EL ∪ ER.
Definition 3 (Chromosome problem with WCC

(ChrW)) Let G = (V,E) be a chromosome graph that satis-
fies WCC with respect to some VW ⊂ V and EW ⊂ E.
Then, find a set C of chromosomes on G that minimizes
W(C) when (3) is satisfied.
Theorem 2 The problem ChrW can be solved in

O(|E|2 log |V | log |E|) time.
See the Methods section for the algorithm that solves

ChrW.

Restriction on the length of chromosomes
In ChrW, we removed restrictions on the length of
chromosomes. This relaxation is necessary to make the
problem solvable in polynomial time.
Definition 4 (ChrW with restriction on length (ChrL))

ChrW with restriction on length (ChrL) is the same pro-
blem as ChrW, except that the length of each chromosome
ci is bounded by a parameter li (1 ≤ i ≤ NL), where NL is
the maximum possible number of chromosomes.
Theorem 3 The problem ChrL is NP-complete.
See the Methods section for proof that problem ChrL

is NP-complete.

Discussion
Handling practical situations
Solutions to the chromosome problems are affected by
errors in given SV data. However, some errors can be miti-
gated as follows. First, a false positive aberrant adjacency
may be correctly ignored in the optimal solution because a
set of chromosomes that uses such an adjacency is
expected to have a larger cost than those ignoring the
adjacency. Second, the effects of a missing aberrant adja-
cency may be limited to segments including its ends
because a chromosome that contains the missing adja-
cency may be recognized as two split chromosomes.
Finally, there is a chance that incorrect copy numbers will
be corrected if they are inconsistent with other SVs.
In addition to segments in the reference genome, our

method can handle newly inserted fragments not in the
reference genome. Such a fragment is incorporated
Yasuda and Miyano Page 6 of 11 into a chromosome
graph as a new chromosome. In particular, an edge e,
where |e| is equal to the length of the fragment, is added
to ES, and edges that connect vertices in a chromosome
graph to e are added to EL. If any breakpoints are

contained within the new fragment, vertices and edges
are added to VM and ER, respectively. If a breakpoint cor-
responds to any aberrant adjacency, edges are also added
to EL.
If a gene duplication has occurred in the target gen-

ome, it causes an increased copy number and aberrant
adjacencies flanking the gene. If it is a tandem duplica-
tion, an aberrant adjacency connecting the upstream
and downstream regions of the gene should exist. If
these SVs exist in given SV data, any solution to our
problem has to take into account gene duplication.

Limitations
A mixture of many cells cannot be handled because it is
difficult to correctly estimate copy numbers. However,
our method may generate meaningful results for data
obtained from multiple cells if the sum of copy numbers
is correctly estimated. In this case, the solution is a mix-
ture of chromosomes of all cells in the sample, although
some of the chromosomes might be fused.
Note that many optimal solutions may exist depending

on how an optimal circulation is converted into chromo-
somes. (Figure 5). Choosing the right solution requires
additional information such as the mate-pairs of long
genomic fragments, or the result of experiments invol-
ving such techniques as fluorescence in situ hybridization
(FISH) that indicate whether or not distant genomic
regions are in the same chromosome.

Toward implementation
For implementation, we require an algorithm that can cal-
culate an optimal circulation on the bidirected graph. It
would be difficult to implement Gabow’s algorithm
because no efficient implementation is currently known.
Another option would be to use Medvedev’s algorithm
[19]. Any solver for general integer programming could
also be used, as demonstrated by Oesper et al. [18],
although the computational time bound is not guaranteed.

Conclusions
Continuing technological innovations in DNA sequen-
cing will, in future, allow the prediction of an enormous
number of SVs. However, detecting only individual SVs
cannot reveal the global structure of chromosomes.
Here, we formulated the problem of inferring chromo-
somes from the aberrant adjacencies of genomic regions,
copy number variations (CNVs), and the number and
length of chromosomes. The problem, which we term as
the chromosome problem (ChrP), was proved to be NP-
complete. However, if an instance of ChrP satisfies a
constraint, which we call a weakly connected constraint
(WCC), and if the length of chromosomes is ignored,
the problem can be solved in O(|E|2 log |V | log |E|)
time.
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This work provides a theoretical basis for the develop-
ment of practical computational tools that are emerging
for use in analysis of the global structure of chromo-
somes based on SVs.

Methods
In this section, we show how we proved the theorems
stated in the Results section.

Proof of Theorem 1
We first present an upper bound on the size of an opti-
mal solution of ChrP to show that ChrP is in NP. Then,
we prove that ChrP is NP-hard.
Lemma 1 Let G = (V, E) be a chromosome graph.

Also, let C be a multi-set of chromosomes on G that
minimizes W(C) such that |ci| ≤ li for ci ∈ C. Then, C
has at most U(4|V| + 1)(|E| + 1) edges.
Proof Let c ∈ C be a chromosome in C. We define an

edge e in c as non-excessive if e ∈ ES and m(C, e) ≤ n(e),
and excessive otherwise. Let tc be the number of non-
excessive edges visited by c. If tc >0, c can be written as
c = p1e1p2e2 ... etcptc+1, where ek (1 ≤ k ≤ tc) is a non-
excessive edge and pk (1 ≤ k ≤ tc+1) is a possibly empty
path that contains only excessive edges (Figure 6). If pk
contains a cycle as its subpath, the cycle can be removed
to decrease W(C), a contradiction. Accordingly, pk does
not contain a cycle. This implies that pk visits at most
2|V| vertices and, thus, 2|V| edges. Therefore, at most,
4|V | excessive edges are visited for each non-excessive
edge. Note that a non-excessive edge e can be visited, at
most, n(e)-times. Therefore,

∑
c∈C tc ≤

∑
e∈Es n(e).

Chromosomes such that tc = 0 can exist only if they
contribute to the decrease of the first or the second
term of W(C) defined by (1). Accordingly, the number
of such chromosomes is, at most, nN +nT. In addition, a
chromosome c, such that tc = 0, does not contain any
cycles because such a cycle can be removed to decrease
W(C). Therefore, at most, c visits 2|V| vertices and,
thus, 2|V| edges.
Consequently, C contains, at most, 2|V|(nN +nT ) +

(4|V| +1) Pe***ES n(e) ≤ U(4|V |+1)(|E|+1) edges.

Lemma 2 The problem ChrP is in NP.
Proof Once an optimal solution C is given, whether or

not W(C) is greater than a given constant can be deter-
mined in O(|V ||E|) time by Lemma 1. □
Lemma 3 The problem ChrP is NP-hard.
Proof The Hamiltonian Cycle problem (HC) is a pro-

blem of finding a cycle that visits each vertex of a graph
exactly once, and is a well-known NP-complete problem
[34]. Here, we reduce HC to ChrP. Consider HC on a
directed graph H = (V’, E’), where V ′ = {v′1, v′2, . . . , v′|V ′ |}
is a set of vertices and E’ is a set of edges. We construct
a chromosome graph G = (V, E) from H (Figure 7),
where

V =
⋃

1≤i≤|V ′|
{v−i,0, v+i,1, v−i,1, v+i,2, v−i,2, v+i,3}

is a set of vertices, and E = ES ∪ EL ∪ ER is a set of
edges. Here, ES consists of

e1,0 = 〈−v−1,0, +v
+
1,1, 1, 1〉,

e1,1 = 〈−v−1,1, +v
+
1,2, 2, 1〉,

e1,2 = 〈−v1,2, +v+1,3, 1, 1〉,
ei,0 = 〈−vi,0, +v+i1, 0, 1〉 (2 ≤ i ≤ |V ′|),
ei,1 = 〈−v−i,1, +v

‡
i2, 1, 1〉 (2 ≤ i ≤ |V ′|),

ei,2 = 〈−v−i,2, +v
‡
i,3, 0, 1〉 (2 ≤ i ≤ |V ′|).

ER consists of

êi,1 = 〈−v+i,1, +v
−
i,1, 0, 0〉(1 ≤ i ≤ |V ′|),

êi,2 = 〈−v+i,2, +v
−
i,2, 0, 0〉(1 ≤ i ≤ |V ′|).

EL consists of

ei′:i = 〈−v+i,2, +v
−
i,1, 0, 0〉 ((v′i, v

′
i) ∈ E′).

In addition, we set nN = 1, nT = 0, and li = |V’| + 3
for any i. Then, we prove that H has a Hamiltonian
cycle if, and only if, ChrP on G has a solution C such
that W(C) = 0. Suppose that h is a Hamiltonian cycle on
H. Let c be a chromosome that begins with e1,0ê1,1e1,1

Figure 5 An example of a chromosome graph that has more than one optimal solution. Bold digits represent an optimal circulation on this
graph. The chromosome graph in this figure has two optimal solutions {e1, 0eL1e2, 1eL2e1,2, e2,0ê2,1e2,1ê2, 2e2,2} and {e1,0eL1e2, 1ê2,2e2,2, e2,0ê2,1e2,1eL2e1,2}.
Edges in EN ∪ ED are omitted, and the flow on each edge in ED has been subtracted from the flow of a corresponding edge in ES.
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and then visits ei′ :iei,1 in the order that edges (vi′ , vi)
appear in h from i’ = 1, and finally ends with e1,1ê1,2e1,2.
Then, a set of a single chromosome C = {c} satisfies
W(C) = 0 and |c| = |V ′| + 3 ≤ λ1.
Conversely, let C be a solution of ChrP that satisfies

W(C) = 0. Because (2) holds, |C| = 1, Tr(C) = 0, and m
(C, e) = n(e). Let c be the only chromosome in C.
Because n(e1,1) = 2 and n(ei,1) = 1 for 2 ≤ i ≤ |V’|, a
path that visits vertices v′i ∈ V ′ in the order that ei,1
appears in c is a Hamiltonian cycle on H. □
Theorem 1 directly follows Lemma 2 and 3.

Proof of Theorem 2
Circulation on a bidirected graph
Let G = (V, E) be a bidirected graph, and av,e for v ∈ V
and e ∈ E be an integer such that

av,e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 if e has two′ +′ -ends at v,
1 if e has only one′ +′ -end at v,

−1 if e has only one′ −′ -end at v,

−2 if e has two′ −′ -ends at v,
0 if e is not connected to v.

Figure 6 An example of a chromosome that consists of non-excessive and excessive edges. Straight arrows represent non-excessive
edges, while jagged lines represent sequences of excessive edges.
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Also let bv be an integer defined for each v ∈ V, Z be
the set of non-negative integers, and l(e) and u(e) be
two non-negative integers assigned to each edge e ∈ E
called a lower bound and an upper bound, respectively.

Unless otherwise specified, in this study l(e) = 0 and
u(e) = ∞.
Definition 5 A bidirected flow (biflow) [19, 20] is a

mapping f : E ® Z such that

Figure 7 An instance of ChrP for solving the Hamiltonian Cycle problem (HC). In this graph, solid edges are constructed for each vertex in
a graph H of HC, whereas dashed edges correspond to edges in H.
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l(e) ≤ f (e) ≤ u(e) for each e ∈ E, (4)

∑
e∈E

av,ef (e) = bv for each v ∈ V. (5)

The cost of f is defined as W(f) = ∑e∈E w(f, e), where
w(f, e) is a cost of f on e ∈ E. A circulation is a biflow
such that bv = 0 for any v ∈ V.
Circular chromosome graph
Definition 6 (Circular chromosome graph) Let G = (V,E)
be a chromosome graph, and let vN and vT be new ver-
tices. In addition, let EN be a set of the following edges: for
1 ≤ i ≤ NC,

et(v−i,0) = 〈−vN, +v−i,0, 0, 0〉,
et(v+i,ni) = 〈−vN ,−v+i,ni , 0, 0〉,
et(v+i,j) = 〈−vT ,−v+i,j, 0, 0〉 (1 ≤ j ≤ ni),

et(v
−
i,j) = 〈−vT , +v

−
i,j, 0, 0〉 (1 ≤ j ≤ ni),

and

eT = 〈−vN, +vT , nT , QT〉,
eN = 〈+vN , +vN, nN , QN〉.

Also, let ED be a set of the following edges for e ∈ ES ∪
{eN, eT}:

ē = 〈−d(e, vi1,j1)vi1,j1 ,−d(e, vi2,j2 )vi2,j2 , 0, |e|〉,
where vi1,j1 and vi2,j2 are vertices at the ends of e. The

graph G̃ = (V ∪ {vN, vT},E ∪ EN ∪ ED)is called a circular
chromosome graph.
See Figure 8 for an example. Let n(eN) = nN and n(eT) =

nT. For e ∈ ES ∪{eN, eT}, we set l(e) = n(e), l(ē) = 0, and
u(ē) = n(e). For e ∈ EL ∪ ER, we set l(e) = 1. We also set l
(et(v)) to 1 for v ∈ VW because these edges have to be vis-
ited in the solution.
Lemma 4 Let w(f, e) = |e|f(e) and W0 = QNnN + QT

nT + ∑e∈E |e|n(e). For any multi-set C of chromosomes
on G, there is a circulation f on G̃ such that

W(f ) = W(C) +W0. (6)

Conversely, for any circulation f on G̃that minimizes W
(f), there is a multi-set C of chromosomes on G that
satisfies (6). In addition, C can be calculated in
O(

∑
e∈E∪EN∪ED f (e))time.

Let E+ = {e ∈ E ∪ EN ∪ ED|l(e) ≥ 1 or n(e) ≥ 1}. Note
that CC(G̃,E+) has only one weakly connected compo-
nent because of WCC.
Proof First, we show that for any multi-set C of chro-

mosomes on G, there exists a circulation f on G̃ that
satisfies (6). Let End(v) be the number of chromosomes
that begin or end with v. Consider the following f:

f (e) = max{n(e), m(C, e)} (e ∈ ES),
f (ē) = max{0, n(e) − m(C, e)} (e ∈ ES),
f (e) = m(C, e) (e ∈ EL ∪ ER),

f (et(v)) = End(v) (v ∈ V),
f (eN) = max{nN, |C|},
f (ēN) = max{0, nN − |C|},
f (eT) = max{nT , Tr(C)},
f (ēT) = max{0, nT − Tr(C)}.

Then, f is a circulation on G̃ because f satisfies (4) and
(5). Thus, we observe that

w(e, m(C, e)) = |e|f (e) + |e|f (ē) − |e|n(e),

for e ∈ ES, and

wN(C) = |eN|f (eN) + |eN|f (ēN) − QNnN,

wT(C) = |eT |f (eT) + |eT |f (ēT) − QTnT .

Therefore, because |e| = 0 for e ∈ EL∪ ER∪{et(v)|v ∈ V}
and w(f, e) = |e|f(e), f satisfies (6).
Conversely, let f be a circulation on G̃ that minimizes

W(f). We show how to construct a multi-set C of chro-
mosomes on G that satisfies (6).
First, for e ∈ ES ∪ {eN, eT}, we subtract f (ē) from f(e),

and also set f (ē) to 0.
Second, we construct a set R of cycles such that

m(R, e) = f(e) for any edge e in G̃. For directed graphs,
the flow decomposition theorem [35] ensures that such
R can be obtained in O(

∑
e∈E∪EN∪ED f (e)) time. This is

also true for bidirected graphs.
Third, we merge cycles in R. Whenever a vertex is

shared by two cycles in R, they are merged into a single
cycle. Because of WCC, CC(G̃,E+) consists of only one
weakly connected component. This implies that all
cycles that contain edges in E+ can be merged into a
single cycle. Note that any r ∈ R contains at least one
edge in E+, because otherwise r can be removed to
decrease W(f). Therefore, all cycles in R can be merged
into a single cycle r̃.
Finally, let C be a multi-set of paths generated by

removal of vN, vT, and edges in EN from r̃. Because c ∈ C
is connected to edges in EN in r̃, the first and last edge of
c is in ES due to the directions of these edges. Accord-
ingly, c is a chromosome. Therefore, C is a multi-set of
chromosomes on G.
All of these steps can be completed in

O(
∑

e∈E∪EN∪ED f (e)) time. In addition, we observe that
the following equations hold:

|C| = f (eN) − f (ēN),

Tr(C) = f (eT) − f (ēT),

m(C, e) = f (e) + f (ē)(e ∈ ES).
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Accordingly, w(e,m(C, e)) = w(f , e) + w(f , ē) + |e|n(e)
for e ∈ ES, and

wN(C) = w(f , eN) + w(f , ēN) +QNnN,

wT(C) = w(f , eT) + w(f , ēT) +QTnT ,

w(e, m(C, e)) = 0(e ∈ EL ∪ ER).

Therefore, C satisfies (6).
By Lemma 4, the solution of ChrW can be obtained

by calculating a circulation f on G̃ that minimizes W(f).
By Lemma 1, setting u(e) = U(4|V| + 1)(|E| + 1) does
not affect the solution. In addition, |EN| = O(|E|) and
|ED| = O(|E|). Accordingly, the circulation f can be cal-
culated in O(|E|2 log |V| log |E|) time by using Gabow’s

algorithm [20]. Therefore, the optimal solution can be
calculated in O(|E|2 log |V| log |E|) time.

Proof of Theorem 3
ChrL is in NP because of Lemma 1.
Here, we show that the well-known PARTITION pro-

blem [34] can be reduced to ChrL. Let n be a positive
integer and S = {i ∈ Z|1 ≤ i ≤ n}. Also, let s(i) be an
integer function defined for i ∈ S such that Yasuda and
Miyano Page 9 of 11 s(i) > 0, and SΣ = ∑i∈S s(i). The
problem of finding a subset S’ ⊂ S such that

∑
i∈S′

s(i) =
∑

i∈S−S′
s(i) = S�/2

Figure 8 An example of a circular chromosome graph. The problem of optimizing multiple chromosomes is converted to the problem of
finding a cycle on this graph. For simplicity, we omitted et(·), except for the leftmost chromosome in the reference genome.
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is called the partition problem (hereafter referred to as
PARTITION) [34]. It is well known that PARTITION is
NP-complete. We reduce PARTITION to ChrL by con-
structing a chromosome graph whose solution for ChrL
contains two chromosomes that correspond to two sub-
sets of a solution of PARTITION.
Let G = (V, E) be a chromosome graph, where

V =
⋃

1≤i≤n+1

{v−i,0, v+i,1, v−i,1, v+i,2, v−i,2, v+i,3}

is a set of vertices, and E = ES ∪ EL ∪ ER be a set of
edges. Here, ES consists of

ei,0 = 〈−v−i,0, +v
+
i,1, 1, 9S�〉 (1 ≤ i ≤ n),

ei,1 = 〈−v−i,1, +v
+
i,2, 2, s(i)〉 (1 ≤ i ≤ n)

ei,2 = 〈−v−i,2, +v
+
i,3, 1, S� − s(i)〉 (1 ≤ i ≤ n)

en+1,0 = 〈−v−n+1,0, +v
+
n+1,1, 2, 9S�/2〉,

en+1,1 = 〈−v−n+1,1, +v
+
n+1,2, n + 2, 0〉,

en+1,2 = 〈−v−n+1,2, +v
+
n+1,3, 2, 5S�〉.

In addition, ER consists of

êi,1 =
〈−v+i,1, +v

−
i,1, 0, 0

〉
(1 ≤ i ≤ n + 1),

êi,2 =
〈−v+i,2, +v

−
i,2, 0, 0

〉
(1 ≤ i ≤ n + 1),

and EL consists of

eLi =
〈
+v−i,1,−v+n+1,2, 0, 0

〉
(1 ≤ i ≤ n),

eLi =
〈−v+i,2, +v

−
n+1,1, 0, 0

〉
(1 ≤ i ≤ n).

We set li = 10SΣ for any i ≥ 1, QN = QT = 100SΣ, nN
= n+2, and nT = 0. See Figure 9 for an example. In addi-
tion, we set VW to V5 ∪ V3, and EW to E by making all
edges in EL ∪ ER required so that G satisfies WCC.
We show that PARTITION for S has a solution S’ ⊂ S

if, and only if, there exists a solution C of ChrL such
that W(C) = 0. First, suppose that PARTITION has a
solution S’. Let rS ’ be a cycle generated by merging
cycles en+1,1eLiei,1e′Li for i ∈ S’. We define rS-S ’ in the
same way. Consider a multi-set C = {c1,..., cn+2}, where
ci ∈ C is a chromosome on G such that

Figure 9 An example of a chromosome graph for solving the partition problem (PARTITION). In this example, n = 4.
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ci = ei,0êi,1ei,1êi,2ei,2 (1 ≤ i ≤ n),

cn+1 = en+1,0ên+1,1rS′en+1,1ên+1,2en+1,2,

cn+2 = en+1,0ên+1,1rS−S′en+1,1 ên+1,2en+1,2.

Then, W(C) = 0 because |C| = n + 2, Tr(C) = 0, and
m(C, e) = n(e) for e ∈ ES. In addition, C visits all
required edges. Furthermore, |ci| = 10Σ ≤ li for 1 ≤ i ≤
n + 2.
Conversely, suppose that ChrL for G has an optimal

solution C that satisfies W(C) = 0. Because W(C) = 0,
we obtain |C| = n + 2, Tr(C) = 0, and m(C, e) = n(e) for
e ∈ E. Because ∑e∈E|e|n(e) = 10(n + 2)SΣ, |c| = 10Σ for
each c ∈ C. Let ci be a chromosome that begins with ei,0
for 1 ≤ i ≤ n. The other two chromosomes are denoted
by cn+1 and cn+2. Then, c1 begins with e1,0ê1,1e1,1. Sup-
pose that c1 does not visit ê1,2e1,2. Then, there is a chro-
mosome ci that visits ê1,2e1,2, whose previous edge has
to be e1,1 in ci. Therefore, for some paths p1 and p2,

c1 = e1,0ê1,1e1,1p1
ci = p2e1,1ê1,2e1,2.

(7)

Because of (7), |c1| = |e1,0| + |ê1,1| + |e1,1| + |p1| = 10S� = |e1,0| + |ê1,1| + |e1,1| + |ê1,2| + |e1,2|.
Therefore, |p1| = |ê1,2| + |e1,2|. We modify C so that

c1 = e1,0ê1,1ê1,2e1,2,
ci = p2e1,1p1.

The modified C still satisfies the required conditions.
After this modification is repeated for 2 ≤ i ≤ n until no
more modifications can be applied, C satisfies
ci = ei,0ê1,1ei,1êi,2ei,2 for 1 ≤ i ≤ n. Another chromosome
exists that visits ei,1 for each 1 ≤ i ≤ n, which is one of cn+1
and cn+2. Let S’ = {i|m(cn+1, ei,1) >0}. Then, ∑i∈S’s(i) = 10SΣ
− (9/2+5)SΣ = 1/2SΣ. Therefore, S’ is a solution of
PARTITION.
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