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Abstract

Background: DNA sequence analysis is an important research topic in bioinformatics. Evaluating the similarity
between sequences, which is crucial for sequence analysis, has attracted much research effort in the last two

decades, and a dozen of algorithms and tools have been developed. These methods are based on alignment,
word frequency and geometric representation respectively, each of which has its advantage and disadvantage.

Results: In this paper, for effectively computing the similarity between DNA sequences, we introduce a novel
method based on frequency patterns and entropy to construct representative vectors of DNA sequences.

Experiments are conducted to evaluate the proposed method, which is compared with two recently-developed
alignment-free methods and the BLASTN tool. When testing on the -globin genes of 11 species and using the
results from MEGA as the baseline, our method achieves higher correlation coefficients than the two alignment-
free methods and the BLASTN tool.

Conclusions: Our method is not only able to capture fine-granularity information (location and ordering) of DNA
sequences via sequence blocking, but also insensitive to noise and sequence rearrangement due to considering

only the maximal frequent patterns. It outperforms major existing methods or tools.

Background

The rapid development of DNA sequencing technologies
has led to a huge number of DNA sequences. It is possi-
ble now to obtain large amounts of individual genomes
sequenced in one week with less than US$10,000 [1],
using the high-throughput sequencing technologies, such
as single-molecule sequencing [2] and next-generation
sequencing (NGS) [3]. Consequently, DNA sequence
analysis faces serious computational challenges due to
the huge amounts of data.

Similarity evaluation between sequences is a crucial
starting point for analyzing genomic sequences and has a
wide range of applications. One important application is
to discover the evolutionary relationship between species.
This is based on the assumption that two species having
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similar sequences are close in evolutionary relationship.
Another popular application is to search similar
sequences in databases. The databases may be huge in
size, hence an effective and efficient method for defining
and computing the similarity between sequences is badly
in need. In addition, there are many reference-based
tools and algorithms for sequence compression, such as
GReEn [4], RLZ [5] and so on. For these algorithms, the
choice of reference sequence has a significant impact on
both compression ratio and compression time. Therefore,
a preprocessing step that assesses the similarity between
sequences and then selects the most similar one with the
others as the reference is critical to compression
performance.

Due to the importance of sequence similarity analysis, a
dozen of algorithms have already been developed. These
algorithms can be roughly classed into two categories.
The first category is based on sequence alignment, which
has been reviewed in [6]. Sequence alignment is powerful
for comparison between two related genomes; BLAST
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[7], FASTA [8] and MEGA [9] are typical sequence align-
ment tools. However, sequence alignment depends on
the orderings of the nucleotides and may be computa-
tionally prohibitive. And for comparing long sequences,
alignment-based methods take too much time. For exam-
ple, CUDAlign 3.0{10], one of the state-of-the-art parallel
alignment methods, spends more than 5,000 seconds
when comparing two sequences of size ~50 MB using 16
GPUs. Fortunately, alignment is not must for similarity
analysis.

The second category is alignment-free methods, some of
which are based on word (k-mer) frequency. The frequen-
cies of words within a DNA sequence are calculated and
compared between DNA sequences using statistical dis-
tances. A review on these algorithms can refer to [11].
Blaisdell [12] introduced the first word frequency based
method and used the Euclidean distance for assessing
sequence similarity. Wu et al. [13] proposed methods
based on Kullback-Leibler discrepancy between frequen-
cies of words, Mahalanobis distances and standardized
Euclidean distances under Markov chain models of base
composition.

Some other alignment-free methods use geometric
representations for DNA sequences. With these methods,
sequences are transformed to 2D [14], 3D [15], 4D [16]
and 5D [17] spaces and so on. Such graphical representa-
tion techniques provide a way to visually measure simi-
larity and dissimilarity between DNA sequences.
However, they are time-consuming when comparing long
sequences. Recently, there are also methods based on
entropy. Li et al. [18] introduced the weighted pseudo-
entropy, which is used for constructing representative
vectors of DNA sequences. And Zhang et al. [19] con-
verted DNA sequences into time sequences and then
used the approximate entropy [20].

In this paper, we develop a novel method based on Fre-
quent sequential Patterns and Entropy (FPE in short) to
represent DNA sequences. Concretely, each sequence is
first divided into blocks of the same length. Then, a modi-
fied PrefixSpan [21] algorithm is used to discover the max-
imal frequent patterns in each block. Finally, with the
probabilities of these patterns, the entropy of each block is
calculated. The resulting entropies of the blocks constitute
the components of the vector of the sequence. Note that
sequences are usually different in size, hence their vectors
may have different dimensions.

We conduct extensive experiments to evaluate the pro-
posed method on the B-globin genes of 11 species. By eval-
uating the correlation coefficient between the calculated
similarities and the results from MEGA [9], the proposed
method FPE achieves higher correlation coefficients than
two recently-developed alignment-free methods [14,18]
and BLASTN [7]. Further comparison analysis also shows
that FPE is more accurate than the two recently-developed
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methods, and our results agree well with the evolutionary
fact.

Methods

The pipeline of our method FPE is shown in Figure 1,
which consists of five steps, each of which is implemented
by a module. First, each sequence is preprocessed by the
preprocessing module. Second, each sequence is divided
into blocks of the same size by the sequence blocking mod-
ule. Then, a modified PrefixSpan [21] algorithm is used to
discover the maximal frequent patterns in each block,
which is done by the modified PrefixSpan module. The
entropy of each block is calculated with the probabilities
of discovered patterns in the block, which is finished by
the entropy calculation module. For each sequence, the
entropy values of all blocks form the dimensional compo-
nents of its final representation vector. Finally, the similar-
ity calculation module computes the similarity between
any two sequences using their vectors obtained above. We
describe each step in detail in the following subsections.

Preprocessing

For each sequence or genome to be processed, before
partitioning it into blocks, a preprocessing is performed,
which includes: 1) converting all characters to upper-
cases; 2) discarding all non-base characters; 3) ignoring
all line-breaks in each sequence file.

Sequence blocking

In our approach, each sequence is first split into several
blocks, each of which consists of the same number of
consecutive bases. The blocks are independent of each
other and the block size can be changed in practice. Note
that if the size of the last block is smaller than the speci-
fied block size, this block will be discarded. To be clearer,
following is an example. In this example, there are two
sequences. Assuming that the block size is 20, these two
sequences are divided into 3 and 4 blocks, respectively.
And the last blocks of size 4 are discarded.

Example 1 Consider the two sequences in Figure 2.
The block size is 20 and each block is underlined or dou-
ble underlined. And the last blocks with strikethrough
lines are discarded.

Sequence blocking is an important step that brings
two major advantages. First, the blocking strategy can
capture fine-granularity information of sequences,
including location and ordering information. Second,
even for the long sequences, blocking can reduce mem-
ory and time consumption for sequence processing.

Mining maximal frequent patterns from sequences

Most of the previously proposed methods based on word
frequency select some fixed-length words and then calcu-
late their frequencies, such as [12] and [13]. As DNA
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Figure 1 The pipeline of our method. The parallelograms stand for input/output modules, and the rectangles indicate functional modules. The

sequences are strings generated from the alphabet {A, G,
C, T}, there are totally 4° words of length k, which are also
called k-mers in the literature. To describe a sequence
well, the parameter k should be carefully selected, which
possibly depends on the application domain. To avoid
information loss, as many as possible patterns (or k-mers)
should be considered. However, this will unavoidably
introduce many low-information patterns (or noise). Keep-
ing this in mind, our method in this paper tries to avoid
manually determining the value of parameter k while tak-
ing all important patterns into account.

In addition, considering that subsequence rearrange-
ments are normal during the biological evolution pro-
cess, if there are too many rearrangements in the
sequences, the results of alignment based methods may
be unreliable.

Therefore, in this paper we adopt a modified Prefix-
Span [21] algorithm to discover the frequent patterns in
DNA sequences and consider only the maximal frequent
patterns. This makes our method be considerably toler-
ant of subsequence rearrangement and noise. In the
Experiments and Results section, we will present the
experimental results that show the proposed method’s
tolerance of noise and subsequence rearrangements.

PrefixSpan [21] is an efficient algorithm for sequential
pattern mining. However, our problem is a little differ-
ent from traditional sequential pattern mining. Instead
of mining a sequence database, we process a single
sequence. And there is no gap between the items (sub-
patterns) in each pattern. We give a formal definition of
our problem as follows:

Definition 1 (Mining maximal frequent patterns from
a DNA sequence). Given a DNA sequence S that is a
sequence of bases denoted by S = <s,8; ...s,> where n = |
S| is the length of sequence and s{1 < i < n) is a charac-
ter from the charset Q = {A, T, C, G}, and a predefined
minimum support threshold s,,;,, the support (denoted
by sup) of a subsequence of S is the occurrences of the
subsequence in S. A subsequence (or pattern) < Sg Sgy1...
Sm >(1 € k < m < n) is a frequent pattern if its support

sup is no less than s,,;,. A maximal frequent pattern is
the one that none of its super-sequences are frequent.
Our problem is to find all the maximal frequent patterns
in the DNA sequence.

In frequent pattern mining, a close concept to maxi-
mal frequent pattern is closed frequent pattern. A closed
frequent pattern is the one that none of its proper
super-sequences have the same support as itself. So
maximal frequent patterns must be closed frequent pat-
terns. Actually, mining maximal frequent patterns is
done by mining closed frequent patterns.

Example 2 Considering sequence 1 in Example 1. Let
Smin = 2 and check the sub-sequence (CT GA) in the first
block of sequence 1, its sup is 2, so it is a frequent pat-
tern in the first block of sequence 1. Furthermore, there is
no any super-sequence of (CT GA) has a sup that is > 2,
so (CT GA) is a maximal frequent pattern in the first
block of sequence 1.

Before describing the modified PrefixSpan algorithm,
we give the definitions of prefix, suffix and projected
database as Definition 2 and Definition 3. These defini-
tions are a little different from those in [21]. Note that
here we also perform pseudo-projection, instead of phy-
sical projection. That is, the projected database contains
only the indexes of the suffixes, not the real suffixes.
This technique is widely used in the area of frequent
pattern mining. In the following algorithms and exam-
ples, we just use pseudo-projection for the a-projected
database, S|,

Definition 2 (Prefix and Suffix) Given a sequence
S = <5185 ...8,>, We say sequence 0 = <$1Sy ...5,,> With
m < nis a prefix of S, and sequence Y = <S,,11Sm+2.--Sn>
is the suffix of S with regard to prefix 6, which is denoted
as y = S/0.

Definition 3 (Projected database) Let o be a sequen-
tial pattern in a sequence S, the o-projected database,
denoted as S|, is the collection of suffixes of S with
regard to prefix Q.

Algorithm 1 outlines the mining process. Assuming
that the current pattern is frequent, the algorithm

Seql:

ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGACET

Seq2:

GTGGTCCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACACCT

Figure 2 Two sequences.
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extends it by appending one base at a time (Line 3), and
constructs the corresponding projected database (Line 4).
If the extended pattern is frequent and closed (Algorithm
2), then the algorithm recursively calls itself with the
extended pattern (Line 8). Therefore, the current pattern
is always closed. If the current pattern cannot extend to
any frequent pattern (Line 9), it is maximal according to
Definition 1. And if the pattern is long enough, it will be
saved with its projected database (Line 10).

To check whether a frequent pattern is closed, we
adopt the method proposed in [22], which is outlined in
Algorithm 2. First, we calculate the start positions of the
pattern’s occurrences in the input sequence (block),
using its pseudo-projected database. That is, we subtract
the length of the pattern from each value in the pseudo-
projected database (Line 2-3). Then, we check whether
the set of these positions is a subset of any single-item-
projected database (Line 4). Here, a single item means
any base in {A, G, C, T}. If the answer is “yes”, the pat-
tern is impossible to be a closed frequent pattern.

Algorithm 1: freqPattens(Q, S,im bmins & S|y R) — the
modified PrefixSpan algorithm for mining maximal fre-
quent patterns from DNA sequence.

Input : Q - the charset of bases, namely, {4, 7, C, G};

Smin - the minimum support threshold;

Lin - the minimum pattern length;

o - the current pattern;

S|o - the a-projected database;

Output: R - the set containing all the maximal fre-
quent patterns and their corresponding projected
databases;

1 isMaximal = true;

2 foreach s € Q do

3  Append s to « to form a new pattern [3;

4  Construct the f3-projected database S|g ;

5 if |S|g | 2 s, then  /* B is frequent */

6 isMaximal = false;
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7 if isClosed(B, S|p) then

8 Call freqPattens(Q, S,uins Lniw B> Slp» R);

9 if isMaximal = true and |¢| 2 ,,;, then /* axis
maximal */

10 R=RUI{0 S|k

11 return R;

To have a better understanding of the mining process,
we give an example as follows:

Example 3 The mining process of the first block of
sequence 1 is presented in Table 1. Assume that both the
minimum support threshold and the minimum pattern
length to be 2. Therefore, (A), (G), {C) and (T ) are dropped
for not reaching the required length. And the patterns
whose supports are smaller than 2 are given up, such as
(CA) and {CC) etc. Patterns that are not maximal, such as
(CT ) and {(CT G) etc. are discarded. Note that (GA) and
(T GA) are still dropped because they are not closed fre-
quent patterns. Take (GA) for example. First, we compute
the start locations of the pattern’s occurrences in the
sequence block, and obtain the set {13 - 2, 20 - 2} = {11,
18}. Obviously, this set is the subset of (T ) -projected data-
base, so (GA) is not a closed frequent pattern. Then, we
obtain three maximal frequent patterns: (AT ), (CT GA)
and (T C).

Algorithm 2: isClosed(e, S|,) — determining whether
a pattern is closed.

Input : o - the pattern;

S|« - the a-projected database;

Output: True - if the pattern is closed;

False - if the pattern is not closed;

1P =¢; /*initialize the position set */

2 foreach ¢ € S|, do

3 P=PuUfc-|al}

4 if P €S|4 or P €S|C or P SS5|G or P €S|T then

5 return False;

6 else

7 return True;

Table 1 Illustration of the mining process of the modified PrefixSpan algorithm

current pattern

extended patterns

(C): 7,10, 14, 16, 17;

(CA): 8; {CC): 17, (CG): Empty; (CT ): 11,15, 18;

(CT ) 11,15, 18; (CT Ay: Empty; (CT C): 16; (CT G): 12, 19; (CT T ): Empty,

(CT G): 12, 19; (CTGA): 13, 20; (CT GC): Empty; (CT GG): Empty; (CT GT ): Empty;
(CTGA): 13, 20; (CT GAA): Empty, (CT GAC): 14; (CT GAG): Empty; (CT GAT ). Empty,
(A: 1, 8,13, 20; (AA). Empty;, (AC): 14; (AG): Empty; (AT). 2, 9;

(AT). 2, 9; (AT Ay: Empty; (AT C): 10; (AT G): 3; (AT T ): Empty,

(G): 3, 4,6,12,19;

(GA): 13, 20; (GC): 7, (GG): 4; (GT ). 5;

(T) 2,509 11,15, 18

(T A): Empty; (TC): 10, 16; (T G): 3, 6, 12, 19; (T T ): Empty,

(TC): 10, 16;

(T CAY: Empty; (T CCy: 17, (T CG): Empty; (T CT ). 11;

(TG):3,6,12,19;

(T GAY: 13, 20; (T GC): 7; (T GG): 4; (T GT ): Empty,

Each row represents one recursive step. The numbers after each pattern represent the starting locations of the suffixes, which are the so-called pseudo-

projections. Patterns in bold are maximal.



Xie et al. BMC Genomics 2015, 16(Suppl 3):S5
http://www.biomedcentral.com/1471-2164/16/53/S5

Entropy calculation

So far, we have obtained all the maximal frequent pat-
terns for each sequence block. Before evaluating the
entropy of each block, the probability of each pattern in
the block is computed as follows:

Spat

Ppat =
p ltocke — lput +1

1)

where s,,; is the support of the pattern, [« is the
length of the block, and /,,; is the length of the pattern.
It is obvious that the probability of each pattern is posi-
tively correlated with its support and its length. When
the length of pattern increases to the length of the
block, its support will become 1 so that the probability
equals 1. And the probability equals 0 when the support
drops to 0. As we consider only maximal frequent pat-
terns, and s,,;, is usually >1, those two extreme cases
will not happen.

Then, the entropy of a block is defined as below:

H=— T Spu Z SpatPpar 10 (Ppar) (2)

pateR

where R is the set of maximal frequent patterns mined
from the block. Finally, the entropies of all blocks con-
stitute the dimensional components of the final vector
of the sequence.

Example 4 From the 1st block of sequence 1 in Exam-
ple 1, we have obtained three maximal frequent patterns
and their probabilities are shown in Table 2. Then, it is
easy to get its entropy 0.241910 via Eq. (2).

Similarity calculation
In the above subsection, we have obtained a representa-
tive vector for each sequence.

However, as the vectors may differ in size, there
should be a special way to measure

the similarity of two vectors of different sizes.

Let V; ={V],V{,---,V{"} and V, = {V},V3,--,V}}
be the vectors of two different sequences, and assume
that 1 < m < n. First, we search a start location k in
V, — the longer vector, such that the following equation
holds:

VE_vl= min |[Vi-Vil<k<n-—-m+1.
% 1l 15i§—m+1| 2 11 <k= (3)

Table 2 Probabilities of patterns

pattern Spat Ipat Ppat

(AT ) 2 2 2/(20 = 2 + 1) = 0.105263
(CT GA) 2 4 2/(20 — 4 + 1) = 0.117647
(TC) 2 2 2/(20 = 2 + 1) = 0.105263
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Then, we calculate the distance between V; and V5 as
follows:

m

. A\ 2

dist(Vy, V) = Zl (v —viY (4)
i=1

When #n equals m, dist(V;, V5) is degenerated to Eucli-
dean distance.

Example 5 Considering the two sequences in Example
1, we obtain Vi = {0.241910, 0.238768} and V, =
{0.244296, 0.238768, 0.254436}. Then, we get k = 1 and
the distance between the two sequences is evaluated as

follows:

3
dist(V1, V2) = 2\/(0.241910 —0.244296)? + 02 = 0.003579.

Experiments and results

Data used in this work

We choose the -globin genes of 11 species, which are

widely used for evaluating the performance of sequence

similarity analysis methods. The details of these genes

are given in Table 3. Because most existing methods do

not provide executable tools or source codes, we do not

compare with them on other datasets. All the data are

available in the GenBank repository [1].
[1]http://www.ncbi.nlm.nih.gov/genbank

Experimental setting

We compare our method (FPE) with BLASTN [7] and
two recently-developed alignment-free methods [14,18].
The results of the MEGA [9] software are used as the
ground truth. The experiments are done on a PC with
Intel Xeon E5606 2.13GHz CPU and 8 GB memory.
The operating system is Ubuntu 10.04. By default, we

Table 3 Details of 3-Globin genes of 11 species

No. species accession number location length (nt)
1 Bovine [GenBank:X00376] 278-1741 1464
2 Chimpanzee [GenBank:X02345] 4189-5532 1344
3 Gallus [GenBank:V00409] 465-1810 1346
4 Goat [GenBank:M15387] 279-1749 1471
5 Gorilla [GenBank:X61109] 4538-5881 1344
6 Human [GenBank:U01317]  62187-63610 1424
7 Lemur [GenBank:M15734] 154-1595 1442
8 Mouse [GenBank:\V00722] 275-1462 1188
9 Opossum [GenBank:J03643] 467-2488 2022
10 Rabbit [GenBank:V00882] 277-1419 1143
11 Rat [GenBank:X06701] 310-1505 1196

The location column gives the start/end location of the sequence of each
gene.
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http://www.ncbi.nlm.nih.gov/pubmed/00409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/61109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/01317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/00722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/03643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/00882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/06701?dopt=Abstract
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run our method with the minimum support threshold
being 3 and the minimum pattern length being 2.

Experimental results and analysis

Preservation of fine-granularity information

Our method can capture fine-granularity information of
sequences via blocking. To show this, we examine how
the distance between human sequence and gorilla
sequence changes with block size. The results are pre-
sented in Figure 3. It can be seen that as block size
decreases, the distance becomes larger, because smaller
block size means finer information exploited in the
representative vectors. This is a proof that our method
can capture fine-granularity information.

Tolerance of sequence rearrangement

Figure 4 shows the distances between original human
sequence segments and the corresponding shuffled seg-
ments. Here, we set the block size to 200. We repeat
the following process 100 times: randomly choose a
consecutive segment whose size is 1/10 of the human
sequence length, shuffle the bases in the segment, and
then compute the distance between the original segment
and the shuffled one. After that, we average the dis-
tances over the 100 tests. The averaged distance is
0.003946 with the standard deviation being 0.002451. As
the sequences of human and gorilla are very similar, we
use their distance (0.009138) for comparison, which is
also drawn in Figure 4 by the blue line. We can see that
the distance between the original human sequence seg-
ments and the corresponding shuffled ones is quite
small, thus we conclude that our method is tolerant of
sequence rearrangement.

Tolerance of noise

To test noise tolerance of our method, we randomly
insert some letters selected from the charset {4, T, C,
G} into the human sequence. We define the noise ratio
as the proportion of the number of inserted letters over
the length of the sequence. Given a noise ratio, we first
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Figure 3 The distance between human and gorilla vs. block
size.
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Figure 4 The distances between original human sequence
segments and the corresponding shuffled ones. The horizontal
blue line indicates the distance between sequences of human and
gorilla. The horizontal axis indicates the test label from 1 to 100.

generate 100 contaminated sequences, then calculate the
distance between the original sequence and each of the
100 contaminated sequences, and finally we evaluate the
average distance over the 100 tests. Figure 5 shows the
averaged distance between the original sequence and the
contaminated sequences when noise ratio increases
from 0.01 to 0.5. Here, we set the block size to 3000,
which is much larger than the length of human
sequence and the contaminated ones, so there is actually
no blocking over the sequences. We can see that the
distance increases as more noise is added. However,
when noise ratio is less than 0.15, the distance is smaller
than the distance between the human sequence and the
gorilla sequence, which is 0.000931 under this setting.
This demonstrates that our method is substantially tol-
erant to noise.

Similarity analysis

Table 4 gives the pairwise distance matrix between the
genes of the 11 tested species. Here, we set the minimum
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Figure 5 The averaged distance between the original human
sequence and the contaminated sequences when noise ratio
increases from 0.01 to 0.5. The horizontal blue line indicates the
distance between the sequences of human and gorilla. The
horizontal axis is the ratio of noise added to the sequence.
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Table 4 Pairwise distance matrix of S-Globin genes of 11 species
bovine chimpanzee gallus goat gorilla human lemur mouse opossum rabbit rat
Bovine  0.0000 0.0782 01112 0.0474 0.0782 0.0670 0.0824 0.0666 0.1202 0.0666 0.0663
Chimpanzee  0.0782 0.0000 0.0679 0.0957 0.0000 0.0000 0.0558 0.0568 0.1579 0.0569 0.0569
Gallus  0.1112 0.0679 0.0000 0.1239 0.0679 0.0792 0.0962 0.0806 0.1935 0.0805 0.0805
Goat  0.0474 0.0957 0.1239 0.0000 0.0957 0.0820 0.0675 0.0939 0.0994 0.0939 0.0938
Gorilla 00782 0.0000 0.0679 0.0957 0.0000 0.0000 0.0558 0.0568 0.1579 0.0569 0.0569
Human  0.0670 0.0000 0.0792 0.0820 0.0000 0.0000 0.0478 0.0663 0.1537 0.0664 0.0664
Lemur  0.0824 0.0558 0.0962 0.0675 0.0558 0.0478 0.0000 0.0942 0.1428 0.0945 0.0944
Mouse  0.0666 0.0568 0.0806  0.0939 0.0568 0.0663 0.0942 0.0000 0.1643 0.0672 0.0671
Opossum  0.1202 0.1579 0.1935 0.0994 0.1579 0.1537 0.1428 0.1643 0.0000 0.1643 0.1643
Rabbit  0.0666 0.0569 0.0805 0.0939 0.0569 0.0664 0.0945 0.0672 0.1643 0.0000 0.0003
Rat  0.0663 0.0569 0.0805 0.0938 0.0569 0.0664 0.0944 0.0671 0.1643 0.0003 0.0000

pattern length to 8, the minimum support threshold to 2,
and the block size to 200. And Figure 6 shows the phylo-
genetic tree based on this matrix. From Figure 6, we can
see that gorilla, chimpanzee and human are close to each
other. Lemur is closer to them than the other species.
Goat and bovine are in the same group. Rat, rabbit and
mouse are also relatively close. And gallus and opossum
are quite dissimilar with the other species. This is
because gallus is the only non-mammal and opossum is
the most remote species among the mammals. The
results are similar to those of [14] and [18], and agree
well with the evolutionary fact.

Comparison with existing methods

We compare our method with three existing methods,
including two recently-developed alignment-free methods
and BLASTN 2.2.29+ [7]. One of the two compared align-
ment-free methods was developed by Li et al. in 2011 [18],

Rat

Rabbit

Mause

Goat

Bovine

Gorilla

Chimpanzee

Human

Lemur

Gallus

Opossum

0.25 0.20 0.15 0.10 0.05 0.00

Figure 6 The dendrogram of the 11 tested species based on
the similarity matrix in Table 4. The dendrogram is generated by
using the python SciPy library (http://www.scipy.org/).

the other was developed by Yu and Huang in 2013 [14].
As in [14], the results obtained by the MEGA [9] software
— a famous alignment-based tool, are used as the baseline.
We also calculate the Pearson correlation coefficient
between the results of MEGA and those of our method
and the three compared methods. Table 5 shows the dis-
tances between human and other species via the five dif-
ferent methods (including MEGA). Here, the last column
lists the Pearson correlation coefficients between the
results of MEGA 5.2 and those of our method and the
three compared methods. For BLASTN, we use the maxi-
mum scores and normalize them to the range between 0
and 1 as the similarity, then the distance is 1 minus the
similarity. As we can see, our method achieves the highest
correlation with MEGA. This shows that our method can
calculate the similarity between DNA sequences more
accurately.

To make it clearer, we also present the distances
between human and the other tested species calculated
by our method and the three compared methods as well
as MEGA in Figure 7. Here, the distance is normalized
to the range between 0 and 1. We can see that the dis-
tance between opossum and human evaluated by the
method proposed in [18] is not large enough, which vio-
lates the fact that opossum is the most remote species
among the mammals; while the distance between lemur
and human obtained by the method proposed in [14] is
too large, which also disagrees with the evolutionary
fact. However, for our method, the curve is more similar
to that calculated by the MEGA method, which again
shows that our method achieves the highest correlation
with the ground truth.

Discussion

Existing methods for measuring similarity/dissimilarity
between DNA sequences roughly fall into two types:
alignment-based methods and alignment-free methods.
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Table 5 Comparison of the distances between human and the other tested species

Bovine Chimpanzee Gallus Goat Gorilla Lemur Mouse Opossum Rabbit Rat  Correlation coefficient
MEGA 5.2 0.4485 0.0095 08456 04696 00117 02423 04815 0.8337 04083 04935 -
BLASTN 2.2.29+[7]  0.8600 0.089%6 09880 08765 0.08% 06643 09026 1.0000 08423 09182 0.8912
Method of [14] 224257 53704 235869 268209 53704 252515 258007 259952 205706 27.0102 0.7569
Method of [18] 0.1000 0.0100 02150 0.1050 0.0110 0.0550  0.0830 0.0890 0.0700  0.0620 0.8318
FPE 0.0670 0.0000 0.0792 00820 0.0000 0.0478 0.0663 0.1537 0.0664  0.0664 0.8966

Note that the results from [14] are based on the sequence of the first exon in each S-globin gene.

As alignment-based methods may be computationally
expensive and not scalable to huge datasets, alignment-
free methods have been extensively investigated recently.

For the alignment-free methods, on the one hand,
algorithms based on word frequency are sensitive to the
length of words used, and may include noise if taking all
the words into account. On the other hand, algorithms
based on geometric representation provide visual com-
parison among DNA sequences locally and globally.
However, for long sequences, these methods may
require too much computation overhead and memory.
Recently, entropy-based methods provide simple repre-
sentations for the sequences, but they are prone to lost
some important information, for example, location and

ordering information. As they treat all symbols or pat-
terns equally, they may also include noise.

Our method is based on frequent patterns and entropy.
As we consider only the maximal frequent patterns in a
sequence, our method can considerably tolerate noise and
sequence rearrangements. Furthermore, by using the
blocking strategy, fine-granularity information of the
sequences can be captured.

However, for more accurately evaluating the similarity
between two sequences, some parameters have to be
tuned. In our algorithm, the block size, the minimum
support threshold and the minimum pattern length can
be changed for different sequences. Note that to com-
pare two sequences, the block size should be the same.

-

0.8

0.6

0.4

0.2

0 = |

1.4 I T T \
MEGA5.2 — ¥
Yu and Huang (2013)
1.2 - Li et al. (2011) —&— ]
FPE — B
1+ A rv BLASTN

| | | |

bovine chimpanzee gallus goat gorilla

and the other tested species, as shown in Table 5.

Figure 7 Comparing the distances evaluated by different methods. The vertical axis indicates the normalized distances between human

lemur mouse opossum rabbit rat
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And the larger the block size, the more information will
be lost. Here, we present the following rule of thumb
for parameter tuning:

1) By experiments, we found that it is better to set the
block size less than 400, which can be also observed
from Figure 3.

2) Once the block size is determined, there may be an
optimum pair of the minimum support threshold and
the minimum pattern length to be determined.

3) We observed a negative correlation between the
minimum support threshold and the minimum pattern
length. This means that if the minimum support thresh-
old is large, the minimum pattern length should be set
to relatively small. Otherwise, we may get no maximal
frequent patterns in some blocks, and thus lose too
much information.

Finally, we want to point out that different methods have
their own application scenarios. For example, methods
based on geometric representation are very powerful tools
for visually and intuitively analyzing the sequences. As for
our method, we provide an effective way to represent a
DNA sequence to a vector, which is suitable for searching
similar sequences in databases or acting as a preprocessing
step for other applications. Considering that our method
has been shown to provide more accurate distances, so it is
also suitable for discovering evolutionary relationships.

Conclusion

This paper presents a novel method based on frequent
patterns and entropy to represent the DNA sequences
and evaluate their similarities. By using blocking techni-
que, our method can capture fine-granularity information
of sequences. Our method can also tolerate noise and
sequence rearrangements because we take only the maxi-
mal frequent patterns into account. Experiments over the
B-globin genes of 11 species show that our method
achieves more accurate distances than two recently-
developed alignment-free methods and the BLASTN tool.
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