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Abstract

the bladder cancer.

Background: Bladder cancer is the most common malignant tumor of the urinary system and it is a
heterogeneous disease with both superficial and invasive growth. However, its aetiological agent is still unclear.
And it is indispensable to find key genes or modules causing the bladder cancer. Based on gene expression
microarray datasets, constructing differential co-expression networks (DCNs) is an important method to investigate
diseases and there have been some relevant good tools such as R package "WGCNA', ‘DCGL".

Results: Employing an integrated strategy, 36 up-regulated differentially expressed genes (DEGs) and 356 down-
regulated DEGs were selected and main functions of those DEGs are cellular physiological precess(24 up-regulated
DEGs; 167 down-regulated DEGs) and cellular metabolism (19 up-regulated DEGs; 104 down-regulated DEGs). The
up-regulated DEGs are mainly involved in the the pathways related to “metabolism”. By comparing two DCNs
between the normal and cancer states, we found some great changes in hub genes and topological structure,
which suggest that the modules of two different DCNs change a lot. Especially, we screened some hub genes of a
differential subnetwork between the normal and the cancer states and then do bioinformatics analysis for them.

Conclusions: Through constructing and analyzing two differential co-expression networks at different states using
the screened DEGs, we found some hub genes associated with the bladder cancer. The results of the
bioinformatics analysis for those hub genes will support the biological experiments and the further treatment of

Background

The morbidity of bladder cancer is in the first place
among the cancers of urinary system. The bladder cancer
cells can spread by breaking away from the original
tumor. They can spread through the blood vessels to the
liver, lungs and bones. However, its causes are not yet
clear. The bladder cancer is a heterogeneous disease that
shows both superficial and invasive growth [1,2]. Superfi-
cial tumors frequently recur and may progress to invasive
growth. A part that warrants better treatment regimes
bladder cancer is also a good model system to study
tumor initiation and progression. To gain insights into
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the molecular biology of these processes, we performed
gene expression analyses to get some important informa-
tion about bladder cancer-associated genes.

Systems biology is an emerging approach applied to
biomedical and biological scientific research. It is a biol-
ogy-based inter-disciplinary field of study that focuses on
complex interactions within biological systems, using a
holistic approach to biological and biomedical research
[3-5]. Network biology is a new way of representation
and analysis of biological information processing, which
understands life as a network. In fact, the network biol-
ogy is a branch of the systems biology.

Differential co-expression network (DCN) is one of
biological networks. A gene co-expression network has
emerged as a novel holistic approach for microarray
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analysis [6-9]. Stuart et al. [6] and Bergmann et al. [7]
separately constructed the gene co-expression network
that connected genes whose expression profiles were
similar across different organisms. A human network
was analyzed by Leeet al. [8] with functional grouping
and cluster analysis. van Noort et al. [9] demonstrated
the small-world and scale-free architecture of the yeast
co-expression network. They showed that functionally
related genes are frequently co-expressed across organ-
isms constituting conserved transcription modules.

We wanted to explore transcriptional changes in terms
of gene interactions rather than at the level of individual
genes. In the end, we constructed two gene co-expression
networks and sought to find cancer-induced changes
in the network. The identification of co-expressed pairs
in tumor and normal tissues led to the construction of
two distinct networks that represent tumor and normal
states, respectively. We expected that biological changes
would be reflected in transcriptional changes, which
could be identified by comparing the two co-expression
networks. In the transcriptome analysis, differential co-
expression analysis (DCEA) is emerging as a unique com-
plement to traditional differential expression analysis.
DCEA investigates differences in gene interconnection by
calculating the expression correlation changes of gene
pairs between two conditions. The rationale behind dif-
ferential co-expression analysis is that changes in gene
co-expression patterns between two contrasting pheno-
types (e.g., healthy and disease) provide hints regarding
the disrupted regulatory relationships or affected regula-
tory subnetworks specific to the phenotype of interest (in
this case, the disease phenotype). Therefore, among the
many growing directions of DCEA, there is the so-called
“differential regulation analysis"(DRA), which integrates
the transcription factor (TF)-to-target information to
probe upstream regulatory events that account for the
observed co-expression changes. Recently, many
researchers have integrated differential co-expression and
differential expression concepts to propose a novel Regu-
latory Impact Factor (RIF) that can be used to prioritize
disease-causative TFs [10,11].

In addition, a lot of researchers have begun to perform
differential co-expression analyses of microRNAs [12,13].
Currently, some tools have been developed for differen-
tial expression analysis based on microarray, such as R
packages “LIMMA?” [14], “SAMR” [15], “WGCNA” [16]
and so on.

In our study, we collected microarray datasets of blad-
der cancer from GEO http://www.ncbi.nlm.nih.gov/geo/
to analyze the datasets by an integrated strategy includ-
ing some functions of SAMR [15], WGCNA [16], Cytos-
cape [17] and other packages. We selected some DEGs
at two different state (normal and cancer) and con-
structed two DCNs. Through the comparisons between
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two DCNs of two different states, we found some hub
genes associated with the bladder cancer.

Results

The datasets of gene expression Affymetrix microarray
of bladder cancer [GEO: GSE3167] were download from
the GEO database of NCBI [18]. It has 18 samples,
[GSM71019-GSM71027] are from the normal tissues
and the other 9 samples are from the cancer tissues.
The datasets were processed by an integrated strategy.
Some DEGs were selected and constructed two DCNs.
In the end, simple analysis was applied to the two
DCNs and some hub genes were found through com-
paring two DCNss at different states.

Normalization of the microarray datasets

In order to get high-quality and strong-expression genes
for the convenience of the following data processing, we
normalized the microarray dataset using medians (Addi-
tional file 1 shows the comparison between before and
after normalization). After normalization, the expression
values are in the better order. We also discovered the
distribution of the expression datasets (Figure 1).
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Figure 1 The Q-Q plot of the expression datasets.
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Selection and bioinformatical analysis of DEGs

After preprocessing the microarray datasets including
the above normalization, some DEGs were selected
using the R package “SAMR” (nperms(Number of per-
mutations used to estimate false discovery rates) = 100;
del (Value of delta to define cutoff rule) = 2.5). 36 up-
regulated genes and 356 down-regulated genes were
picked out (See Additional file 2).
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Next, we did bioinformatics analysis of those DEGs
including GO function enrichment using a online tool
AmiGO [19]. A part of GO enrichment results are
showed in Figure 2. From the GO function enrichment
results, we can easily find that the main functions of the
up-regulated DEGs are nitrogen compound metabolic
process (GO:0006807)(20 genes), heterocycle metabolic
process (GO:0046483) (20 genes), cellular aromatic

Term

primary metabolic process (GO:0044238

organic substance metabolic process (GO:.0071704)
cellular metabolic process (GO.0044237)

metabolic process (GO:0008152)

heterocycle metabolic process (GO.0046483)

cellular aromatic compound metabolic process (GO:0C

cellular process (GO:0009987)

organic cyclic compound metabolic process (G0:1901360)
nucleobase-containing compound metabolic process (GO.0006139)

cellular macromolecule metabolic process (GO:0044260

macromolecule metabolic process (GO.0043170)

Term

molecular_function (GO:0003674)

substrate-specific transmembrane transporter activity (GO 0022891)

transporter activity (G0.0005215)

active transmembrane transporter activity (GO:00
cation transmembrane transporter activity (GO:0008324)
secondary active transmembrane transporter activity (GO:0015291)

metal ion transmembrane transporter activity (GO

ion transmembrane transporter activity (GO:0015075)
receptor activity (GO.0004872)

signal transducer activity (GO:0004871)

molecular transducer activity (GO0

9)

(a) Part of GO enrichment results of up-regulated DEGs

(b)Part of GO enrichment results of down-regulated DEGs

Figure 2 Part of GO function enrichment results of DEGs associated the bladder cancer.

N
Background  Sample Expected  +- P-value
frequency frequency
8458 2 143%+01 + 3.336e-04
8712 2 1478e+01 +  6.500e-04
8327 27 1413401 +  1.097e-03
9545 29 16208401 + 1.121e-03
4765 20 8.086e+00 + 1.123e-03
4768 20 8.091e+00 + 1.134e-03
13329 34 2262e+01 + 1669-03
4996 20 8478e+00 + 2335e-03
4581 19 1774e+00 + 2.603e-03
6145 22 1.043e+01 + 4.064e-03
6624 23 1.158e+01 + 6.303e-03
Background  Sample  Expected +- P-value
frequency  frequency
15480 296 2.336e+02 + 895215
934 44 1409401 + 5370e-09
852 a1 1.286e+01 + 1431e-08
1204 48 1817e401 + 1.623e-07
985 42 1486e+01 + 2.987e-07
305 22 4602e400 + 4.134e-07
602 K]l 9.084e+00 + 7.033e-07
190 17 2867e+00 + 1.286e-06
394 24 5.945e+00 + 1.946e-06
785 3 1.184e+01 + 2516e-06
1493 52 2253401 + 2761e-06
1569 53 2367e+01 + §.33%-06
1569 53 2367e+01 + 5.33%-06
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compound metabolic process (GO:0006725) (20 genes)
and regulation of metabolic process (GO:0019222). And
the down-regulated DEGs mostly involve ion binding
(GO:0043167) (158 genes),multicellular organismal pro-
cess(GO:0032501)(127 genes), single-multicellular organ-
isms process(GO:0044707) (121 genes) and response to
stimulus (GO:0050896) (158 genes) etc.

We used a online tool GATHER [20] to do pathway
enrichment (Figure 3). The up-regulated DEGs mostly
involve the pathways related to “metabolism”. However,
the down-regulated DEGs are included in toll-like
receptor signaling pathway, gamma-hexachlorocyclohex-
ane degradation besides two metabolism-associated
pathways.

We also investigated the clustering of the DEGs asso-
ciated with the bladder cancer. The heatmap of the
DEGs is showed in Figure 4. From the heatmap, we can
see the clustering results of the DEGs. The clustering
method can correctly divide the samples into two
classes.

Construction and analysis of two DCNs
We first calculated a adjacency matrix of DEGs at the
normal or cancer state using the method “Pearson
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correlation” based on the gene expression values. If the
adjacency value of a gene pair is greater than 0.8, the
two genes will be connected to be an edge of a DCN.
We constructed a normal DCN and a cancer DCN
(Figure 5) employing the package “WGCNA”. We can
easily see that in the cancer state, a few up-regulated
DEGs take parts in the co-expression relations. Through
the comparisons of two different DCNs, we found that the
shortest path length distribution (Additional file 3) has a
little changes from the normal to the cancer. However, the
average clustering coefficient distribution (Figure 6) and
the topological coefficients (Additional file 4) under the
normal condition differ from those under the cancer con-
ditions, which indicates that the modules in the two differ-
ent DCNss have a lot of changes.

Next, we want to find differential links (edges) between
two different DCNs. At first, we set two thresholds T1
and T2. If the correlation (Here is pearson correlation)
of a gene pair is less than T1 (Here is set 0.3) at normal
state, but is bigger than T2 (Here is set 0.8) at the can-
cer state, the link of the gene pair is defined as a differ-
ential link. We computed the significance of the
differential links using permuation test (p-value <2.2e-
16). All the selected differential links can compose a

KEGG Pathway
1 pathhsa00460: Cyanoamino acid metabolism

2 patnhsa00240; Pyrimidine metabolism

3 patfrhsa00880: Methane metabolism

4 pathihsa00271: Methioning metabolism
5.pathhsa00670: One carbon pool by folate
6. patfr 15200230 Purine metabolism

T patnhsa00020: Citrate cycle (TCA cycle)

KEGG Pathway
1. patfrhsa00361: gamma-Hexachiorocyclohexane degradation

2 pathihsa00071: Fatty acid metabolism
3 pathhsa00910: Nirogen metabolism
4 patftsa04620: Tolkike receptor signaling pathway

(a) The KEGG enrichment results of up-regulated DEGs

(b)The KEGG enrichment results of down-regulated DEGs

Figure 3 The KEGG enrichment results of DEGs associated with the bladder.
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Figure 4 The heatmap of DEGs associated with the bladder

cancer.

differential co-expression subnetwork (Figure 7). In
Figure 7, the blue ellipses represent down-regulated
DEGs and the red ellipses represent up-regulated DEGs.
The shapes of nodes (genes) grow bigger with the
degree of nodes. The 6 biggest nodes represent the hub
genes: “GDF9”, “CYP1A2”, “ATF7”, “TRPM3”, “CER1”,
“PTPR]J”, “KCNIP1”, and “LRRC15”. These hub genes
mainly involve the biological processes: cellular response
to stimulus (GO:0051716)(5 genes), regulation of biolo-
gical process (GO:0050789)(7 genes), response to stimu-
lus (GO:0050896)(6 genes), multi-organism process
(GO:0051704)(4 genes), and regulation of localization
(GO:0032879)(4 genes). And they mostly take part in
five pathways: gamma-Hexachlorocyclohexane degrada-
tion (path:hsa00361), Fatty acid metabolism((path:
hsa00361)), Adherens junction(path:hsa04520), Trypto-
phan metabolism(path:hsa00380), and Wnt signaling
pathway(path:hsa04310). Among of them, “CYP1A2”
and “PTPR]J” have been reported that they are associated
with the bladder cancer [21-24].

And then, we dectected the modules of a DCN.
There have been some methods using clustering algo-
rithms [25-32]. Here, we adopted another good
approach [33]. In order to detect the modules of two
DCNs under different conditions, we begun with calcu-
lating the topological overlap matrix (TOM) [33] of
expression datasets. The topological overlap of two
nodes reflects their similarity in terms of the common-
ality of the nodes they connect to. In order test and
verify the inference, we clustered the TOM similarities

ER 0000885222

(b)The DCN at cancer state

Figure 5 Two DCNs at normal and cancer state cancer. The blue
ellipses represent down-regulated DEGs and the red ellipses
represent up-regulated DEGs. Comparing with the normal DCN, in
the cancer DCN, the up-regulated DEGs decrease. In additional, the
structure of two differential DCNs change a lot.

from two different conditions (Additional file 5). From
the Additonal file 5, it is obvious that the modules at
two different states change greatly. For observing the
module changes, we plotted the module heatmaps of
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Figure 6 The avg. clustering coefficient distribution of two different DCNs. For the normal DCN, the average clustering coefficient
distribution is bigger, implying that the cancer DCN has more modules than the normal DCN.

DEGs at two different states and showed parts of the
module heatmaps (Figure 8).

Discussion

The development of molecular markers for tumor classi-
fication and expression signatures that predict outcome
will greatly improve diagnosis treatment of bladder

cancer. We employed the R package “SAMR” to select
392 DEGs including 36 up-regulated and 356 down-
regulated. In the GO function enrichment results (Addi-
tional file 6 Additional file 7), it is showed that the main
functions of the DEGs are cellular physiological precess
(24 up-regulated DEGs; 167 down-regulated DEGs) and
cellular metabolism (19 up-regulated DEGs; 104 down-
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Figure 7 Differential co-expression subnetwork of two different DCNs. The blue ellipses represent down-regulated DEGs and the red
ellipses represent up-regulated DEGs. The shapes of nodes (genes) grow bigger with the degree of nodes. The 6 biggest nodes represent the
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regulated DEGs), which is reasonable for the bladder.
However, it is not clear why the difference between the
number of the up-regulated and the down-regulated is
so large.

We used the R packages “WGCNA” to construct two
DCNs under different conditions. And we used the tool
“Cytoscape” to visualize and analyze the two different
DCNs. Some hub genes were found and analyzed in
view of bioinformatics. The hub genes of the normal
DCN mainly involve the neuroactive ligand-receptor
interaction pathway and their GO functions mostly are
response to biotic stimulus,response to stimulus and
response to external stimulus. The hub genes of the
cancer DCN involve the following three KEGG path-
ways: gamma-Hexachlorocyclohexane degradation, Fatty
acid metabolism and Tryptophan metabolism. Their
main GO functions are cellular physiological process,
surface receptor linked signal transport and signal trans-
duction. In addition, we found some difference of the

two DCNs in modules from the clustering plots and the
heatmaps. But it is unknown for us that the functions of
the different modules, which is our future work.

We found several hub genes from the selected differ-
ential co-expression subnetwork of two different DCNs.
Two of them have been reported to be associated with
the bladder cancer. Then whether are the other hub
genes associated with the bladder cancer? It need to be
validated through biological experiments.

Conclusions

In the work, we adopted an integrated strategy to analyz-
ing the bladder cancer-associated genes by combining
several R packages, Gene Ontology and KEGG. In the
experimental results, it shows that the bladder cancer
results from the abnormal signaling pathways caused by
many genes. Through the data mining for gene expres-
sion microarrays, we found differential co-expression
subnetwork and the hub genes of the subnetwork.
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Figure 8 Part of the modules heatmap of DEGs at two
different states. The colors of grids get deeper with the correlation
value and so the genes corresponding to the grids with close colors
can be considered to be in the same module.

Through the main GO functions and pathways of the
hub genes, we can better understand the development of
the bladder cancer, which will support the wet biological
experiment and even further promote the prevention,
treatment,diagnosis and cure of the bladder cancer in the
future.

Methods

Selecting differential expressed genes

We adopted the method called “Significance analysis of
microarrays (SAM)” [15] to pick out the DEGs. The
selection approach is based on analysis of random
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fluctuations in the data. To account for gene-specific
fluctuations, they defined a statistic based on the ratio
of change in gene expression to standard deviation in
the data for that gene. The “relative difference” d(i) in
gene expression is:

xi(i) — xu(i)

s(i) +s0

d(i) = 1)
Where x1(i) and xy(i) are defined as the average
levels of expression for gene (i) in states I and U,
respectively. The “gene-specific scatter” s(i) is the stan-
dard deviation of repeated expression measurements:

0= a3, ) ~OF + X, b 5P @

Where ¥, and ¥, are summations of the expression
measurements in states I and U, respectively, a = (1/n +
1/n,5)/(ny + ny - 2), and n; and n, are the numbers of mea-
surements in states I and U.

To find significant change in gene expression, genes
were ranked by magnitude of their d(i) values, so that
d(i) was the i th largest relative difference. For each of
the N balanced permutations relative differences d,(i)
were also calculated, and the genes were again ranked
such that d,(i) was the i th largest relative difference for
permutation p. The expected relative difference, dg(i),
was defined as the average over the N balanced permu-
tations, di(i) = Zp dp(i)/N .

To identify potentially significant changes in expres-
sion, they used a scatter plot of the observed relative dif-
ference d(i) vs. the expected relative difference dg(i). For
the vast majority of genes, d(i) = dg(i), but some genes
are represented by points displaced from the d(i) = dg(i)
line by a distance greater than a threshold A and these
genes were called “significant genes”.

The method for setting thresholds provides asym-
metric cutoffs for induced and repressed genes. The
alternative is the standard t test, which improves a sym-
metric horizontal cutoff, with d(i) >c for induced genes
and d(i) <c for repressed genes.

Detecting modules in differential co-expression networks
We first needed to construct topological overlap matrices
(TOM) [33,34]. The topological overlap is for measuring
pair-wise similarity. They start with a network encoded
by its corresponding adjacency matrix A = [a;;] which is a
symmetric with binary entries. By convention, the diago-
nal elements are assumed to be zero.

The topological overlap of two nodes reflects their
similarity in terms of the commonality of the nodes they
connect to. Ravasz et al. [35] define the topological
overlap matrix T = [t;] as follows
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lij + ajj e
min {k,’, k]} +1— ai]’ lfl 74] (3)

1 ifi=j

ti]’ =

Where, lj = Zu Apdyj, ki = Zu ai and the index u

runs across all nodes of the network.
Yip and Horvath [33] generalized the TOM of Ravasz
et al. [35] by the observation that formula (1) as follows:

IN1(i) N N1(j)| + ay -
min {|N1(i)|, [N1()|} + 1 — aj ifi#] @
1 i

’

Lij =

i

Where N;(i) denotes the set of neighbors of I exclud-
ing [ itself and |-| denotes the number of elements (car-
dinality) in its argument. The quantity |[N7({)NN;(j)|
measures the number of common neighbors that nodes
i and j shares whereas |N;(i)| gives the number of
neighbors of i.

By denoting N,,(i)(with m > 0) the set of nodes
(excluding i itself) that are reachable from i within a
path of length m, i.e.,

No(i) == {j #il dist(i,j) < m) 5)

Where dist(i, j) is the geodesic distance between i and
j, then a very natural generalization of the TOM can be
read as follows

INm (i) N N ()| + ajj
dml _

i min { [Ny ()], [NmG)|} + 1 — a5 ifidj (6)
1 ifi=j

’

The matrix 71" = [tl[,m]] is called the m - th order
generalized topological overlap matrix (GTOMm). This
quantity simply measures the agreement between the
nodes that are reachable from i and from j within m
steps.
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