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Abstract

Background: Interactions between DNA and proteins are essential to many biological processes such as
transcriptional regulation and DNA replication. With the increased availability of structures of protein-DNA
complexes, several computational studies have been conducted to predict DNA binding sites in proteins. However,
little attempt has been made to predict protein binding sites in DNA.

Results: From an extensive analysis of protein-DNA complexes, we identified powerful features of DNA and protein
sequences which can be used in predicting protein binding sites in DNA sequences. We developed two support
vector machine (SVM) models that predict protein binding nucleotides from DNA and/or protein sequences. One
SVM model that used DNA sequence data alone achieved a sensitivity of 73.4%, a specificity of 64.8%, an accuracy
of 68.9% and a correlation coefficient of 0.382 with a test dataset that was not used in training. Another SVM
model that used both DNA and protein sequences achieved a sensitivity of 67.6%, a specificity of 74.3%, an
accuracy of 71.4% and a correlation coefficient of 0.418.

Conclusions: Predicting binding sites in double-stranded DNAs is a more difficult task than predicting binding
sites in single-stranded molecules. Our study showed that protein binding sites in double-stranded DNA molecules
can be predicted with a comparable accuracy as those in single-stranded molecules. Our study also demonstrated
that using both DNA and protein sequences resulted in a better prediction performance than using DNA sequence
data alone. The SVM models and datasets constructed in this study are available at http://bclab.inha.ac.kr/
pnimodeler.

Background
Interactions between nucleic acids and proteins have
diverse functions within a cell, and play an important role
in many biological processes. For example, proteins that
bind to specific regions of DNA act as transcription factors
by activating or repressing gene expression of the DNA.
Thus, identifying protein recognition parts in DNAs or
DNA recognition parts in proteins will help understand a
variety of cellular processes [1,2]. As many structures of
protein-DNA complexes have been determined, theoreti-
cal and experimental studies have been conducted in
recent years to study protein-DNA interactions, but

protein-DNA interactions and their mechanisms are not
yet fully understood.
Several computational methods have been developed

to predict DNA- or RNA-binding residues in protein
sequences using machine learning methods such as sup-
port vector machines (SVM) as classifiers. BindN [1]
uses SVM to predict RNA- or DNA-binding residues in
proteins based on the biochemical features of amino
acids. DP-Bind [3] predicts DNA-binding residues in
proteins and uses SVM with a position specific scoring
matrix (PSSM) and amino acid properties. DNABindR
[4] uses a naïve Bayes classifier to predict DNA-binding
residues in proteins. MetaDBSite [5] predicts DNA-
binding residues by integrating the prediction results
from six predictors (DISIS, DNABindR, BindN, BindN-
rf, DP-Bind and DBS-PRED). A method developed by
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Liu et al. [6] predicts RNA-binding sites in proteins
using a random forest. It uses several features such as
mutual interaction propensity, physicochemical charac-
teristics, hydrophobicity, relative accessible surface area,
secondary structure, conservation score and side-chain
environment.
Instead of finding DNA-binding sites in proteins, some

works have attempted to classify whether a given protein
is DNA-binding or non-binding. iDNA-Prot [7] classifies
proteins into DNA-binding and non-binding proteins
from amino acid sequence data. DBPPred [8] also classifies
whether a given protein is a DNA-binding protein or not
using secondary structure, relative solvent accessibility and
PSSM.
Several studies have been conducted to find effective

features of proteins in predicting DNA-binding sites in
proteins. For example, Yi et al. [9] characterized DNA-
binding residues on protein surface with B-factors and
packing density, and Dey et al. [10] investigated evolu-
tionary conservation, spatial clustering, hydrogen bond
donor capability and residue propensity.
Unlike the previous works that have focused on DNA-

or RNA- binding proteins, in the present work we
attempted to predict protein binding nucleotides using
sequence data. Predicting protein binding sites in DNA is
more difficult than predicting DNA binding sites in pro-
teins for several reasons: (1) for a sequence of the same
length, DNA has many fewer sequence patterns than pro-
tein, (2) in protein-DNA interactions nucleotides show
less diverse interaction propensities than amino acids, and
(3) predicting binding sites in a double-stranded molecule
(i.e., DNA) is more complicated than predicting binding
sites in a single protein sequence.
In the present work we studied key features of DNA and

protein sequences and their representation to predict pro-
tein binding sites in DNA. We developed two SVM mod-
els and compared their performances with actual data.
One SVM model (hereafter called DPI1) predicts binding
sites in a given DNA sequence with unknown protein.
Another SVM model (called DPI2) predicts binding sites
in a given DNA sequence with a specified protein. Experi-
mental results showed that the SVM model that used
DNA sequence data alone predicted more binding sites
than the SVM model that used both DNA and protein
sequences, but the overall performance of the latter was
higher than that of the former. In this paper, we present
our approach to the problem of predicting protein binding
nucleotides from sequence data and discuss experimental
results.

Methods
Definition of a binding site
Several types of interactions are involved in protein-
DNA interactions, and different studies use different

criteria to define a binding site in protein-DNA interac-
tions [1,3,4]. In this study of protein-DNA interactions,
we considered three types of interactions to define a
binding site: hydrogen bonds, water bridges and hydro-
phobic interactions. We obtained protein-DNA pairs
involved in the three types of interactions from the
nucleic acid-protein interaction database (NPIDB) [11].
A nucleotide participating in any of the interactions of
three types were classified as a binding site as shown in
Figure 1.

Dataset
We collected protein-DNA complexes which are deter-
mined by X-ray crystallography with a resolution of
3.0 Å or better from the Protein Data Bank (PDB) [12].
As of July 2013, there were 1,654 protein-DNA com-
plexes which contain 1,589 DNA sequences and 892
protein sequences.
We divided the 1,589 DNA sequences into two groups

using CD-HIT-EST [13]. 1,416 DNA sequences with the
similarity of 80% or higher were selected as a training
dataset for the prediction models. The remaining 173
DNA sequences that have a similarity lower than 80%
with any sequence of the training dataset were used as a
test dataset for the prediction models. We applied the fea-
ture vector-based method to the 1,416 DNA sequences to
construct a non-redundant training dataset. The feature
vector-based redundancy removal method, developed in
our previous study [14], constructs a larger training data-
set of non-redundant data than the standard sequence
similarity-based reduction method. The initial 1,416 DNA
sequences of the training dataset form 2,658 interaction
pairs with 837 protein sequences, and the 173 DNA
sequences of the test dataset form 189 interaction pairs
with 135 protein sequences.
Our prediction models do not assume that the struc-

ture data or sequence direction is known, so they handle
each sequence in double stranded DNA molecules sepa-
rately to predict protein-binding sites in the DNA
sequence. The training dataset for the model that uses

Figure 1 Criteria of protein binding nucleotides. If a nucleotide is
involved in any of the protein-DNA interactions of 3 types (hydrogen
bonds, water bridges and hydrophobic interactions), it is classified as a
binding site. A nucleotide in a black background represents a protein-
binding site and others represent non-binding sites.
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both DNA and protein sequences contains 20,588 bind-
ing nucleotides and 27,630 non-binding nucleotides. For
the model that uses only DNA sequence data, binding
sites in a same DNA sequence with different protein
partners were incorporated in the DNA sequence. Thus,
the training dataset for this model contains fewer bind-
ing and non-binding nucleotides (20,378 binding
nucleotides and 23,950 non-binding nucleotides) than
that for the model that uses both DNA and protein
sequences.

Support Vector Machines and Feature Vectors
We implemented two prediction models using a library
for support vector machines (LIBSVM) [15]. As a kernel
function we used the radial basis function (RBF). Two
parameters (cost and gamma) of RBF control the perfor-
mance and time-cost. We found the best values of the
parameters cost and gamma for each window size using
an optimization tool called grid.py. We assigned binding
nucleotides a weight of 1.3 to balance the data size of
binding nucleotides with that of non-binding nucleotides.
Since SVM handles numerical data, we encode sequence

information into a feature vector with numerical elements.
We created feature values from three types of sequence
data: original DNA sequence, DNA sequence fragments
from the original DNA sequence, and protein sequence
interacting with the DNA. The original DNA sequence is
represented by its base composition. DNA sequence frag-
ments are represented by nucleotide triplet composition,
normalized position, molecular mass, molecular pKa and
interaction propensity (IP) of nucleotide triplets [14]. For
protein, which is an interaction partner of DNA, we repre-
sent the sum of normalized position of 20 amino acids
[14] and dipeptide composition [16].
The base composition represents the percentage of

four nucleotides in a DNA sequence (equation 1). The
nucleotide triplet com-position represents the frequency
of a nucleotide triplet using a sequence encoding
scheme called the n-gram extraction method [17]. For a
given sequence, the n-gram method extracts the pat-
terns and frequencies of n consecutive nucleotides.
There are 64 (= 4 × 4 × 4) possible nucleotide triplets,
and they are represented by 64 features in a feature vec-
tor using equation 2. The IP represents the binding pro-
pensities between nucleotide triplets and amino acids.
The normalized position of the i-th nucleotide or amino
acid is its relative position in the original sequence
(equation 3).
The dipeptide composition is the frequency of 400 (=

20 × 20) amino acid duplet patterns [16]. The partner
feature represents the sum of the normalized positions
of 20 amino acids (equation 4).
A feature vector representing a sequence fragment of

length S consists of 4 elements for the base composition,

S elements for mass, S elements for pKa, 1 element for
the normalized position, 64 elements for the triplet com-
position and 20×S elements for the IP of nucleotide tri-
plets. For example, a DNA sequence fragment of 5
nucleotides is encoded by 179 feature elements (4 ele-
ments for the base composition + 5 elements for mass +
5 elements for pKa + 1 element for the normalized posi-
tion + 64 elements for the nucleotide triplet composition
+ 100 elements for the IP of nucleotide triplets). In addi-
tion, 420 feature elements (20 elements for the sum of
the normalized positions of 20 amino acids + 400 ele-
ments for the dipeptide composition) are included in a
feature vector to represent a partner protein sequence for
DPI2 as shown in Part B of Figure 2.

Base composition(b)b∈{A,C,G,T} =
Total occurrences(b)
Sequence length

(1)

Triplet composition(t)t∈{64 triplets} =
Total occurences(t)

64
(2)

Normalized position(i) =
Position(i)

Sequence length
(3)

Partner feature(a)a∈{20 amino acids} =
Length∑

i,ai=a
Normalized position(a) (4)

A DNA sequence is represented by overlapping
sequence fragments using a sliding window method. Part
A of Figure 2 shows the process of dividing sequences
with a DNA sequence of length 9 and sliding window of
size 5. After we represented the sequence fragments, we
removed redundant feature vectors using the feature vec-
tor-based redundancy reduction method, which was devel-
oped in our previous study [14].

Results
Performance measures
We performed a 10-fold cross validation to train and
test the prediction models. For a more rigorous evalua-
tion, we tested them on independent datasets that were
not used in training them. The performance of the pre-
diction models was evaluated with respect to six mea-
sures: sensitivity, specificity, accuracy, positive predictive
value, negative predictive value, and Matthews correla-
tion coefficient.
Sensitivity (SN) is the ratio of correctly predicted bind-

ing nucleotides to actual binding nucleotides (equation 5).
Specificity (SP) is the ratio of correctly predicted non-
binding nucleotides to actual non-binding nucleotides
(equation 6). Accuracy (ACC) is the ratio of correctly
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predicted nucleotides to all nucleotides (equation 7). Posi-
tive predictive value (PPV) measures the ratio of correctly
predicted binding nucleotides to all nucleotides that are
predicted as binding (equation 8). Negative predictive value
(NPV) measures the ratio of correctly predicted non-bind-
ing nucleotides to all nucleotides that are predicted as non-
binding (equation 9). The Matthews correlation coefficient
(MCC) is a strong indicator for multi-class problems and
returns a score between -1 and 1 (equation 10).
Sensitivity, specificity and accuracy do not provide

reliable performance indicators for imbalanced data. For
example, consider a data set of 30 positives and 2,000
negatives which shows a sensitivity of 67%, a specificity

of 91% and an accuracy of 91%. If it has nine times
more false positives than true positives, the positive pre-
dictive value (PPV) can be as low as 10% despite the
seemingly reasonable values of sensitivity, specificity and
accuracy. Thus, we compute PPV and negative predic-
tive value (NPV) in addition to sensitivity, specificity
and accuracy.
In equations 6-10, the true positives (TP) are binding

nucleotides that are correctly predicted as binding
nucleotides, the true negatives (TN) are non-binding
nucleotides that are predicted as non-binding nucleo-
tides, the false positives (FP) are non-binding nucleotides
that are incorrectly predicted as binding nucleotides, and

Figure 2 Example of representing a DNA sequence of 9 nucleotides by a sliding window of size 5. The ‘+’ symbol represents binding,
and the ‘-’ symbol represents non-binding. ‘X’ in fragments indicates a null nucleotide at the position. Part A explains dividing a DNA sequence
into sequence fragments and Part B explains encoding a sequence fragment in a feature vector. For each DNA sequence fragment of 5
nucleotides, 179 elements are encoded in a feature vector: 4 elements for the base composition, 5 elements for mass, 5 elements for pKa, 1
element for the normalized position, 64 elements for the nucleotide triplet composition, and 100 elements for the IP of nucleotide triplets. The
features of protein are encoded in 420 feature elements (20 elements for the sum of the normalized positions of 20 amino acids + 400 elements
for the dipeptide composition). The feature vector for DPI1 does not include the 420 features of protein.
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the false negatives (FN) are binding nucleotides that are
incorrectly predicted as non-binding nucleotides.

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

PPV =
TP

TP + FP
(8)

NPV =
TN

TN + FN
(9)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(10)

Comparison of two SVM models
We performed a 10-fold cross validation for the two pre-
diction models with various window sizes from 3 to 31 to
examine the effect of window sizes on the prediction per-
formance. As shown in Table 1, the prediction model
that used both DNA and protein sequences (DPI2)

showed better performance than the model that used
only a DNA sequence (DPI1). DPI1 showed the best
result with a window of size 23 (sensitivity of 74.01%,
specificity of 72.92%, accuracy of 73.42%, PPV of 70.16%,
NPV of 76.53% and MCC of 0.468). DPI2 showed the
best result with a window of size 23 (sensitivity 80.8%,
specificity 83.75%, accuracy 82.51%, PPV 78.27%, NPV
85.76% and MCC of 0.643).
In the test on an independent dataset that were not

used in training, DPI2 showed a lower sensitivity than
DPI1, but the other measures were higher than those
of DPI1 (Table 2). In the test on the independent
dataset, DPI1 showed the best result with a window
of size 29 (73.39% sensitivity, specificity 64.81%, accu-
racy 68.86%, PPV 65.12%, NPV 73.11% and MCC
0.381). In the test on the independent dataset, DPI2
showed the best result with a window of size 31 (sen-
sitivity of 67.61%, specificity of 74.27%, accuracy of
71.37%, PPV of 66.95%, NPV of 74.84% and MCC of
0.418).
Figure 3 shows ROC curves and their area under the

curve (AUC) of the two models with a window of 23
nucleotides. AUC of DPI2 is larger than DPI1, indicating
that DPI2, which used additional partner protein
sequence data, was better than DPI1. As the window
size increases, MCC tends to increase but does not
increase any more with a window of size 19 or larger
(Figure 4). This is because a larger window includes
more null nucleotides at both ends of the window.

Table 1 10-fold cross validation with different window sizes (WS) from 21 to 31

WS DPI1 DPI2

SN
(%)

SP
(%)

ACC (%) PPV (%) NPV (%) MCC SN (%) SP
(%)

ACC (%) PPV (%) NPV (%) MCC

21 73.78 72.77 73.24 70.01 76.31 0.464 80.71 83.49 82.32 77.99 85.65 0.639

23 74.01 72.92 73.42 70.16 76.53 0.468 80.80 83.75 82.51 78.27 85.76 0.643

25 73.78 73.12 73.42 70.22 76.45 0.468 80.85 83.48 82.38 77.99 85.76 0.640

27 73.56 73.14 73.33 70.15 76.32 0.466 80.78 83.70 82.47 78.19 85.75 0.642

29 73.37 73.05 73.20 70.02 76.18 0.463 80.85 83.65 82.47 78.15 85.79 0.642

31 72.79 73.46 73.15 70.16 75.99 0.462 80.86 83.62 82.46 78.12 85.79 0.642

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient.

Table 2 Testing on independent datasets with different window sizes (WS) from 21 to 31

WS DPI1 DPI2

SN (%) SP (%) ACC (%) PPV (%) NPV (%) MCC SN
(%)

SP
(%)

ACC (%) PPV (%) NPV (%) MCC

21 73.39 64.29 68.59 64.79 73.00 0.377 66.41 73.89 70.63 66.22 74.05 0.403

23 73.02 64.09 68.31 64.55 72.63 0.372 66.55 74.00 70.75 66.36 74.16 0.405

25 72.15 64.48 68.11 64.53 72.11 0.366 66.76 74.16 70.94 66.57 74.32 0.409

27 73.17 64.61 68.65 64.93 72.89 0.378 67.39 74.10 71.18 66.74 74.67 0.415

29 73.39 64.81 68.86 65.12 73.11 0.382 67.39 74.27 71.28 66.88 74.71 0.416

31 73.17 64.94 68.82 65.14 72.99 0.381 67.61 74.27 71.37 66.95 74.84 0.418

SN: sensitivity, SP: specificity, ACC: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient.
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PNImodeler takes DNA sequence data as input. When
PNImodeler is given a single DNA sequence instead of
double-stranded DNA sequences as input, it can automa-
tically generate its reverse complement sequence based
on the base pairing rule and predict protein-binding
nucleotides in both the input DNA and its reverse com-
plement sequences. As an optional input data, PNImode-
ler takes a protein sequence that interacts with the DNA.
Figure 5 shows an example of predicting protein binding
sites in a double-stranded DNA.
Several programs have been developed to predict

DNA-binding sites in proteins, but there are very few

programs available that can predict protein-binding sites
in DNA. PROMO [18] is one of the few programs that
predict transcription factor (TF) binding sites in DNA
sequences. For comparative purposes, we tested the two
models of PNImodeler (DPI1 and DPI2) and PROMO
on DNA sequences of recent TF-DNA complexes
which were deposited into PDB after December 2013
(DNA chains D and E of 3WTV, DNA chains C and D
of 4CHU, and DNA chains E and F of 4ON0). The
model DPI2 of PNImodeler, which used both DNA and
protein sequences, showed a sensitivity of 65.31%, a spe-
cificity of 75.33%, an accuracy of 71.43% and an MCC
of 0.404 on average. The model DPI1 of PNImodeler,
which used DNA sequences only, showed a sensitivity of
61.40%, a specificity of 77.47%, an accuracy of 70.31%
and an MCC of 0.395 on average. With all listed tran-
scription factors as candidate binding partners of the
DNA sequences of the recent TF-DNA complexes,
PROMO showed a sensitivity of 36.95%, a specificity of
71.42%, an accuracy of 57.08% and an MCC of 0.088 on
average. These results demonstrate that PNImodeler is
better than PROMO with or without the information on
protein sequences.

Conclusions
In general predicting protein binding sites in a double
stranded molecule is more complex than predicting
binding sites in single stranded molecules. We devel-
oped two SVM models to predict protein binding
nucleotides in DNA. One model uses DNA sequence
data alone and predicts all potential binding sites with
unknown protein partners. The other model uses both
DNA and protein sequences to predict protein binding
nucleotides with the specific protein. In both 10-fold

Figure 3 ROC curves of the 10-fold cross validation of the two
models. AUC: area under the ROC curve. 10-fold cross validation
results of the two models with a sliding window of size 23. AUC of
DPI2 that uses both DNA and protein sequence data is higher than
DPI1 that uses DNA sequence data alone.

Figure 4 Matthews correlation coefficient (MCC) of DPI1 and DPI2 with different window sizes. MCC of DPI2 is higher than that of DPI1
in all window sizes. In both DPI1 and DPI2, MCC tends to increase as the window size increases, but it does not increase any more with a
window of size 19 or larger.
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cross validation and independent testing, the second
model that uses both DNA and protein sequences
achieved better performance than the first model that
uses DNA sequence data only.
We have implemented the SVM models as a web ser-

ver called PNImodeler (Protein-Nucleic acid Interaction
modeler), and it is available at http://bclab.inha.ac.kr/
pnimodeler. This web server will be useful to find pro-
tein-binding sites in DNA with unknown structure. To
the best of our knowledge, this is the first attempt to
predict protein-binding DNA nucleotides with sequence
data alone.
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