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Abstract

Background: RNA-Seq based transcriptome assembly has become a fundamental technique for studying
expressed mRNAs (i.e., transcripts or isoforms) in a cell using high-throughput sequencing technologies, and is
serving as a basis to analyze the structural and quantitative differences of expressed isoforms between samples.
However, the current transcriptome assembly algorithms are not specifically designed to handle large amounts of
errors that are inherent in real RNA-Seq datasets, especially those involving multiple samples, making downstream
differential analysis applications difficult. On the other hand, multiple sample RNA-Seq datasets may provide more
information than single sample datasets that can be utilized to improve the performance of transcriptome
assembly and abundance estimation, but such information remains overlooked by the existing assembly tools.

Results: We formulate a computational framework of transcriptome assembly that is capable of handling noisy
RNA-Seq reads and multiple sample RNA-Seq datasets efficiently. We show that finding an optimal solution under
this framework is an NP-hard problem. Instead, we develop an efficient heuristic algorithm, called Iterative Shortest
Path (ISP), based on linear programming (LP) and integer linear programming (ILP). Our preliminary experimental
results on both simulated and real datasets and comparison with the existing assembly tools demonstrate that
(i) the ISP algorithm is able to assemble transcriptomes with a greatly increased precision while keeping the same
level of sensitivity, especially when many samples are involved, and (ii) its assembly results help improve
downstream differential analysis. The source code of ISP is freely available at http://alumni.cs.ucr.edu/~liw/isp.html.

Introduction
Transcriptomic research has taken advantage of recent
high-throughput sequencing methods, leading to a new
experimental protocol, RNA-Seq [1]. A major application
of RNA-Seq is transcriptome assembly and isoform (or
transcript) abundance estimation, where full-length
mRNA transcripts and their expression levels are inferred
from RNA-Seq data. Transcriptome assemblies can help
analyze both structural and quantitative differences of
expressed isoforms between samples. Such (differential)
analysis could, for example, lead to the detection of

oncogenes that are associated with cancers [2] and spli-
cing variants that are responsible for diseases [3].
If a reference genome is available, transcriptome

assembly usually begins by mapping RNA-Seq reads to
the reference genome. After that, different algorithms
can be used to infer transcripts from mapped reads,
including Cufflinks [4,5], IsoInfer [6], IsoLasso [7], SLIDE
[8], CLIIQ [9], MITIE [10], etc. This ab initio approach is
different from the de novo approach where reference gen-
ome is not used (such as AbySS [11], Trinity [12], etc.),
and is able to take advantage of information provided by
the reference genome. As a result, ab initio assemblers
are able to recover transcripts with a better accuracy and
yet demand less computational resource [13]. However,
their results critically depend on the quality of the refer-
ence genome and mapping software, and they are not
specifically designed to handle errors [13], which come
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from various sources including unwanted RNA fragments
during the library preparation, mapping errors (due to
sequencing errors and/or repeats), or “dark matters”
from inter-genetic and intron regions [14].
In many RNA-Seq based studies, multiple sample

RNA-Seq datasets are available. It is now common for an
RNA-Seq project to sequence the whole transcriptomes
of samples obtained from multiple replicates, tissues,
populations, etc. For example, the ENCODE project [15]
aims at creating functional element profiles of more than
100 human cell lines, and more than 200 RNA-Seq data-
sets from various tissues and experimental protocols are
available for public use [16]. Other large research projects
(including TCGA [17], modENCODE [18], etc.) are also
producing many multiple sample RNA-Seq data. On one
hand, RNA-Seq reads from multiple samples could
potentially help assemble transcripts better than reads
from only one sample, since the samples can be corre-
lated. On the other hand, transcriptome assembly for
multiple samples and subsequent differential analysis are
more challenging because (i) multiple sample RNA-Seq
data typically contains more noise and (ii) differential
analysis is very sensitive to assembly and abundance esti-
mation errors. Therefore, to analyze the structural and
quantitative differences of isoforms from multiple sam-
ples, a highly accurate transcriptome assembly and abun-
dance estimation tool is necessary.
A straightforward way to assemble transcriptomes for

multiple samples is to “merge” all transcripts that are
assembled from individual samples as a “universal” set of
isoforms, which is then used for downstream applications
including abundance estimation and differential analysis.
An example of this approach is the “Cuffmerge” program
in the Cufflinks software package [5]. However, as more
samples are sequenced, errors from individual assemblies
are likely to accumulate, which could seriously affect the
isoform abundance estimation and result in unreliable
(or even misleading) differential analysis results.
In this paper, we present a new framework for ab initio

transcriptome assembly that is able to handle noisy
RNA-Seq reads and multiple sample RNA-Seq datasets
effectively. Instead of assembling transcripts separately
for each sample and merging them together, our frame-
work reconstructs transcripts directly from multiple sam-
ples. In fact, it takes advantage of the extra information
contained in paired-end reads and in multiple sample
RNA-Seq datasets (e.g., correlation among the samples).
We show that finding an optimal solution under this fra-
mework is NP-hard, and develop a heuristic algorithm,
called ISP (for Iterative Shortest Path), to reconstruct iso-
forms efficiently under the framework. For a given gene,
ISP solves either a linear programming (LP) or an integer
linear programming (ILP) problem iteratively on a

weighted graph derived from the input multiple sample
RNA-Seq dataset. Our preliminary experimental results
on both simulated and real datasets demonstrate that (i)
ISP is able to assemble transcriptomes with high preci-
sion and sensitivity, especially when many samples are
involved, and (ii) the assembly results of ISP help
improve downstream differential analysis.

Methods
Multiple Sample Connectivity Graph (MSCG)
A set of RNA-Seq reads from F different samples are first
mapped independently to the reference genome using a
splice junction detection tool such as Tophat [19], Splice-
Map [20], etc. The mapped reads are then clustered into
genes, and the exon-intron boundary information for each
may be derived from either its junction reads or existing
annotations such as NCBI RefSeq [21] or UCSC known
isoforms [22]. Based on this information, the sequence of
a gene can be split into different expressed segments (or
simply segments) [6], where a segment is a continuous
region in the reference genome uninterrupted by any spli-
cing events (or exon-intron boundaries).
Several transcriptome assemblers [7,9,23] use the Con-

nectivity Graph (CG) to represent the splicing connections
between segments or bases on single sample RNA-Seq
data. Similarly, for multiple sample RNA-Seq data, we
construct a multiple sample connectivity graph (MSCG)
G = (V, E) based on F sets of mapped RNA-Seq reads as
follows. V = {s, t} ∪ {vi|1 ≤ i ≤ M} where v1,... vM represents
the M segments contained in a gene. (vi, vj) ∈ E if there is
at least one read from the F samples joining both seg-
ments i and j. Also, (s, vi) ∈ E, (vi, t) ∈ E, 1 ≤ i ≤ M (see
Figure 1(A)).
For simplicity, s is assigned number 0, t is assigned num-

ber M +1, and the vertices v1,...vM are all assigned numbers
1 through M. Thus, a vertex in V or an edge in E can be
represented as a tuple (i, j) with 0 ≤ i, j ≤ M + 1. For exam-
ple, (0, i) = (s, vi) and (i, M + 1) = (vi, t) for 1 ≤ i ≤ M.
Similarly, (i, j) ∈ E if (vi, vj) ∈ E for i ≠ j, and (i, j) ∈ V if
i = j (1 ≤ i, j ≤ M).

Isoform discovery on MSCG
In MSCG, every path P from s to t represents a possible
isoform of the gene. We further assign weights to each
vertex (or edge) in MSCG to represent the probability
that the corresponding segment (or junction) is included
in an isoform; the higher the weights, the lower prob-
ability that they are included. As a result, a shortest
path (minimum weight path) represents the most possi-
ble isoform of the gene. Furthermore, we make use of
paired-end read information (if any) and expression cor-
relation between segments among the samples that
could help the reconstruction of isoforms.
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Our approaches to assigning weights and utilizing infor-
mation from paired-end reads and segment expression
correlations are described in detail below.
Weight assignment
A weight wi,j is assigned for each edge (i, j) ∈ E (if i ≠ j)
and each vertex vi ∈ V (if i = j) to reflect the likeli-
hood that the corresponding segment (or junction) is
“problematic": a higher weight is assigned if the seg-
ment (or junction) is more likely the product of some
incorrectly mapped reads. Notice that wi,j may be
either positive (considered as “cost”) or negative (con-
sidered as “reward”). For simplicity, the weight of a

path P is represented as),
∑

(i,j)∈P wi,j, which is the

sum of all weights of the vertices and edges included
on P.

Assume that the same number of reads are generated
from F samples. For every vertex vi ∈ V\{s, t}, we assign
wi,i = − log(di + 1), where di is the average read density
of segment i in the F samples:

di =
F∑

k=1

Ck
i /(li − L + 1) (1)

Here, Ck
i is the number of reads mapped to segment i

from the kth RNA-Seq sample, li is the length of the
segment i and L is the read length. Since we will look
for a shortest path, paths going through segments with
high densities are preferred.
Because noisy junctions may result in incorrect assem-

bly results, a higher positive cost is assigned for junction

Figure 1 Illustration of MSCG. (A) An example of MSCG from two samples. For simplicity, the vertices s and t as well as the corresponding
edges connecting s or t are not shown. (B) An example of two samples with coexpressed segments and exclusively expressed segments (see
Section). Segments 3 and 5 (marked in read) are exclusively expressed in two isoforms of sample 1, but are coexpressed in two isoforms of
sample 2. Both samples generate the same MSCG.
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edges that are more likely to be problematic. For every
edge (i, j) ∈ E, where 1 ≤ i, j ≤ M and i ≠ j, we set

wi,j = − log P(i, j) = − log(
di,j∑
h di,h

di,j∑
h dh,j

) (2)

where 1 ≤ h ≤ M, P (i, j) represents the probability
that the junction between segments i and j is included
in an isoform, and di,j is the average read density of
edge (vi, vj) ∈ G:

di,j =
F∑

k=1

Ck
i,j/(L − 1) (3)

where Ck
i,j is the number of reads mapped to the cor-

responding junction from the kth RNA-Seq sample.
For every edge (0, i) ∈ E, we “inactivate” it by setting w0,i

to infinity if vi can be reached from another vertex vj in
the MSCG G; otherwise, we set w0,i = 0. Similarly for edge
(i, M + 1) ∈ E, wi,M + 1 is assigned infinity if there is an
edge from vi to another vertex vj in the MSCG G, or 0
otherwise.
Incorporating paired-end read information
Paired-end RNA-Seq reads provide more information
than single-end reads in transcriptome assembly, since
both ends of a paired-end read come from the same
RNA (or cDNA) fragment. To incorporate paired-end
read information into our framework, we try to find a
path in MSCG to simultaneously minimize the cost of
the path and maximize the number of paired-end reads
that are compatible with the isoform represented by the
path. Reads that are compatible with an isoform are the
reads that are possibly generated from the isoform. If a
read is compatible with an isoform, the splicing patterns
implied by the read and the isoform must be identical.
More precisely, a single-end read b containing k seg-
ments can be represented as a vector b = (b1, b2,..., bk ),
where 1 ≤ b1 < ... <bk ≤ M are the segments included in
b. An isoform I (or a path P ) that b is compatible with
must include all the segments b1,..., bk , and must not
include any other segment between b1 and bk. A paired-
end read p = (b, b′) is compatible with I if and only if
both b and b′ are compatible with I.
For each paired-end read p = (b, b′), where b = (b1,...

bk) and b′ = (b′
1, · · · b′

k), we define the set of “inclusion
segments” ISp and “exclusion segments” ESp as follows:

ISp = b ∪ b′ (4)

ESp = {i : b1 < i < bk or b′
1 < i < b′

k, i /∈ ISp} (5)

Intuitively, ISp (and ESp) represents the set of seg-
ments that an isoform I must (and must not) include,
based on the information of p. For example, if p = ((b1,
b3), (b5, b7)), then ISp = {b1, b3, b5, b7} (as they are

included in p), and ESp = {b2, b6} (as they are spliced
out in p). For each paired-end read p, we define a binary
variable qp~P ∈ {0, 1} to indicate whether p is compati-
ble with a path P implied in the solution. Given a set of
paired-end reads R, maximizing the number of compati-
ble reads with P is equivalent to maximizing),∑

p∈R qp∼P. For each gene, paired-end reads that are

mapped to only one segment (i.e., |ISp| = 1) are
excluded from R, since these reads do not provide any
useful information in the assembly.
Resolving ambiguities using Jensen-Shannon metric
In a complicated gene model, an MSCG may give rise to
several sets of isoforms due to the existence of segments
that introduce ambiguities (named as “uncertain” seg-
ments). For example, the MSCG in Figure 1(B) has two
edges at each end of segment 4 due to the two uncer-
tain segments, segments 3 and 5. Different combinations
of these pairs of edges would lead to two possible sets of
isoforms. Paired-end reads can be used to resolve such
ambiguity (as in [23]), but it only works if there are
paired-end reads mapped to uncertain segments. In [5],
isoforms are decomposed such that the expression levels
of the segments in one isoform are similar, but this
strategy does not consider positional biases [24] and is
applied only to a single sample.
In this work, we use Jensen-Shannon metric (or JS

metric) to resolve the ambiguity of uncertain segments.
JS metric measures the similarity of the expression pat-
terns between samples and was used to analyze differen-
tial alternative splicing events [5]. It is defined as the
square root of the Jensen-Shannon divergence [25]:

JS(i, j) =
(
H(

pi + pj
2

) − H(pi) +H(pj)

2

)1/2

(6)

where H(x) stands for the entropy of the probability
distribution x and pi is the distribution of segment i
among the samples. The latter is calculated based on
the read density of segment i (defined in Equation (1))
over all F samples.
If the JS metric of the expression levels of two uncer-

tain segments is low (which means both segments are
positively correlated), then both segments are likely to
be included on the same isoform (termed “coexpressed
segments”, see Figure 1(B) for an example). Otherwise if
the JS metric is high, they are likely to appear in differ-
ent isoforms (termed “exclusively expressed segments”).
To determine whether two uncertain segments are coex-
pressed or exclusively expressed, we randomly permute
the expression of each segment in a gene 1000 times,
and calculate the “background” JS metric distribution
Pbg. For a given false-discovery rate (FDR) b% (con-
trolled by the user; the default is 5%), segments i and j
are considered coexpressed (or exclusively expressed) if
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J S(i, j) is located in the lowest (or highest) b% of Pbg,
respectively. For coexpressed segments i and j, we add
some “pseudo” paired-end reads pc spanning segments i
and j (i.e., ISpc = {i, j}) to the read set R. These reads
will encourage our algorithm (i.e., ISP) to prefer paths
that include both segments i and j. Similarly for exclu-
sively expressed segments i and j, paired-end reads pe
with ISpe = {i} and ESpe = {j} are added to R.

The objective function and complexity of the problem
Using the notations defined in previous sections, given
an MSCG G and a single-end and/or paired-end read
set R, our objective function is to find a path P from s
to t in the MSCG to maximize

∑
(i,j)∈P

−wi,j +
∑
p∈R′

αpqp∼P (7)

where the set R′ includes all “pseudo” reads and excludes
all reads p ∈ R with |ISp| = 1. Here, ap > 0 is a user-
defined parameter and should be smaller for organisms
with simple splicing patterns (like fruit fly or warm) and
relatively larger for organisms with more complicated spli-
cing patterns (like human or mouse). For the convenience
of presentation, we will refer to this problem as a (con-
strained) shortest path problem on G, because when a = 0,
the problem reduces to finding the minimum weight path
(or shortest path) from s to t.
Unfortunately, it is hard to find a path to maximize

Equation (7), since we can show that the corresponding
decision problem is NP-complete even when wi,j = 0
and ap = 1.
Theorem: The following decision problem is NP-

complete:
Input: An MSCG G = (V, E) and a set of mapped

paired-end reads R; an integer k.
Question: Is there a path P in G such that),∑
p∈R qp∼P ≥ k?

Proof : The theorem can be proven by a straightfor-
ward reduction from the wellknown CLIQUE problem.
The reduction is presented in Additional file 1. ■

An efficient heuristic algorithm to identify expressed
isoforms in multiple samples
The ILP and LP approaches for finding an optimal path
In this section, we present two different approaches to
find a path on the MSCG G maximizing Equation (7).
First, a binary variable f (i, j) ∈ {0, 1} is introduced to
indicate whether each vertex (or edge) in G is included
in a path P. The following ILP problem is formulated to
find a path maximizing Equation (7):

max
∑

0≤i,j≤M+1

−wi,jf (i, j)+
∑
p∈R′

αpqp (8)

s.t
M∑
i=1

f (0, i) = 1, 1 ≤ i ≤ M (9)

∑
0≤k≤M

f (i,M) = f (i, i) =
∑

0≤k≤M

f (k, i), 1 ≤ i ≤ M (10)

qp ≤ f (i, i), i ∈ ISp (11)

qp ≤ 1 − f (i, i), i ∈ ESp (12)

f (i, j), qp ∈ {0, 1}, 0 ≤ i, j ≤ M + 1 (13)

Equations (9)-(10) are constraints ensuring that the
final solution represents a path (and thus an isoform)
from s to t, while Equation (11)-(12) guarantee that
qp = 1 if and only if the path P is compatible with
paired-end read p. Solving the above ILP problem may
be time-consuming since the number of variables may
be large for some genes. Instead, we could relax the
binary constraints in Equation (13) as follows, which
turns the problem into an LP problem:

0 ≤ qp, f (i, j) ≤ 1 (14)

Ideally, the solution to the above LP problem is inte-
gral (i.e., qp, f(i, j) ∈ {0, 1}), which would represent a
path from s to t. However, in some cases (for about
0.1% of the genes in our simulated and real data experi-
ments), the LP problem may not lead to an integral
solution. For these genes, we can solve the correspond-
ing ILP problem instead. We use GNU Linear Program-
ming Kit (GLPK, [26]) to solve both the ILP and LP
problems.
The Iterative Shortest Path algorithm
A gene may have multiple isoforms expressed in the
samples, but only one isoform is extracted by solving
the above LP/ILP problem. To recover more expressed
isoforms of the gene, we apply the “weight-decay” strat-
egy [27] to modify the weights in the graph G and iter-
ate the algorithm several times. In each iteration, the
weights are adjusted to encourage the algorithm to look
for an isoform different from all previously found iso-
forms. The details of this ISP algorithm are described in
Additional file 1.

Results
Simulation results
We simulated RNA-Seq reads and evaluated the perfor-
mance of different algorithms following the method
described in [7,28]. Briefly, we used UCSC known
human (and mouse) transcripts [22] to simulate single-
end and paired-end reads and evaluate the sensitivity
and precision of different assemblers on noisy RNA-Seq
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data and multiple samples. Following the definition in
[6] and [7], two transcripts are matched if their exon
coordinates are identical except the start of the first
exon and the end of the last exon. If K of M predicted
transcripts match K of N known transcripts, then the
sensitivity and precision are defined as K/N and K/M ,
respectively. We added two different types of noisy
reads in the simulation to capture noise in real RNA-
Seq data: noisy junction reads and noisy intron reads.
Noisy junction reads are generated by randomly shifting
the splicing positions of some normal junction reads by
1 to 3 bases. These reads are added since in reality, spli-
cing regulators may shift the splice site a few bases to
the proximal or distal intron boundaries [29,30]. Noisy
intron reads are reads coming randomly from the intron
regions of a transcript. They are added since it has been
observed that a fair amount of reads come from intronic
regions in practice, possibly due to intron retention,
non-coding RNAs or other unknown mechanisms [14].
We compared the performance of ISP with two exist-

ing assembly algorithms for multiple samples, Cufflinks/
Cuffmerge [4,5] and MITIE [10]. Cufflinks and Cuff-
merge are algorithms incorporated in the Cufflinks soft-
ware package. For multiple RNA-Seq samples, Cufflinks
first constructs a set of isoforms from multiple samples,
followed by Cuffmerge merging assembly results from
each individual sample. MITIE, on the other hand, con-
structs isoform structures by solving a mixed integer
programming problem defined on multiple samples.
CLIIQ [9] is another recent tool for assembling isoforms
from multiple sample RNA-Seq data based on integer
programming. However, we have had great difficulty in
getting CLIIQ to run on our servers (even with the help
of the authors of CLIIQ). Hence, we will make a com-
parison with CLIIQ indirectly and present the compari-
son results in Additional file 1.
The effect of noisy RNA-Seq reads on single sample data
We added different amounts of noisy reads of both
types to a single sample RNA-Seq dataset, and the sensi-
tivity and precision of ISP and Cufflinks are presented in
Figure 2. Here, a total of 80 million single-end or
paired-end reads are used, and “error rate” shows the
percentage of the randomly shifted junction reads and
noisy intron reads added to the dataset. When more
errors are added, both programs keep the same level of
sensitivity (about 10%), but the precision of both pro-
grams gradually drops. Compared with Cufflinks, ISP is
less affected by the errors, showing that ISP is able to
handle read errors better on single sample RNA-Seq
data.
It is worth noting that when the simulated RNA-Seq

data is error-free, mapping tools may still result in
incorrectly mapped reads and thus the input to Cuf-
flinks/ISP could still be noisy. Also, the low sensitivity

of both programs is due to the fact that many of the
transcripts are assigned very low expression levels (or
they are not expressed at all) based on the log-normal
model [31]. These transcripts with few (or no) mapped
reads decrease the value of sensitivity.
Assembly for multiple sample RNA-Seq data
To compare the performance of these algorithms on mul-
tiple sample RNA-Seq data, we generated six RNA-Seq
datasets with different numbers of samples and evaluate
the sensitivity and precision of the programs. For each
dataset, the expression level of an isoform is independently
assigned and 10% noisy reads are added as errors. To
reconstruct all isoforms from multiple samples, a straight-
forward algorithm is to merge the RNA-Seq reads from all
samples together and apply a transcriptome assembly tool
(such as Cufflinks) designed for single sample RNA-Seq
data. As a comparison to ISP and Cuffmerge, we also
tested Cufflinks and ISP on pooled data where RNA-Seq
reads from all samples are merged together.
Figure 3(A-B) shows both sensitivity and precision of

the four programs on different numbers of samples.
When only one sample is considered, the sensitivity of all
programs is the same. As more samples are added, more
transcripts are correctly predicted, and both ISP and
Cuffmerge achieve similar improvements of sensitivity on
six samples. As for the precision, ISP has a clear advan-
tage, maintaining 40% to 60% higher values than Cuff-
merge, and 60% to 80% higher values than Cufflinks. The
increasing trend of sensitivity and precision for both ISP
and Cuffmerge shows that both programs are able to
take advantage of the existence of multiple samples and
improve their sensitivity and precision simultaneously.
Instead, the precision of Cufflinks and ISP on the pooled
data (denoted as Cufflinks and ISPpool in the figure)
drops slightly while their sensitivity falls behind ISP and
Cuffmerge. This is because as reads from more samples
are merged, the detectable splicing patterns become
more complicated. Although more isoforms can be dis-
covered (thus improving the sensitivity), many incorrect
isoforms are also predicted (thus hurting the precision)
because of the increased difficulty in dealing with com-
plex splicing patterns. Therefore, the straightforward
approach for dealing with multiple samples is not a good
way to treat multiple sample RNA-Seq data.
MITIE [10] is a recently published algorithm that

assembles transcripts from multiple samples. Since
MITIE uses mixed linear programming to infer iso-
forms, it requires very long execution time and large
memory space to process human RNA-Seq datasets. For
practical considerations, we compared MITIE with ISP
and Cuffmerge on RNA-Seq samples that were simu-
lated from 500 randomly selected genes on human chro-
mosome 1, including 1206 annotated transcripts (or 2.41
transcripts/gene). Figure 3(C-D) shows the sensitivity
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and precision of different programs on different num-
bers of samples. Both ISP and Cuffmerge achieve similar
sensitivity and precision in these tests with smaller sam-
ples, compared with Figure 3(A-B) using the whole tran-
scriptome for the simulation. MITIE has much lower
levels of sensitivity and precision (below 12%), and both
values do not increase as more samples are used.
Transcriptome assembly and differential analysis
In a typical differential analysis, we are interested in finding
and ranking genes (or isoforms) that are differentially
expressed between two samples (or two groups of sam-
ples). Since isoforms assembled from individual samples
may be different, it is necessary to construct a “universal”
set of isoforms from all samples, from which the expression
level estimation and statistical analysis can be performed.
For example, Cufflinks includes a set of programs for dif-
ferential analysis, and all of them are based on merging iso-
forms from individual assemblies (using Cuffmerge).

We are interested in the effect of multiple sample
transcriptome assembly on differential analysis. We
simulated two RNA-Seq datasets and generate a set of
isoforms for both samples by running (i) ISP and (ii)
Cufflinks followed by Cuffmerge. To avoid using differ-
ent expression level estimation methods preferred by
both methods, we used Cuffdiff 2 [5], the differential
expression analysis tool in Cufflinks package, for expres-
sion level estimation and differential analysis (including
fold change calculation and statistical evaluation) after
running ISP and Cuffmerge.
We selected different numbers of isoforms that show

the greatest changes of expression levels. Figure 4 shows
the percentage of isoforms that match UCSC human
known genes, and the percentage of the matched ones
that have correct fold change estimations (defined as
estimated fold changes within the [-2,+2] range of their
corresponding true fold changes). We showed the trends

Figure 2 The performance of ISP and Cufflinks on different error rates. (A-B) The sensitivity and precision of ISP and Cufflinks on a single
RNA-Seq sample with various error rates using single-end reads. Errors come from either noisy junction reads or noisy intron reads. (C-D) are the
corresponding sensitivity and precision on paired-end reads.
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as we decrease the number of selected isoforms, since
we usually prefer finding fewer isoforms with higher
expression changes between samples.
ISP is able to find a larger number of matched (i.e.,

true) isoforms than Cuffmerge when more than 10 iso-
forms are selected. This is consistent with the previous
experiments showing a higher precision of ISP than
Cuffmerge. Furthermore, ISP outputs more isoforms
with correct fold change estimations. With different
numbers of top ranked isoforms selected, 74%-90% have
their fold changes correctly identified, which is higher
than Cuffmerge (58%-82%). Because we use the same
algorithm (Cuffdiff 2) for expression level estimation
and differential analysis, we suspect that the low preci-
sion of Cuffmerge assembly led to the low accuracy in
expression level estimation, hence reducing its perfor-
mance in fold change estimation.

Real RNA-Seq data results
To compare the performance of the algorithms on real
RNA-Seq data, we used the public RNA-Seq datasets of
7 cancer cell lines downloaded from the ENCODE pro-
ject [32]. These cell lines (GM12878, H1-hESC, K562,
HeLa-S3, HepG2, HUVEC, NHEK; NCBI GEO accession
code: GSE23316) include normal and cancer cells of dif-
ferent tissues, and are the major cell models extensively
used in biological and biomedical research [16].
Transcriptome assembly results
It is difficult to measure exactly which isoform is
expressed in real RNA-Seq data since the current
experimental techniques limit the ability to detect full-
length transcripts efficiently. Instead, we treat all UCSC
known transcripts as “canonical” isoforms and calculate
both sensitivity and precision with respect to these iso-
forms, the same as in the simulation experiments.

Figure 3 The performance of different algorithms on multiple samples. (A-B) The sensitivity and precision of ISP and Cuffmerge on multiple
samples, and on the pooled data (denoted as ISPpool and Cufflinks). The pooled data were generated by merging reads from all samples. (C-D)
The sensitivity and precision of ISP, Cuffmerge and MITIE on 500 randomly selected genes from human chromosome 1.
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Figure 5(A) shows the numbers of predicted isoforms,
together with the numbers of matched UCSC known
transcripts by using different numbers of samples. For a
single sample, the number of isoforms predicted by
Cuffmerge is over 60, 000, which is approximately twice
as much as ISP. As more RNA-Seq samples are added,
more transcripts are merged by Cuffmerge, and this
number reaches 150, 000 (over 100% growth) when all
seven samples are included. In contrast, ISP shows a
moderate increase, with only 40% more predicted iso-
forms for seven samples compared to using only one
sample. However, the numbers of matched UCSC
known transcripts remain roughly the same for both
programs, with ISP achieving over 90% of the number
attained by Cuffmerge. This illustrates that ISP is able
to keep a high precision while sacrificing sensitivity a lit-
tle when the number of samples increases. An example
transcriptome assembly results by ISP and Cuffmerge
on some ENCODE data can be found in Section 4 of
Additional file 1.
Cuffmerge predictions include a large number of sin-

gle-exon transcripts that do not match any UCSC
known transcripts. To study the effect of multiple sam-
ples on the inference of multi-exon isoforms, we exclude
these single-exon transcripts and calculate the precision
for isoforms grouped by their numbers of exons (see
Figure 5(B-E)). ISP shows a higher precision than Cuff-
merge on all multi-exon isoforms, and when all seven

samples are used, its precision is almost doubled com-
pared to Cuffmerge (see Figure 5(B)) for isoforms con-
taining 5-10 exons. For isoforms with more than 10
exons, the difference between the two algorithms
becomes smaller, but ISP still maintains a 70% higher
precision than Cuffmerge (Figure 5(D-E)). Isoforms with
more exons are difficult to assemble since more errors
may occur around splice junctions (see Section 5 of
Additional file 1). As a result, the high precision of ISP
may be attributed to its ability to handle noise effectively
and to use information from multiple samples.
We also compared ISP, Cuffmerge and MITIE on

RNA-Seq reads from 500 randomly selected genes from
human chromosome 1, similar to the comparisons in
the simulation tests. The test was performed on a linux
cluster node with a 4-core 2.50GHz CPU and 16G
memory. Figure 5(F-H) show the sensitivity, precision
and running time of the three algorithms on different
numbers of samples. In contrast to the simulation tests,
MITIE has a much better performance, achieving similar
levels of precision with ISP and Cuffmerge when more
than two samples are used. However, the sensitivity of
MITIE is still lower than those of ISP and Cuffmerge,
and it takes much longer time to run, especially when
more samples are used (Figure 5(H)). For example,
MITIE takes 163.7X longer than ISP (and 92.4X longer
than Cuffmerge) to run when 7 samples are used, mak-
ing it difficult to use on datasets with a large number of
samples, especially when the large transcriptomes such
as human or mouse are being studied.
Differential analysis
The expression profiles of some ENCODE cell lines have
been measured by both RNA-Seq and Affymetrix Human
Exon 1.0 ST Array (NCBI GEO accession code: GSE19090).
To validate the differential analysis results from RNA-Seq
reads, transcripts are assembled from two cell lines
(GM12878 and K562) that have corresponding microarray
data, and their expression level changes are compared with
the microarray measurements. An Affymetrix Human Exon
Array uses “probesets” (i.e., sets of probes) to measure the
expression levels of exons. To calculate the expression levels
of transcripts, we only keep probesets whose measured
exons correspond to only one RefSeq transcript (called
“unique” probesets). For those RefSeq transcripts that
include at least one such unique probeset, their expression
levels are calculated by averaging the measurements of all
unique probesets. As in the simulation experiments, we
used Cuffdiff 2 for expression level estimation and differen-
tial analysis.
ISP and Cuffmerge are able to identify 4468 and 4627

transcripts that have corresponding expression level esti-
mations in the microarray data, respectively. Comparing
the fold change calculations with the microarray data,
ISP assembly results reach a higher PCC (Pearson

Figure 4 The effect of ISP and Cuffmerge on differential
expression analysis. Here, different numbers of the most
differentially expressed isoforms are considered, and the percentage
of “matched” and “correct” isoforms are calculated. “% matched” is
the ratio of these isoforms matching UCSC known isoforms, and “%
correct” is the ratio of the matched isoforms that have correct fold
change estimations.
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Correlation Coefficient) value than Cuffmerge (0.68 vs
0.58). To further compare the differential analysis
results, we select transcripts that show the largest fold
changes between samples (similar to the simulation
experiments). For the corresponding microarray mea-
surements of these transcripts, we used Student’s t-test
to check the statistical significance that these transcripts
are differentially expressed between both samples. Table
1 shows the PCC values of fold change calculations
between RNA-Seq and microarray measurements, and
the numbers of top ranked differentially expressed tran-
scripts confirmed by microarray data. The fold change
calculations based on the assembly results of ISP are
more accurate since they achieve higher PCC values
than Cufflinks, and a higher number of predictions are
confirmed by microarray measurements. This shows

that by using the isoforms inferred by ISP, we are able
to obtain a more accurate differential analysis than
Cuffmerge.

Conclusion
With the advance of next generation sequencing tech-
nologies, it is now possible to reconstruct full-length
transcripts, estimate their expression levels, and com-
pare the structural and quantitative differences between
samples. Transcriptome assembly may benefit from the
existence of multiple sample RNA-Seq data, but may
also be confused by inherent RNA-Seq errors, which in
turn affects downstream differential analysis. In this
paper, we have designed an algorithm (ISP) to recon-
struct transcriptomes for multiple sample RNA-Seq data
that is able to handle errors effectively by using an

Figure 5 The performance of different algorithms on ENCODE RNA-Seq datasets. (A) The number of predicted isoforms by ISP and
Cuffmerge using multiple samples. The shaded region at the bottom of the bar shows the number of predicted isoforms that match UCSC
human known transcripts. (B-E) The precision of both algorithms on multi-exon isoforms using all samples (B), and the precision of both
algorithms on isoforms grouped by the number of exons (C-E). The plots in C, D and E show the corresponding precision for isoforms with 2-4,
5-10 and over 10 exons, respectively. (F-H) The sensitivity, precision and running time of ISP, Cuffmerge and MITIE on 500 randomly selected
genes in chromosome 1.
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iterative linear programming (or integer linear program-
ming) approach. Both simulated and real experimental
results demonstrate that, obtaining a set of accurately
assembled transcripts is crucial for downstream differen-
tial analysis. A large number of false positives decrease
the accuracy of estimating the expression fold changes
of isoforms between samples, and ISP is able to achieve
a better differential analysis performance by accurately
assembling transcripts from multiple samples directly.

Additional material

Additional file 1: Supplementary Materials. This file includes the
description of the ISP algorithm, the NP-completeness proof of the ISP
problem, the indirect comparison between ISP and CLIIQ, an example of
transcriptome assembly results on ENCODE samples, and the comparison
of detecting alternative splicing events between ISP and Cuffmerge.
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