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Abstract

are correlated with TF-DNA binding affinities.

implications in understanding TF regulatory mechanisms.

Background: Transcription factors (TF) regulate gene expression by binding DNA regulatory regions. Transcription
factor binding sites (TFBSs) are conserved not only in primary DNA sequences but also in DNA structures. However,
the global relationship between TFs and their preferred DNA structures remains to be elucidated.

Results: In this paper, we have developed a computational method to generate a genome-wide landscape of TFs
and their characteristic binding DNA structures in Saccharomyces cerevisiae. We revealed DNA structural features for
different TFs. The structural conservation shows positional preference in TFBSs. Structural levels of DNA sequences

Conclusions: We provided the genome-wide correspondences of TFs to DNA structures. Our findings will have

Background
Proper control of gene expression is critical for the com-
plex function of a living cell. Although gene expression
can be regulated at multiple levels, one of the most
important regulatory mechanisms is at the transcriptional
level. The transcriptional program is dependent on bind-
ing of transcription factors (TFs) to the cis-acting regula-
tory elements in promoter and enhancer regions of
genes. Transcription factors also regulate gene expression
by recruiting coactivators and RNA polymerase II (RNA
Pol II) to target genes [1]. TFs and their binding sites are
thus fundamental to the regulation of gene expression.
TFs bind DNA in a sequence-specific manner. Binding
sites of one TF share conserved (i.e. similar) primary
sequence patterns in different target promoters. The con-
served sequence patterns have been widely used to com-
putationally identify transcription factor binding sites
(TFBSs) [2-5]. However, the traditional one-dimensional
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view of DNA sequence is oversimplified. The three-
dimensional structure of DNA, which reflects the physi-
cochemical and conformational properties of DNA, is cri-
tical for the packaging of DNA in the cell [6]. The
structure of DNA has been recognized to be important
for protein-DNA recognition [7,8].

DNA bending plays a role in the regulation of prokar-
yotic transcription [9]. DNA structure can be used as dis-
criminatory information to identify core-promoter
regions [10,11]. Specific replication-related proteins show
a preference to bind curved DNA sequences [12]. DNA
curvature is also involved in the binding of recombina-
tion-related proteins to DNA [13]. DNA structure in the
human genome is more evolutionary constrained than
the primary nucleotide sequence alone [14]. Moreover,
the DNA structure-conserved regions correlate with
non-coding regulatory elements, better than sequence-
conserved regions identified solely on the basis of pri-
mary sequence [14].

Although primary nucleotide sequences determine
three-dimensional structures of DNA, different DNA
sequences might have similar DNA structures, one TF
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might bind DNA with different primary sequence patterns
but with similar DNA structures. Recently, several compu-
tational approaches have used DNA structural properties
to identify TFBSs with modest success [15-20]. There are
many DNA structural properties that potentially influence
TF-DNA binding. Different TFs might prefer different
DNA structural properties. However, the full relationship
between TFs and their corresponding DNA structural
properties remains to be elucidated. In this study, we eval-
uated DNA structure in terms of various physicochemical
and conformational properties. We have developed a com-
putational approach to derive the first genome-wide land-
scape of TFs and their featured binding DNA structures in
budding yeast Saccharomyces cerevisiae. We found that a
considerable number of TFs have distinct DNA structural
preferences. These structural features show positional pre-
ferences in TFBSs.

Results

A compendium of DNA structural properties

We used 35 types of di- or trinucleotide DNA structural
properties, which were mainly collected in our previous
study [21]. The structural properties chosen in this study
have been frequently used and have been extensively stu-
died in previous literatures [22,23]. These structural prop-
erties provide important information on the structure of
DNA and capture structural properties that might be of
importance for transcription. Each property contains com-
plementary information and provides a unique insight into
the DNA structure. The properties were classified into
two types: conformational and thermodynamic. The ratio-
nale for exploiting di- or trinucleotide properties is the
widely accepted nearest neighbor model saying that DNA
structure can be understood and caused largely by interac-
tions between neighboring base pairs [24,25]. This model
is typically in the form of dinucleotide or trinucleotide
properties. Each possible di- or trinucleotide and its
reverse complement are assigned with a parametric value
for a single structural property. The origins of the para-
metric values are either derived from experimentally deter-
mined structures, or from simulated structures of a DNA
helix or a DNA-protein complex.

Construction of the landscape of TFs and their
characteristic binding DNA structures

We examined whether TFs show a preference to bind
sequences with specific DNA structures. To this end, we
examined whether binding sites of one particular TF are
conserved in some DNA structures. We used genome-
wide experimentally measured 6,390 TFBSs for 118 TFs
in S. cerevisia [26]. We restricted the analysis to TFs with
more than 15 binding sites, resulting in 77 TFs. For each
TF, we calculated the conservation rate in DNA struc-
tures of its TFBSs for each of the 35 DNA structural
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properties (see Materials and Methods). DNA structure
is dependent on DNA sequence. As TFBSs are known to
be conserved in DNA primary sequences, this might bias
the conservation of TFBSs in DNA structures. We should
control conservation in DNA sequences when evaluating
conservation in DNA structures. The conservation of
TFBSs in DNA sequences could be measured by the
information content (IC) of position weight matrices
(PWMs) of TEBSs [27]. For each TF, we randomly gener-
ated a set of TFBSs from its real PWM, the number of
which is the same as the number of its real TFBSs. The
PWM of randomly generated TFBSs is the same as real
PWM, so the conservation in DNA sequences of ran-
domly generated TFBSs is the same as that of real TFBSs.
We generated 10,000 randomized sets of TFBSs for each
TF. For each set of TFBSs, we also calculated the conser-
vation rate in DNA structure for each of the 35 DNA
structural properties. For each TF, we calculated p-value
for each structural property according to the ranking of
its real conservation rate in those of 10,000 randomized
sets. We found that 50 out of 77 (~65%) TFs bind DNA
sequences that are significantly conserved in at least one
structural property (ranging from one to twenty-six
structural properties, a total of 356 pairs of TF-structure
correspondences) (P < 0.05, after Bonferroni correction
for multiple testing; Figure 1). This result indicates that a
considerable number of TFs bind DNA sequences that
show conservation in distinct DNA structures, indepen-
dent of conversation in DNA sequences.

We next filtered the above landscape of TF-structure
correspondences using more criteria. First, for each
structural property, we randomly shuffled the parametric
values among the di- or trinucleotides. We generated
10,000 randomized profiles for each structural property.
For each TF, we calculated the conservation rates in
DNA structures of its TFBSs as above based on these
randomized profiles. For each TF, we calculated p-value
for each structural property according to the ranking of
its real conservation rate in those of 10,000 randomized
profiles. If the 356 TF-structure pairs observed above is
not an artifact, the real structural conversation rates of
TFBSs should be significantly higher than those based on
the randomized structural profiles. 39 out of the 356 TF-
structure pairs show significantly higher conservation
rates in the corresponding structures (P < 0.05, after Bon-
ferroni correction for multiple testing). Second, the
apparent conservation of TFBSs in DNA structures
might be biased by the DNA structures of flanking
regions around TFBSs. If TFBSs show similar DNA struc-
tural levels as their flanking regions, the conservation of
TFBSs in DNA structures should be considered as an
artifact. For the 39 pairs of TF-structure correspon-
dences, we found 27 pairs whose TFBSs show signifi-
cantly higher absolute levels in the corresponding



Dai et al. BMC Genomics 2015, 16(Suppl 3):S8 Page 3 of 8
http://www.biomedcentral.com/1471-2164/16/53/S8

ex)
X)
]

ty

protein complex

ner
g Energy o¥
mperature
ONA)
)
rotein compl
plex)
rotein comple
stiffness

A
%

rotein complex
rotein complex

N
A

Slide (free DNA)
Pl
-protein com

ree DNAJ
NA
DNA-
g
Propeller twist

(f
Roll (DNA

Twvist (|
Tilt

py
Te
free

Tilt (free DNA
DN
(DNA
§
ge

(free DN
%JN

PY.

n
or Groove Distance

ajor Groove Width
or Groove Depth
inor Groove Width
inor Groove Depth
or Groove Size
Minor Groove Distance
Bendability

plex Free

Stackin
Enthal
Entro

Melti
RiA Bendin

(

a
aj
a
n

a
Nucleosofne Position Preference

Duplex DISFUEIZ Energy
Progem Induced Deformabili
hydroxyl radical

DNA denaturation
Du

Twist
Rise
Wed

Rise
[
Di

Iz

A

NI O QOO0
S o B B e (VO 3
oo
D O T Tt i

o
£
-

Figure 1 The landscape of TFs and their characteristic binding DNA structures. Rows represent TFs, and columns represent DNA structures.
For each TF-structure pair, if structural conservation rate of its real TFBSs is significantly higher (P < 0.05, after Bonferroni correction for multiple
testing) than those in 10,000 randomized experiments in which sequence conservation rates are the same as that of real TFBSs, it was colored
red, otherwise it was colored black.
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structures than their flanking regions (from -30 to +30 bp
relative to TFBS) (P < 0.05, after Bonferroni correction
for multiple testing). Together, we used three strict cri-
teria to generate 27 pairs of TF-structure correspon-
dences (Figure 2). We used these 27 TF-structure pairs
in the following study unless otherwise stated.

The 27 TE-structure pairs observed above demonstrate
the characteristic associations between TFs and DNA
structures of their binding sites. We found that there is
selectivity of TFs and DNA structures involved in the asso-
ciations: 20 of the 77 TFs examined show associations with
DNA structures, and 9 of the 35 DNA structures examined
are connected with TF binding (Figure 2). Furthermore,
some specific TFs are associated with more DNA struc-
tures than the other TFs. There are two TFs (Cin5 and
Gcen4) that are associated with three DNA structures.

Structural conservation shows positional preferences in
TFBSs

We asked whether TFs-associated structural conserva-
tion rates are homogeneous along TFBSs. To this end,
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we compared DNA structural conservation rate of each
position in TFBSs with those in 10,000 randomized
experiments. As above, we used the random TFBSs gen-
erated from real PWMs. 11 out of 20 TFs listed in
Figure 2 show significantly higher conservation in their
correspondent structures in specific positions of TFBSs
than those based on 10,000 randomized experiments
(P < 0.05, after Bonferroni correction for multiple test-
ing; Figure 3). The binding sites of most TFs show sig-
nificantly higher structural conservation in more than
one specific positions. The binding sites of two TFs,
including Stel2 and Swi4, show significantly higher
structural conservation in two successive positions. For
example, conservation of roll property in the third and
fourth positions of TF Stel2 binding sites (Figure 3G).
These results suggest that DNA structures of some speci-
fic positions in TFBSs might be more important for the
binding of TFs to DNA. For example, using an extensive
categorization of the biophysical structures of TF DNA-
binding domains [28,29], we found that Rapl and Tecl,
having the helix-turn-helix domains, show a preference

Criterion 1: TFBSs are significantly
structural conserved compared with
randomized TFBSs having the
same sequence conservation rate
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Figure 2 The refined landscape of TFs and their characteristic binding DNA structures. Using three criteria, we identified 27 pairs of TF-
structure correspondences. TFBSs of these TFs are conserved in the corresponding DNA structures, independent of sequence conservation.
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to bind DNA sequences that are conserved in roll struc-
tural property.

TF-DNA binding affinities are correlated with DNA
structural levels of binding sequences

We asked whether TF-DNA binding affinities are corre-
lated with DNA structures of binding sequences. A pre-
vious study has integrated binding affinities of 153 yeast
TFs to all 8-bp sequences (8-mers) (N = 65,536) in vitro
utilizing protein-binding microarray (PBM) [30]. We
used this data instead of in vivo data because in vivo
TE-DNA binding is influenced by many factors besides
TEBS, including nucleosome positioning, histone modifi-
cation and so on. PBM data [30] is available for 14 out
of 20 TF listed in Figure 2. For each 8-mer, we calcu-
lated its structural level for each of the 35 structural
properties. We found that binding affinities of 10 out of
14 TFs to DNA are significantly correlated with their
correspondent structural levels of DNA sequences (Pear-
son correlation coefficient, |R| > 0.1, P < 0.05; see
selected examples in Figure 4). These results suggest
that our observed TF-associated structures play a role in
TF binding.

Discussion

In this study, we performed a systematic analysis to
reveal the relationship between TFs and their preferred
DNA structures. Using three strict criteria, we found
that a considerable number of TFs bind DNA sequences
that are structurally conserved, independent of sequence
conservation in S. cerevisiae. Moreover, we found that
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the structural conservation of TFBSs is also prevalent in
other eukaryotes (unpublished data). These three strict
criteria are very important to ensure a low level of false
positives. However, some TFs do not show association
with DNA structure. It does not indicate that DNA
structure is not important to binding of these TFs to
DNA. First, structural conservation of TFBSs might be
largely determined by sequence conservation, so that
structural conservation could not be detected when con-
trolling for sequence conservation. Second, TFBSs of
these TFs might be conserved in some unknown DNA
structures. Advances in structural biology will give more
insights into structures of TFBSs.

A key finding of this study is that structural conservation
shows positional preference in TEBS. As our analysis is
controlled for sequence conservation, the positional pre-
ference of structural conservation is not an artifact of the
positional preference of sequence conservation. This find-
ing could tell which position in TFBS is more important
to TE-DNA binding. The local structure determined by
these positions is more critical for TF-DNA recognition.
The change in these local structure is more likely to influ-
ence TF-DNA binding and subsequent TF regulation.
More attention should be paid to these local structures
when analyzing cancer cell lines. It also will have implica-
tion in synthetic biology. It might help to distinguish func-
tional TFBSs from non-functional TFBSs. On the other
hand, some TFs whose binding sites are structurally con-
served do not show structural positional preference. The
binding of these TFs to DNA might be dependent on the
DNA structure of the whole TEBS.
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Despite its success, our approach has limitations. TFs
generally interact with different protein factors to regu-
late target genes. These protein factors might influence
the conformation of TFs, changing TF binding prefer-
ence. TFs with similar DNA-binding domains might
show different structural preferences for binding of
DNA. One TF might even show different structural pre-
ferences for different target genes due to its different
protein partners. Our method might miss this type of
TEF-structure correspondence.

Materials and methods

Calculation of DNA structural conservation rate

We used 35 types of conformational and thermodynamic
DNA di- or trinucleotide structural properties, which
were used in our previous study [21] (see Additional file
1 for more details about each of these structural proper-
ties), as measures of DNA structure. For a DNA region,
the sequence is divided into overlapping di- or trinucleo-
tide sequences. Structural profiles from DNA sequences
are calculated for each structural property (except for
hydroxyl radical cleavage pattern) as follows: The corre-
sponding parametric value for each di- or trinucleotide
was assigned to the first nucleotide of the di- or trinu-
cleotide. In this way, the nucleotide sequence is con-
verted into a sequence of numbers (i.e., a numerical
profile). For hydroxyl radical cleavage intensity data,
structural profiles are calculated as the reference where
the data was published [31]. The hydroxyl radical clea-
vage intensity data are assigned to each nucleotide in
each trinucleotide sequence. Note that the three nucleo-
tides in each trinucleotide sequence have different values
of hydroxyl radical cleavage intensity. As each nucleotide
(except for the two terminal nucleotides at each end of
the DNA region) is covered by three overlapping trinu-
cleotide sequences, it has three values of hydroxyl radical
cleavage intensity (one for each trinucleotide). The three
values are averaged to produce hydroxyl radical cleavage
intensity for each nucleotide. In this way, the nucleotide
sequence is converted into a sequence of numbers (i.e., a
numerical profile). For each region, the average of its
numerical profile is considered as the level of the corre-
sponding structure. For each pair of regions (e.g. TFBSs),
we calculated the absolute difference values of structural
profiles. For each TF, we calculated absolute difference
profiles of structural profiles between every possible pairs
of TFBSs (Additional file 2). We considered the average
of resulting absolute difference profiles normalized by
the length of TFBSs as a measure of conservation rate of
DNA structure. The low values correspond to high con-
servation rates. In this way, there were 35 measures of
structural conservation rate for TFBSs of each TF. Simi-
larly, we also calculated absolute difference value of
structural profiles at each position between every possible
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pairs of TFBSs, and then calculated conservation rate of
DNA structure at each position of TFBS.

Data preparation

Transcription factor binding data was taken from Macl-
saac et al. [26]. A p-value cutoff of 0.005 and conservation
among three species was used to define the sequence
bound by a particular TF. By applying this strict binding
threshold, we ensured a low level of false positives. The
data set includes 6,390 binding sites for 118 TFs. We
mapped binding sites to the corresponding genes accord-
ing to their located promoters (600 bp upstream of the
gene in this study, the upstream region was truncated if it
overlapped with neighboring genes). If the binding sites
locate between divergent gene pairs, we mapped the bind-
ing sites to their nearest genes.

Gene coordinate data and genome sequence were
downloaded from the Saccharomyces Genome Database
[32]. TF binding affinity data for 8-mers were taken
from Gordan et al.[30]. TF classification data were
downloaded from two literatures [28,29].

Statistical method

Given two samples of values, the Mann-Whitney U-test is
designed to examine whether they have equal medians.
The main advantage of this test is that it makes no
assumption that the samples are from normal distributions.

Additional material

Additional file 1: Table S1 List of dinucleotide/trinucleotide DNA
structural properties and their corresponding parameters

Additional file 2: Figure S1 An example of how to calculate absolute
difference profiles of structural profiles between one pair of TFBSs. For
each TF, we calculated absolute difference profiles of structural profiles
between every possible pairs of TFBS. We considered the average of
resulting absolute difference profiles normalized by the length of TFBSs
as a measure of conservation rate of DNA structure.
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