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Abstract

Background: MicroRNAs (miRNAs) have increasingly been found to regulate diseases at a significant level. The
interaction of miRNA and diseases is a complex web of multilevel interactions, given the fact that a miRNA
regulates upto 50 or more diseases and miRNAs/diseases work in clusters. The clear patterns of miRNA regulations
in a disease are still elusive.

Methods: In this work, we approach the miRNA-disease interactions from a network scientific perspective and
devise two approaches - maximum weighted matching model (a graph theoretical algorithm which provides the
result by solving an optimization equation of selecting the most prominent set of diseases) and motif-based
analyses (which investigates the motifs of the miRNA-disease network and selects the most prominent set of
diseases based on their maximum number of participation in motifs, thereby revealing the miRNA-disease
interaction dynamics) to determine and prioritize the set of diseases which are most certainly impacted upon the
activation of a group of queried miRNAs, in a miRNA-disease network.

Results and Conclusion: Our tool, DISMIRA implements the above mentioned approaches and presents an
interactive visualization which helps the user in exploring the networking dynamics of miRNAs and diseases by
analyzing their neighbors, paths and topological features. A set of miRNAs can be used in this analysis to get the
associated diseases for the input group of miRs with ranks and also further analysis can be done to find key miRs
or diseases, shortest paths etc. DISMIRA can be accessed online for free at http://bnet.egr.vcu.edu:8080/dismira.

Background
MicroRNAs are small length (~22nt) non-coding RNAs
that inhibit the expression of a target mRNA by binding
to its 3’-UTR through complimentary base pairing [1]
and therefore, these miRNAs act as negative regulators of
the gene expression [2-4]. A mature miRNA regulates
the post transcriptional gene expression by targeting

certain mRNAs, subsequent to which, it modulates multi-
ple signaling pathways, biological processes and patho-
physiologies. However, it has also been evidenced that in
some cases, miRNAs act as positive regulators of gene
expression [5,6]. Hence, analysis and in-depth explora-
tion of the precise mechanism through which the regula-
tory mechanism of miRNA exerts its functionality is
crucial. Identifying and predicting miRNA and disease
associations, has been extensively researched in the past
few years [7-10]. However, the precise mechanisms of
miRNAs regulating diseases are still unclear. A major
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portion of the problem persists because about 60% of the
molecular bases of diseases are yet unknown [11].
Furthermore, models to predict or determine disease-
miRNA associations with high accuracy are very few [12].
Hence, gathering valuable evidence regarding identifica-
tion of miRNAs influencing human diseases has become
a widespread interest in arena of biomedical research
with a future looking towards the enhancement of
human medicine [13]. In this paper, we investigate the
miRNA-disease network from a graph theoretical per-
spective and devise network scientific models of maxi-
mum weighted matching and motif-based analyses, to
prioritize disease candidates in a miRNA-disease net-
work. This work also presents a tool, DISMIRA that can
perform these analyses and display the network visualiza-
tion of the results, thereby providing an insight into the
nature of networking between miRNAs and their asso-
ciated diseases.

miRNA disease database - miRegulome
To facilitate this, an in-house database, miRegulome
(freely available at [14]) has been created. This database
provides substantial details about the entire regulatory
modules of a miRNA curated from PubMed indexed lit-
erature. It contains the upstream regulators and chemi-
cals which regulate a miRNA, the downstream targets of
a miRNA, miRNA-regulated pathways, functions and dis-
eases along with their associated PubMed IDs. Currently,
miRegulome contains information pertaining to 613 miR-
NAs, 156 diseases, 305 pathways and 96 chemicals. This
data has been curated from 3298 PubMed IDs. miRegu-
lome currently has 3751 unique miRNA- disease associa-
tions with supporting PubMed IDs.
The work presented in this research uses the data

gathered in miRegulome database.

Complex networks
Identification of miRNA-disease associations through
experimental laboratory methods are time consuming
and expensive [7]. Hence, a large interest has been
devoted towards finding important underlying associa-
tions through various computational models.
A network of miRNAs and diseases underlain with TFs

and target genes is a very dense network and thereby
poses a very complex network problem. Complex net-
works offer a unique perspective to explore relationships
among homogeneous and heterogeneous entities. These
entities can be biological molecules, diseases, genes etc.
Hence, graph theoretic concept is very apt to model and
mine important miRNA-disease associations. In our
research, almost all the observed miRNA- disease net-
works, such as miRegulome, mir2Disease [15], miRNA-
disease association network (MDAN) [1] and Human
MicroRNA Disease Database (HMDD) [16] are scale-free;

meaning few nodes i.e miRNAs have the highest impact
on other nodes, thereby acting as hubs. Hence, a miRNA-
disease network follows the topological characteristics of
scale-free networks. For e.g. Figure 1 shows a scale free
network of miRNA-disease association network of
HMDD. Further details about the topological metrics of
the scale-free nature of these miRNA-disease networks are
elaborated in the Section Motif-Based Analysis.

Literature
There have been many approaches to predict and deter-
mine associations between miRNAs and diseases. One of
such preliminary works in developing miRNA-disease
prediction models demonstrates that miRNAs related to
same diseases tend to work together as miRNA groups
[15]. This is an significant observation. It necessitates
that any model of miRNA-disease association/prediction
which claims to be effective considers this dynamic nat-
ure of miRNA. Jiang, et al., 2010 [9] uses the same
approach and further derives a functional similarity
between disease-related miR- NAs and phenotype simila-
rities to derive a score which evaluates the likelihood of
association of a miRNA and the disease. Jiang, et al., 2010
[17] uses the disease-gene associations to develop a
N aïve − Bayes model, which prioritizes candidate miR-
NAs based on their genomic distribution. This model
relies heavily on the associations between gene-disease
and interactions of miRNA and target. However, both
these models have high false-positives and high false-
negatives in their predictions [1]. This limitation was
however, addressed [7], by training a support vector
machine classifier based on the input set of features
extracted from false-positives and false-negative pre-
dicted associations. As demonstrated by Lu, et al., 2008
[16], miRNA-set families tend to closely work towards
certain diseases. Hence, implicitly diseases tend to affect
the working of other diseases too. This has also been
researched [18], where specifically prostate cancer and
non-prostate cancer miRNAs are distinguished by the
usage of topological features. Here, a prioritization of dis-
ease candidate was performed using a network-centric
method. Apart from using disease-gene information, few
models have used the assumption that miRNA loci and
Online Mendelian Inheritance in Man (OMIM) disease
loci may contain significant overlaps [19]. This signifi-
cance score is calculated and used to identify potential
associations between miRNAs and OMIM diseases.
Chen, et al., 2012 [1] uses global network similarity mea-
sure as compared to local network information to imple-
ment a random walk on a functionally similar miRNA
network, which prioritizes candidate miRNAs for speci-
fied diseases. Xuan, et al., 2013 [8] improvises the
miRNA functionality estimated approach by appending
disease phenotype similarity information and content of
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disease terms to the existing method. This is used to
assign weight to miRNA-disease associations and a
weighted k-most similar neighbor based prediction
method is deployed. Global network similarity is also
used in the inference methods presented [10], where
apart from miRNA-similarity and phenotype-similarity
inferences, a network based inference model is used. In
this model [10], the miRNAs related to queried miRNA
are ranked and associated with ranked disease pheno-
types associated with target phenotype, thereby relying
on known gene-phenotype associations. Graph theory
has been extensively used to model and analyze such bio-
logical networks [16] and especially bipartite graph mod-
eling has been used to model the miRNA-disease
network [1,10,12,16]. Recently, Chen, et al., 2014 [20] has

tried to overcome the limitations posed through various
previous works, by developing an algorithm of Regular-
ized Least Squares for miRNA-disease association
(RLSMDA). Previous models like that of Chen, et al.,
2012 [1] which although demonstrate high accuracy in
prediction based on their case studies and cross-valida-
tion, cannot work in scenarios where associations
between the diseases and miRNAs are unknownn; and
hence cannot predict novel miRNA- disease associations.
Chen and Zhang [10] addressed this in their work, which
could predict novel associations between diseases and
miRNAs, with no prior knowledge of their association.
However, its performance was inferior to that of Chen,
et al. [1] based on cross-validation results [20]. The work
presented by Chen, et al. [20] uses the miRNA functional

Figure 1 Network of miRNA-disease associations in HMDD. Blue circles represent miRNAs and red triangles represent diseases.
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similarity and disease functional similarity [21] and
devises an optimization formulation to generate a contin-
uous classification function which calculates the probab-
lity score of each miRNA to a given disease [20]. Using
graph theory, some network inference based prediction
algorithms have also been used, as in [22]. In this case,
three networks: environmental factors (EF)-miRNA,
EF-disease and miRNA-disease were modeled into bipar-
tite networks and three methods, i.e. network based
inference (NFI) algorithm [23], EF structure similarity-
based inference model and disease phenotype similarity-
based inference models were was used to generate an
EF-miRNA-disease association model which is validated
via 10-fold cross validation. The cases studies presented
display impressive results. However, this work too, can
predict associations between EF-miRNA-disease which
are known in prior and does not predict novel associa-
tions [22]. Our work does not present miRNA-disease
predictions, rather performs a maximum matching in a
set of miRNAs and diseases to determine and prioritize
diseases with highest cumulative impact. Hence, the
resulting diseases, each of them have valid PubMed lit-
erature supporting it, and thereby accurate association
with miRNAs. This gives the user complete confidence in
the results, he/she is provided with. Further more, all
other previous tools are prediction models, predicting a
miRNA-disease edge/association. These models do not
produce associations between set of miRNAs onto a set
of diseases, thereby not exploring the overall dynamics of
multi-level interaction of a miRNA-disease network. Our
model which acts as an extension to the existing body of
work in this field, works on a set of miRNAs and pro-
duces an output of a set of associated diseases, taking
into account the impact and association of every miRNA
in the set with every disease in the set.
Using the graph theoretical network model, in this

work we aim to find the most impacted diseases upon
action/altercation of specified miRNAs. Here, we present
a model that determines a prioritized set of diseases
which are most definitely influenced upon the cumulative
action/altercation of specified miRNAs. These associa-
tions are determined by a pipeline process of applying
the maximum-weighted- maximum-matching algorithm
to the network model in Section Maximum Weighted
Matching Inference model, calculating cumulative weights
per disease in Section Prioritization of disease candidates,
and applying the disease ranking scheme in Section Dis-
ease ranking scheme. A preliminary version of this work
has been presented [24]. Furthermore, none of the pre-
vious work have presented any work on the motif analy-
sis of miRNA-disease networks. In this paper, we analyze
the topological features of several miRNA-disease net-
works, especially the motifs in these networks and also
the cumulative impact of a set of miRNAs onto a set of

diseases. The motif-based analyses is presented in Section
Motif-Based Analysis. The visualization of these results
and their topological perspective is elaborated in the Sec-
tion Visualization.

Methods
Single or multiple miRNA(s) is/are up- or down- regu-
lated in one or a set of disease(s). The instances of up
and down-regulations between a miRNA and disease, sig-
nify the strength of association between the pair. The
interactions of miRNAs and diseases can be mapped as a
complex network such that miRNAs and diseases are
nodes in the network [Figure 1]. This mapping is critical
to explore the associations and depends heavily on the
type of interactions. A graph theory concept such as
bipartite graph [25] can be used to model this problem.
In this work, we have modeled the miRNA-disease inter-
action as a bipartite graph which is shown in Figure 2-A.

Maximum Weighted Matching Inference model
A bipartite graph is a graph G(V, E) in which the set of
vertices V can be partitioned into two disjoint sets V1
and V2 such that every edge connects a vertex in V1 to
the one in V2 [25]. In our model, miRNAs and diseases
have been categorized as two disjoint sets and an edge
represents an association between them. The data con-
sisting of miRNAs and diseases has been used from miR-
egulome. Herein, the edges are weighted i.e. the number
of publications citing up/down regulations between a
miRNA-disease pair. For e.g. in Figure 2-A the edge
weight of 20 between m1 and d1 represents the number
of PubMed IDs citing miRNA m1 regulating disease d1.
Hence, the weight of the edge represents the strength of
the association between the miRNA and disease. Based
on this data, we derive a weighted network consisting of
miRNA-disease interactions.
Maximum weighted matching (MWM): In the graph G

(V, E), if there is a set of edges such that no two edges
share a common end vertex, it is known as a matching.
Maximum matching is a matching with largest possible
set of edges. A maximum weighted matching is a maxi-
mum matching such that the sum of the weights of the
edges is maximum. This is explained below.
Consider a miRNA-disease interaction network as in

Figure 2, where m1 to m4 are miRNAs and d1 to d7 are
diseases. The weight on the edge represents the strength
of the association between the miRNA-disease pair, in
terms of the number of publications citing up-regulating
and down-regulating a disease. For e.g. in Figure 2, the
edge m1-d2 has a weight of 30, which indicates there are
30 publications (i.e. PubMed IDs) in the curated literature
of miRegulome which cite the miRNA m1 either up-regu-
lating or down-regulating disease d2. As Figure 2-(B),
shows after the application of the MWM algorithm, the
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resultant sum of edges is the maximum score, which
implies that there is no possible combination of m-d pairs
in the network, whose cumulative sum is higher than the
result. Hence, the MWM helps in determining the stron-
gest miRNA-disease pairs combination among a set of
active miRNAs. The results give the cumulative impact of
a set of activated miRNAs on the set of associated diseases,
which are most certainly impacted. The goal is to present
a concise list of diseases with highest confidence of being
influenced and not to determine specific miRNA-disease
associations; rather an association between a set of miR-
NAs onto a set of diseases. Models of such association that
calculate the cumulative impact of a set miRNAs onto a
set of diseases are not many. This is important because
miRNAs and diseases tend to interact closely in sets and
groups and hence a tool in prioritizing disease candidates
is helpful in presenting a comprehensive and yet concise
list, displaying the cumulative impact of specified miRNAs.
In our premise, since we are exploring the associations

among a set of miRNAs onto a set of diseases, it is
important to bear in mind that many diseases might be
associated, but not all diseases might be significantly
relevant to the set of inputted miRNAs. Hence, we have
to consider each miRNA’s sphere of influence onto dis-
eases, as well as its relevance to other miRNAs’ sphere
of influence. Herein, the MWM algorithm addresses the

issue, by choosing the optimum set of associations (with
highest cumulative sum) that the set of miRNAs pre-
sent. This algorithm takes into account each miRNA’s
sphere of influence and its strength of influence/associa-
tion and thereby calculates a set of edges, in considera-
tion with set of miRNAs such that the resultant
cumulative influence of the set of miRNAs onto the set
of diseases is highest. In other words, just because a cer-
tain miRNA-disease edge has not been selected, it does
not imply, it is not considered. What it implies is that, it
is not important when the entire set is considered. Also,
the goal is to produce a concise list and not an entire
set of associated diseases. This constraint does well to
generate a set which is both representative of every
miRNA’s sphere of influence as well as determining the
highest impacted diseases.
In any given miRNA-disease network, the solution to

the MWM algorithm in a given G(V, E) can be solved
as an optimization problem as described by Fang, 2012
[26]. It suggests the following:
Optimization problem formulation: Objective: To

achieve the maximum sum of weighted edges between
miRNA and diseases, subject to constraints that no ver-
tices share the same edge. This helps us in getting the
most prominent collection of pairs such that, their
cumulative sum is the maximum among all possible

Figure 2 Maximum weighted matching.
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combinations. Variables: Let Xi,j be an edge between a
miRNA and disease, W eighti,j be the edge weight
between the miRNA-disease pair, m and d be the set of
miRNAs and diseases respectively. Algebraic formulation:

Maximize
∑

i,j
Weighti,j ∗ Xi,j

s.t.
∑

j
Xi,j ≤ 1(j = 1, 2, . . . ,m)

∑

i
Xi,j ≤ 1(i = 1, 2, . . . , d)

In the above formulation, we are maximizing the
cumulative sum of the edges, with the constraints that
no miRNA or disease should be repeated. These con-
straints help in reducing the repetition of common dis-
eases associated with different miRNAs; since miRNAs
tend to regulate about 50 to 100 or more diseases based
on data in the human microRNA disease database
(HMDD)[16] and miRegulome. This is important keep-
ing in view that the goal is to present a breadth of dis-
eases within the concise list, bearing on the fact that
miRNAs tend to work closely in sets.
The above MWM optimization formulation is a linear

programming problem and geometrically, its a convex
function. The resulting feasible region of solutions is a
polyhedron. This linear programming equation is solved

using the linear program (LP) solver GLPSOL which
uses the simplex method [27].
Prioritization of disease candidates
Since many miRNAs are connected to a single disease they
have a cumulative influence on it. For e.g. in Figure 3,
disease d2 is influenced by miRNAs m1 and m2. Similarly,
diseases d3 and d4 are influenced by more than one
miRNA. In real scenarios, diseases are regulated by multi-
ple miRNAs. Hence, it is vitally important that we con-
sider the cumulative impact of all the active miRNAs on
its associated diseases. In this model after the miRNAs-
disease network is created based on user input of active
miRNAs, we calculate the cumulative impact of all of
them on each connected disease. Figure 3, shows the influ-
ence on each diseases numerically. This helps in under-
standing in many ways, how a disease can be influenced
by multiple miRNAs, which is not considered in the
MWM model. The MWM model, as shown in Figure 2,
selects the top impacted diseases. Each diseases’ impact
can be calculated by adding the weights of every active
miRNA and the particular disease, as shown in Figure 3.
This approach gives a ranked list of diseases.

Disease ranking scheme
Although, the application of MWM algorithm gives the
most prominent miRNA- disease associations, it has a
limitation. Because of the constraint that no two edges

Figure 3 Cumulative impact of each miRNA.
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can share a common vertex, a strongly associated
miRNA-disease pair can get ignored in the MWM selec-
tion process. For example, consider miRNAs m2 and m3
in Figure 2; for miRNA m2 and miRNA m3, the m3 −
d3 pair weight is 16 and m3 − d4 pair weight is 10.
However, in the resultant matching only m3 − d4 pair is
selected (see Figure 2), because addition of this edge
provides the highest cumulative sum when all possible
resultant combinations are considered. The pairs m3 −
d4 and m2 − d3 are selected in the matching but their
pair weights are 10 and 2 respectively, which is less than
the non-selected pair, m3 − d3. In order to overcome
this limitation, a disease ranking scheme has been
adopted.
Here, diseases are ranked as per their highest cumu-

lative impact from miRNAs (see Figure 4-C) as
explained in Section Prioritization of disease candi-
dates. This set of ranked diseases is compared with the
set of diseases obtained after the MWM algorithm (See
Figure 4-B). The rank of the disease in the MWM set
which is least ranked is noted. If there are other dis-
eases which have a higher rank than the least-ranked
disease and are not included in the MWM set; those
are added to the final output set of diseases (see Figure
4-D). This method makes sure that a disease which is
highly influenced is not missing after the MWM algo-
rithm is applied. MWM algorithm helps in giving a
definite and concise set of affected diseases. Prioritiz-
ing of diseases ranks them as per their impact. Disease
ranking scheme enhances the result set by overcoming
the limitation of the MWM algorithm, and adding
higher ranked diseases in the final resultant set of
diseases.

When the miRNAs are entered by the user, an auto-
mated script performs the following functions:

1 Runs the database procedure gathering the rele-
vant literature pertaining to the set of miRNAs
2 Generates the cumulative impact of miRNA onto
each disease in a ranked manner (Figure 4-C)
3 Creates a network model of the miRNA-disease
associations in GMPL (Figure 4-A)
4 Runs the MWM optimization script which oper-
ates on the created network model and generates
the optimum set of associations (Figure 4-B)
5 Observes the disease in the results of MWM
(Figure 4-B) and identifies the least ranked among
them. Thereafter, it checks for diseases with higher
cumulative count than the least ranked disease, in
the result set of (2), i.e Figure 4-C. If there are any
diseases with higher cumulative impact and not
included in the MWM set (4), they are added to
the resultant set (Figure 4-D) For e.g. in Figure 4,
the set of diseases through MWM were {d2, d3, d4,
d5 } and the set of diseases through ‘Disease rank-
ing ’ were {d2, d4, d1, d5, d3 }. Disease d1 had
higher cumulative impact compared to the least
ranked disease d3 in the MWM set and hence it
was added to the final resultant section. Therefore,
the final resultant set of diseases is {d2, d4, d1,
d5, d3}

This model has been used on the data from miRegu-
lome, HMDD, and miR2Disease [15] databases. Table 1
presents some of the results. PubMed IDs are provided
for further reference.

Figure 4 Complete design of the MWM based model. (a) miRNA-disease set (b) Result of MWM algorithm (c) Prioritization of diseases as per
cumulative impact (d) Ranked set of diseases from MWM and (c).
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This approach stands in contrast with many of the
previous approaches mentioned in the Literature sec-
tion. Firstly, most of the previous works, for e.g. [1],[7],
[8] and [9] are prediction based results and present
‘1-to-1’ miRNA-disease association. In contrast, our
work explores the associations between the set of miR-
NAs onto set of diseases and presents results which are
known associations, validated by PubMed ids and not
predicted. Secondly, our starting premise and motiva-
tion for this work, unlike the previous works, is to
explore the collaborative working of the sets of miR-
NAs and diseases. There are not many tools, which
determine a set of diseases based on the user’s input
set of miRNAs to which we can compare. Thirdly, pre-
vious works present a list of associations between
miRNA and diseases which are static in nature, and
predict new associations which are valid with certain
confidence score. However, the approach and results in
our work are dynamic; meaning the results will change
everytime a new set of miRNAs are entered. The
results are generated at the instant - by sending a
query to gather the relevant literature, generating the
network model, optimizing the objective of the network
model, calculating the cumulative impact on diseases
and producing the set of diseases. As more and more
new associations are added to the databases, the results
would only change for better. The results are not new
predictions rather set of known diseases, determined
and prioritized to the set of input miRNAs. Owing to
the aforementioned reasons, there could not be a rea-
sonable and fair comparison done with previously
established, benchmarked prediction-based datasets
used in [1], [9], [10] and [12] which are static, 1-on-1
miRNA-disease predictions.

Motif-based analysis
The topological features of miRNA-disease network could
provide valuable insights into the nature of collaboration
of miRNAs and diseases, since miRNAs emerge to work in
groups [16]. It has been observed that motifs are the fun-
damental building blocks in biological networks [28], since
they are frequently occurring substructures. These sub-
structures can be of sizes 2 or above. Hence, we studied
the topological features of this network, namely motifs.
We performed a motif-based analysis of a miRNA-disease
interaction network, and the disease-disease interaction
network. mfinder [29] and fanmod [30] software are used
to determine the most significant motifs in the considered
miRNA-disease networks. Motifs generated by mfinder are
identified in green color and motifs generated by fanmod
are identified in orange color. Apart from the networks
derived from miRegulome, these motif-based analyses were
also performed in miR2Disease [15] network and also the
HMDD [16] database.
mirna-disease network
The miRNA-disease associations obtained from miRegu-
lome contained 468 nodes and 2998 edges which is a
sparse network with a density value of 0.0273. The degree
distribution of miRNA-disease network (see Figure 5) fol-
lows power-law property of scale-free networks, i.e. their
degree distribution follows the property of P (k) ~k−g [31].
Earlier research on scale-free networks showed that such
networks are modular. While bipartite graph analyses
identify diseases that are most influenced by miRNAs
using empirical evidence, motif analyses offers an addi-
tional perspective by introducing structural insight to the
miRNA-disease networks. The following 3 node (see
Figure 6) and 4 node motifs (see Figure 7) were found to
be significant. The 3 node motif implies there a miRNA

Table 1. MWM based algorithm results.

S.
No

miRNAs Diseases PubMeds
for results

1 hsa-mir-9-1,
hsa-mir-9-2,
hsa-mir-200c

Breast cancer, Colorectal cancer, Kidney cancer, Ovarian cancer 23617747

2 hsa-mir-182, hsa-mir-200a, hsa-mir-
200b, hsa-mir-200c

Lung cancer, Ovarian cancer (OC), Hepatocellular carcinoma (HCC), Breast cancer, Kidney
cancer, Colorectal cancer, Oral squamous cell carcinoma

23272653

3 hsa-mir-29a, Ulcerative coltis, Serious ovarian cancer, Bladder cancer, Pituary adenoma, Primary Biliary
cirrhosis, Epithelial Ovarian Cancer, Cardiac hypertrophy, Breast cancer, Acute Lymphoblastic
leukemia, Kidney cancer, Gastric cancer and nasopharyngeal carcinoma

18056805,

hsa-mir-34a, 19475496,

hsa-mir-34b, 19646430,

hsa-mir-25 16461460,

18728182,

18390668,

17823410
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regulating atleast two diseases and atleast two miRNAs
regulating a single disease. It also corroborates the finding
that, when a single disease is being regulated by a single
miRNA, that same miRNA is regulating one another dis-
ease thus implying a non-direct way (i.e. via a miRNA) of
a disease affecting another disease. Hence, if two miRNAs
are regulating a single disease, it can be deduced that
either the miRNAs are working against each other or in
agreement with each other in regulating that particular
disease. A significant presence of this motif implies, there
are multiple connections of this sort among a diverse set
of miRNAs and diseases, which pose a complex network-
ing scenario. A significant amount of 4 node motifs in this
network emphasize the earlier observation made above; in
that a single miRNA is regulating three diseases, three
miRNAs regulating a single disease and two miRNAs

regulating a two diseases. This provides a glimpse into the
intricate networking of miRNAs and diseases. These
results are further corroborated by the findings of MDAN
[1], that 64.96% of diseases were atleast associated with
two miRNAs and about 70% of the miRNAs were asso-
ciated with two or more diseases. In the 3-node motif and
the 4-node motif, the nodes could represent either a
miRNA or a disease. However, the edge will always repre-
sent an association between a miRNA and a disease.
Hence, if a certain node is assumed to be a miRNA, the
node lined to it is a disease and vice-versa.
In DISMIRA – a tool developed based on the approach

presented in this paper – upon the input of miRNAs, the
top diseases are displayed which participate in maximum
number of motifs in the network of entered miRNAs and
diseases. Visualization presents an insightful display of
the motif structures, thereby providing the research com-
munity with a graphical understanding of the nature of
association between the miRNAs and diseases.
Disease-disease network
Barabasi, 2007 [32] presents a unique perspective on
how social networking in real life spreads pathogens
that is revealed in disease network patterns. In order to
understand the associations and pattern between the
diseases, an exclusive disease-disease network was
derived as a projection off the miRNA-disease network.
Consider the miRNA-disease network to be graph MD
and the disease-disease network to be graph D. An edge
between two diseases exists in D if both these diseases
are influenced by the same miRNA. This graph transfor-
mation is demonstrated in Figure 8.
The resulting network has 132 nodes and 3357 edges.

To determine the structural properties of disease-disease

Figure 6 3 node motif in miRNA-disease network.

Figure 5 Degree distribution of miRNA-disease network.

Figure 7 4 node motifs in miRNA-disease network.

Figure 8 Example showing the graph transformation from
miRNA-disease network to disease-disease network.
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network, its degree distribution is plotted in Figure 9.
Observably, the distribution does not seem to follow
power-law distribution which usually indicates scale-free
nature of a network. Upon analyses, the same motifs
(see Figure 6 and 7) which were observed in miRNA-
disease network, were found to be significant in this net-
work. This observation supports the notion that diseases
tend to work in tandem with other diseases and in our
case via a miRNA passage – they influence each other.
These same motifs were observed to be significant in

the mirna-disease network of the human microRNA dis-
ease database (HMDD) [16] and the mir2Disease data-
base [15], hence strengthening the case for these motifs
to be vitally important in the available miRNA-disease
networks. The HMDD network consisted of 961 nodes
(of miRNAs and diseases) and 6448 edges, while the
mir2Disease database consisted of 309 nodes (miRNAs
and diseases) and 637 edges at the time of this paper
submission. Also the degree distributions of HMDD and
mir2Disease follow the nature of scale-free network (see
Figure 10 (a) and (b)).
The degree distribution of miRNA-disease network in

miRegulome, HMDD and mir2disease networks in
Figures 5 and Figures 10 (a) and (b), respectively reveal
a long-tail distribution. Such long-tail degree distribu-
tions are referred to as powerlaw distribution wherein
few nodes with high degree exist compared to the num-
ber of nodes with low degree [33]. It can be understood
from these figures that few nodes (i.e miRNAs in our
networks) are connected to many neighboring nodes.
Thus, exploring the dynamics of nodes can reveal
insightful details about miRNA or disease impact.
mfinder and fanmod, both generate random networks

in their process of motif identification. mfinder uses
100 random networks and fanmod uses 1000 random
networks. During this randomizing, 4-node or 3-node
sub-graphs are generated among which, the identified

motifs have been found to be significant. Figure 11 is an
excerpt of the result summary for the significance of
4 node motif in the miRNA- disease network of miRegu-
lome by mfinder. The explanation has been taken from
the manual guide of mfinder.
Figure 11 explains the number of occurrences of the

4-node motif in the network, the criteria taken for a
motif to be significant, its Z-score, uniqueness and num-
ber of random networks generated.
We have incorporated motif-based analysis feature in

the tool DISMIRA. Upon the input of miRNAs, the tool
will display the diseases which have the highest sharing
of motif structures with other miRNAs/diseases.
Table 2 shows the diseases and respective motif parti-

cipation counts for an example input set of miRNAs.
Malignant melanoma, Epithelial ovarian cancer (EOC),
Breast cancer and Lung cancer are found in thirty seven
square motifs.

Network Visualization
The network of miRNAs and diseases can be easily
observed in this interactive visualization feature of

Figure 9 Degree distribution for disease-disease associations.

Figure 10 Degree distribution of miRNA-disease network in (a)
HMDD and (b) mir2Disease.
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DISMIRA. This insightful perspective into the miRNA-dis-
ease associations helps the user in the understanding of
the networking of miRNAs and their associated diseases,

and also interpreting the the associations among miRNAs
and diseases. Maximum weighted matching algorithm and
the motif-based analyses are deployed into DISMIRA and
their results are presented using the interactive visualiza-
tion. The user can input a set of miRNAs and select either
the maximum weighted matching algorithm or the motif-
based approach to identify significantly associated diseases,
and see their corresponding regulations and PubMed IDs.
Upon submitting the input query of miRNAs, the resultant
diseases are displayed visually. miRNAs are represented by
blue nodes, resultant diseases i.e. the top affected diseases
from both the approaches are represented by orange
nodes and other associated diseases to the miRNAs are
represented by the green nodes (see Figure 12). The result-
ing miRNA-disease associations are represented using a
network visualization in a force-directed layout, meaning
placement of miRNAs and diseases are in the most aes-
thetic way and there is minimal crossing over of edges.
This layout makes the understanding of the network very
intuitive. Once the results appear, users can zoom-in and

Figure 11 Summary of results explaining motif identification/significance.

Table 2. Example for disease participation in square
motifs with the set of input miRNAs using motif analysis

Input miRNAs Disease (participation count in motifs)

hsa-mir-184 Malignant melanoma (37)

hsa-mir-200a Epithelial ovarian cancer (EOC) (37)

hsa-mir-200b Breast cancer (37)

hsa-mir-200c Lung cancer (37)

Cancer (23)

Ovarian cancer (OC) (23)

Serous ovarian cancer (23)

Hepatocellular carcinoma (HCC) (18)

Kidney cancer (18)

Endometriosis (9)

Non-alcoholic fatty liver disease (9)

Oral squamous cell carcinoma (OSCC) (8)

Colorectal cancer (5)
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zoom-out of the graph for granular level of details such as
edge associations, nearby entities and their respective asso-
ciations etc. Edges between the nodes are disabled by
default and are shown upon selecting a specific node. This
helps in user-driven network discovery. Upon clicking a
miRNA or a disease, its edges are highlighted giving the
user, the immediate reach of the entity. Multiple node
selections are available to identify nodes of common inter-
est. Interacting with this network visualization of miRNAs
and diseases provides helpful insights which are not col-
lected otherwise, such as – the shortest path from a
miRNA/disease to another miRNA/disease, the k or k + 1
closest neighbors of a miRNA/diseases and a global per-
spective of a miRNA or disease’s topological placement in
the larger picture of this network. Many softwares such as
CIDer [34], VisANT [35], InGenuity Pathways Analysis
[36], Pathway studio [37] present the network characteris-
tics of biological interactions to facilitate a broader under-
standing of the systems-level interaction of these complex
associations which in various ways govern disease
dynamics. However, there are no miRNA-disease interac-
tive visualization tools available for free, as far as we know,
at the time of this publication. The visualization tool in
this work, generates a user specified network of miRNAs-
diseases and allows the user to discover the network with
the progression of clicks. The width of the edges i.e. thick
and thin, intuitively convey the strength of association
between the miRNA-diseases. Furthermore, users can

research the top impacted diseases and their subsequent
up/down regulation by miRNAs on clicking the disease
details and searching them in PubMed literature (see
Figure 13). Moreover, the results are displayed intuitively
in a 3-way approach; after receiving the list of diseases in
the output, the user can click on a certain disease and
know why the disease is significant (based on the PubMed
id count), where is it relevant (based on its topological
position in the larger picture of miRNA-disease network)
and how it is impacted (by seeing each miRNA’s impact
and subsequent regulation towards it). This would assist
in thorough investigation. To aid in further detail and
completeness for the user, once the network is displayed,
all miRNA-disease associations along with their PubMed
IDs are provided for download in CSV format. Users use
this CSV file in other visualization softwares of their
choice too. The visualization is developed using Django
framework [38], Python [39] (networkX [40]), JavaScript
[41], d3js library [42], bootstrap and HTML with the sup-
port of MySQL for back-end database. A snapshot of the
visualization is presented in Figure 12. This tool can be
accessed for free at: http://bnet.egr.vcu.edu:8080/dismira.

Case study and utility
Consider the input of miRNAs, hsa-mir-125a, hsa-mir-
34a, hsa-mir-21 to DISMIRA. Upon choosing the maxi-
mum weighted matching (MWM) based model the most
impacted diseases are: colorectal cancer, hepatocellular

Figure 12 Visualization of results of maximum weighted matching algorithm. Blue nodes represent the miRNAs in the network. Green
nodes represent diseases associated with the miRNAS. Orange nodes represent the resultant diseases.
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carcinoma (HCC), pancreatic cancer and breast cancer.
However, users can select individual miRNAs and observe
the association onto other diseases along with the strength
of the association. Thicker edges represent high count of
PubMed literature supporting the association and regula-
tion (see Figure 12).
Moreover, upon clicking a certain disease, in our

example, say ‘colorectal cancer’ - its subsequent regula-
tion details, PMIDs can be retrieved. In this case, by
studying the results further, it can be noted that mir-21
is strongly up-regulated during this disease, whereas
mir-125a and mir-34a are being down-regulated (see
Figure 13)
However, in case of ‘pancreatic cancer’, mir-21 and

mir-125a are both being up- regulated and mir-34a is
being down-regulated. The scenarios of multiple miR-
NAs working together and against each other towards
their regulation during a certain disease can be easily
observed and studied. Upon selecting the motif-based
approach for the same miRNAs, the top diseases are:
hepatocellular carcinoma (HCC), colorectal cancer,
prostrate cancer and pancreatic cancer with their motif

counts of 470, 446, 431 and 317 respectively. These dis-
eases are occurring in most motif structures of 3-node
and 4-node. As shown in Figure 14, it is intuitive that
these diseases would be in most of the motifs due to
their topological placement in the network, prostate
cancer, pancreatic cancer and hepatocellular carcinoma
are the bordering diseases of three miRNAs’ range.
Hence, they are most participative in the interaction of
several diseases i.e. 3-node and 4-node motifs.
Whereas, breast cancer (see black dotted arrow in Fig-

ure 14) which was one of the resultant diseases in the
MWM approach, is listed further below the aforemen-
tioned diseases with 265 motifs (observe its placement
in the Figure 14) since its being regulated by two miR-
NAs and thereby less motifs. Upon clicking a certain
miRNA, its range of influence can be observed as dis-
played in Figure 15.
Using the visualization, the user can also determine

paths or shortest paths to unrelated diseases, for e.g. see
Figure 16, the disease cholagiocarcinoma and melanoma
seem to be unrelated. However, upon drawing careful
egdes, it can be noted that melanoma is three hops away
from cholangiocarcinoma, via papillary throid carcinoma
(PTC). Upon the activation of the disease PTC, mir-34a
and mir-21 are active and thereby the weak possibility of
the activation and association of cholangiocarcinoma and
melanoma. Similar such paths between diseases of interest
can be explored by the user.
It is important to note that, this visualization does not

provide strong certainty in predicting or determining the
disease-disease interaction, rather merely provides the
abstract idea of the reach of the diseases onto each other.
However, this tool does provide the preliminary overview
of the disease-disease interaction network which can be
studied adeptly to uncover significant underlying
associations.

Conclusion
Understanding miRNA-disease interactions and their intri-
cate networking has been a goal of biomedical research
since many years. In this paper, we present two different
network scientific approaches to determine and prioritize
disease candidates in a miRNA-disease network based on
maximum weighted matching inference model and motif-
based analysis. Both these approaches highlight the signifi-
cant set of diseases based on the queried miRNAs. The
visualization aspect provides a topological perspective and
a larger understanding of the role and impact of miRNAs
and diseases in the network. The results of these
approaches, the supporting PubMed IDs and their subse-
quent regulatory information provide a substantial confi-
dence in the approaches presented in this work. These
three features present a novel approach in discovering
miRNA-disease ties from diverse viewpoints. This work

Figure 13 Regulation details of colorectal cancer.
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also allows various possibilities and opportunities of
extending this work to introduce miRNA- miRNA ties,
expression values between miRNAs and diseases, the role
of genes and TFs, and pathways which have already been
curated in miRegulome (Please see Introduction) and
incorporate the disease regulation aspect of the miRNA.
This research would also introduce algorithms to predict
the miRNA-disease association. The database, miRegulome
would also be enhanced by aggregating further miRNA-
disease information, expression values, new associations
and attributed from other sources. The established data-
base, maximum weighted inference model, motif-based
analyses and the substantial results have paved the way for
further work in this domain.
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