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Abstract

Background: Breast cancer is a genetically heterogeneous type of cancer that belongs to the most prevalent types
with a high mortality rate. Treatment and prognosis of breast cancer would profit largely from a correct
classification and identification of genetic key drivers and major determinants driving the tumorigenesis process.
In the light of the availability of tumor genomic and epigenomic data from different sources and experiments, new
integrative approaches are needed to boost the probability of identifying such genetic key drivers. We present
here an integrative network-based approach that is able to associate regulatory network interactions with the
development of breast carcinoma by integrating information from gene expression, DNA methylation, miRNA
expression, and somatic mutation datasets.

Results: Our results showed strong association between regulatory elements from different data sources in terms
of the mutual regulatory influence and genomic proximity. By analyzing different types of regulatory interactions,
TF-gene, miRNA-mRNA, and proximity analysis of somatic variants, we identified 106 genes, 68 miRNAs, and 9
mutations that are candidate drivers of oncogenic processes in breast cancer. Moreover, we unraveled regulatory
interactions among these key drivers and the other elements in the breast cancer network. Intriguingly, about one
third of the identified driver genes are targeted by known anti-cancer drugs and the majority of the identified key
miRNAs are implicated in cancerogenesis of multiple organs. Also, the identified driver mutations likely cause
damaging effects on protein functions. The constructed gene network and the identified key drivers were
compared to well-established network-based methods.

Conclusion: The integrated molecular analysis enabled by the presented network-based approach substantially
expands our knowledge base of prospective genomic drivers of genes, miRNAs, and mutations. For a good part of
the identified key drivers there exists solid evidence for involvement in the development of breast carcinomas. Our
approach also unraveled the complex regulatory interactions comprising the identified key drivers. These genomic
drivers could be further investigated in the wet lab as potential candidates for new drug targets. This integrative
approach can be applied in a similar fashion to other cancer types, complex diseases, or for studying cellular
differentiation processes.
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Background
Breast cancer is one of the most common and predomi-
nant cancer types that affects millions of cases and
causes thousands of deaths every year [1,2]. With an
individual probability of 12% to develop breast cancer, it
is the most frequently diagnosed cancer type among
women and accounts for the second-highest number of
fatalities (15%) of female cancer patients besides lung
cancer [3]. Due to its complexity and heterogeneity [4],
the molecular mechanism and regulatory patterns
underlying breast carcinoma have not been completely
unraveled so far.
Treatment and prognosis of cancer development relies

largely on a correct classification of the histological
grade and identification of the major determinants driv-
ing the tumorigenesis process. To better address this,
many studies have attempted to build predictive models
by analyzing and integrating heterogeneous data sources.
For example, Cava et al. presented an effective discrimi-
nation of breast cancer types based on a support vector
machine classifier combining copy number variations,
SNP data, and the expression values of miRNAs, and
mRNAs [5]. Also, miRNA-mRNA interactions were
combined with transcription factor (TF)-gene interac-
tions to unravel the combinatorial molecular regulations
that facilitate progression of colorectal and breast cancer
[6,7]. Along the same lines, the integration of gene
expression data with protein interaction networks into
integrated weighted networks has already proven fruitful
in a variety of applications within cancer genomics
[8-23]. In general, the combination of microarray studies
with mathematical models such as network theory
allows to define relationships between genes and to dis-
cover interacting networks and pathways, improving the
understanding of complex diseases [24].
In recent years, novel network-based approaches have

been introduced to improve the understanding of com-
plex human diseases from multiple perspectives. For
instance, differential network analysis attempts to better
characterize disease phenotypes under two different
conditions by studying the changes in the related net-
work interaction patterns [8,9,17,18,25-29]. In cancer
genomics, the differential network approach was able to
identify essential gene modules that lead to crucial novel
biological insights and significant implications for
understanding tumorigenesis [9,17,18].
In the light of the recent availability of tumor genomic

data and the complexity of the related high throughput
analysis, new integrative approaches are needed to boost
the probability of successfully identifying the associated
genetic key drivers, the causal regulators, the related
mutations, biomarkers, and their molecular interactions
that potentially drive tumorigenesis. To this end, this
study presents an integrative network-based approach

based on whole-genome gene expression profiling, DNA
methylome, miRNA expression, and genomic mutations
of breast cancer samples from the TCGA portal [30].
Based on this, we constructed a gene regulatory network
that conforms to the conditions of such biological data
and we identified network modules of dysregulated
genes. Each module turned out to have distinct func-
tional categories, cellular pathways, as well as oncogene
and tumor suppressor specificity. We also extracted
breast cancer specific subnetworks from the human gen-
ome regulatory interactome induced by the dysregulated
miRNAs and the dysregulated mRNAs. Furthermore, we
demonstrated a strong association between the different
genetic molecules in terms of the interchangeable regu-
latory effect and genomic proximity. Then, we identified
putative genetic key drivers/determinants from genes,
miRNAs, and somatic mutations that could possibly
drive the oncogenic processes in breast cancer. Our
findings are strongly supported by independent evi-
dences. For instance, the protein products of about one
third of the identified driver genes are known binding
targets of anti-breast cancer drugs, and most of the
identified key miRNAs are implicated in cancerogenesis
of multiple organs. Moreover, all the identified driver
mutations are predicted to cause damaging effects on
structures and functions of the related proteins. The
rest of the identified driver molecules represent novel
potential candidates for new drug targets and further
experimental research is warranted to confirm these
findings.

Methods
Datasets and pre-processing
Data on gene expression, DNA methylation, miRNA
expression, and somatic mutations for normal and
breast invasive carcinoma samples were collected during
May 2014 from The Cancer Genome Atlas (TCGA)
[1,30] data portal. All datasets were obtained in level
three (log2 transformed and normalized) except the
somatic mutations (level two). For consistency, we only
considered samples that were common between all four
datasets. This yielded in total 151 samples consisting of
131 tumor samples and 20 normal samples (Additional
file S1). For both gene expression and methylation data-
sets, all probes containing NA values or that were anno-
tated to unknown or multiple genes were removed.
Also, probes values were merged by computing the
mean of all probes related to single genes within a single
sample as previously described in [31].
From the DNA methylation data, we kept only those

probes representing CpG sites in the promoter regions
of genes. For this, we used the transcription start sites
(TSS) for all human genes from the Eukaryotic Promo-
ter Database EPD [32]. Promoter regions were defined
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as an interval of ±2 kb around the TSS as described in
[33]. Then we selected only those CpG sites whose
genomic coordinates are contained in that interval. The
final sizes of the four datasets are listed in Additional
file S2.

Differential analysis
The differential expression/methylation analysis was per-
formed using three methods: 1) Significance Analysis of
Microarray (SAM) [34], 2) moderated t-test [35], 3) area
under the curve of the receiver operator characteristics
(AUC ROC) [35]. Genes that were classified as differen-
tially expressed/methylated genes by at least two of those
three methods were included in the list of differentially
expressed/methylated genes. The same procedure was
applied to determine differentially expressed miRNAs.

Gene regulatory network construction
The GRN construction involved three steps. First, we
constructed the co-expression network from the identi-
fied differentially expressed genes based on the topologi-
cal overlap (TOM) [36] as a distance measure using the
WCGNA [37] package in R [38].
In the second step, gene interactions from the co-

expression network were connected to regulatory infor-
mation retrieved from the Transcriptional Regulatory
Element Database (TRED) [39], Molecular Signatures
Database (MSigDB) [33], and JASPAR database [40]. All
genes involved in the co-expression network and listed
in at least one of the databases to code for a transcrip-
tion factor (TF) were marked as TFs. Then, for each
TF-gene link in the co-expression network, we searched
whether the databases contain a known regulation for
this TF-target gene pair. In each of these cases, a direc-
ted edge was added between the transcription factor and
the target gene. Also, we used the Motif Statistics and
Discovery (MoSDi) [41] software to conduct a motif
search for all known binding motifs of the TFs repre-
sented in the co-expression network against the promo-
ter regions of all genes in the network. If a match was
found, a new directed edge from the TF to the gene was
added.
In the last step, we constructed a causal probabilistic

Bayesian network from the co-expression modules and
used the directed edges obtained from step 2 as a start
search point to infer directionality between nodes. We
used the Sparse candidate [42] algorithm as a search
algorithm and the likelihood-equivalence Bayesian
Dirichlet (BDe) [43] method as a scoring function for
assessing network topology. Also we allowed the follow-
ing modifiers for a single step in the network search;
add edge, remove edge, reverse edge, and swap parent
node. For network averaging, we performed the learning
approach three times and selected only edges that were

inferred at least twice in the three runs (edge confidence
level ≥ 66.6%).
As candidate set of directed interactions, we consid-

ered directed edges from step 2 as well as directed
edges confirmed by both step 1 and step 3. Subse-
quently, the entire network containing both directed
and undirected interactions was exposed to the pruning
step explained below. The GRN network was visualized
using the igraph [44] package in R.

Pruning the GRN using methylation and expression
profiles
GRN pruning was carried out based on the observation that
some genes show increased promoter DNA methylation
levels coupled to a remarkable decline of their expression
[45]. Based on this, we removed regulatory interactions
whose target genes had absolute anti-correlation between
their expression and methylation profiles above a selected
threshold of 0.65.

Constructing miRNA-mRNA interactions
The integrated association of the differentially expressed
miRNAs and the differentially expressed genes (mRNAs)
involved three steps. First, for the set of differentially
expressed miRNAs, which were either up- or down-regu-
lated between the tumor and normal samples, we used
miRTrail [46] via MicroCosm Targets V5 (http://www.
ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) to
extract their target mRNAs (regulated genes) and over-
lapped them with the identified differentially expressed
mRNAs. Second, we used the experimentally validated
database TransmiR [47] to retrieve the regulatory genes
(TFs) that potentially regulate the differentially expressed
miRNAs. In both steps, the hypergeometric test with a
p-value threshold of 0.05 was applied to test the regula-
tion dependencies between the differentially expressed
miRNAs and their target genes/their regulatory TFs.
Finally, both miRNA® mRNA (including TF genes)
interaction pairs from step one and TF® miRNA inter-
action pairs from step two were joined and merged to a
final network.

Identifying the genetic key drivers/determinants
Key regulators in the constructed networks were identified
by determining the minimal set of nodes that regulate the
entire network. For this, we used the gplk solver [48] via
the numerical optimization package OpenOpt [49].

Proximity analysis of somatic mutations
The genomic coordinates of the significantly deregulated
miRNAs identified in the differential analysis step were
downloaded from miRBase [50]. Then, we searched for
these sequences in a genomic window of 250 kb around
each somatic variant.
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To explore possible relationships between differentially
methylated CpG sites (identified from the differential
analysis step) and somatic mutations, we tested the
occurrence of C->A, C->G, and C->T somatic SNVs
within a genomic distance of 3 kb from the genomic
coordinates of the differentially methylated CpG sites.
The selection of the 3 kb genomic distance was based
on the maximum considered length of the CpG islands,
that is, 500 bp [51] ≤ CpG islands ≤ 3 kb [52]. Ideo-
grams were generated using the circlize [53] package in
R. Driver mutations were classified using the CHASM
tool [54]. The genomic effect of the driver mutations
was analyzed using Ensembl Variant effect Predictor
(VeP) [55] that utilizes the functional prediction tools
SIFT [56,57] and PolyPhen [58].

Enrichment and druggability analysis
For gene set enrichment analysis, KEGG pathways and
GO functional categories were identified using the
DAVID [59] tool as previously described in [60]. Briefly,
we determined which pathways/functional terms were
annotated to at least two genes and were statistically
overrepresented in the study gene set. Enrichment was
evaluated through the hyper-geometric test using a
p-value threshold of 0.05. For the enrichment analysis of
the miRNAs set, we used the TAM [61] online tool.
Druggability analysis of the identified driver genes was
performed using the PharmGKB [62], CTD [63], and
CancerResource [64] databases.

Results and discussion
Differential analysis
We developed and applied an integrative network-based
approach to conduct combinatorial regulatory network
analysis in the context of breast invasive carcinoma with
the aim of identifying the major genetic drivers that
lead to tumorigenesis (Figure 1). We processed mRNA
expression, DNA methylation, miRNA expression, and
somatic mutation datasets for 131 tumor samples and 20
control samples of healthy tissues. The differential analy-
sis of the mRNA expression, DNA promoter methylation,
and miRNA expression data gave 1317 differentially
expressed genes, 2623 differentially methylated genes,
and 121 differentially expressed miRNAs, respectively.

TF-gene interactions
The expression profiles of the 1317 identified differen-
tially expressed genes were used to compute the co-reg-
ulation strength between genes using the topological
overlap (TOM) measure. Then, we performed hierarchi-
cal clustering (HCL) to construct the undirected co-
expression network. HCL yielded 10 segregated network
modules that contain between 26 and 295 gene mem-
bers (Table 1). For the seven smallest modules, we

collected the related directed regulatory interactions
available in three online regulatory databases (JASPAR
[40], TRED [39], and MSigDB [33]) and used them as a
prior for a Bayesian learner to learn the causal probabil-
istic regulatory interactions and to generate a directed
network topology, (see methods for details). The three
largest modules (blue, brown, and turquoise) comprised
too many nodes that exceeded the complexity that can
be handled by the Bayesian learning approach. Hence,
we deliberated the co-expression networks for these
three modules by requiring a tighter co-expression
threshold and used the obtained network modules
for further analysis. It should be mentioned that the
Bayesian approach prevents cyclic topology such as self-
regulation, which is the case for many genes. Therefore,
we note that self-regulatory interactions are not consid-
ered in this study. Next, the GRN network modules
were pruned in order to maximize consistency between
gene expression profiles, methylation fingerprints of
gene promoters, and the inferred regulatory interactions.
This helps to contextualize the network to the biological
experiments from which it was reverse engineered. We
removed 89 inferred interactions whose target genes are
downregulated and their expression profiles showed
absolute anti-correlation measure > 0.65 with their
methylation profiles. In those cases we reasoned that
downregulation of these target genes was most likely
due to their promoter methylation and not due to TF
binding [45].
By linking the network modules genes to GO and

KEGG annotations via over representation analysis
(ORA), we identified the most significant metabolic pro-
cesses and functional categories that were enriched in
each network module and showed relevance to breast
cancer, see Table 1. For instance, the red and green mod-
ules are enriched with the endometrial cancer pathway,
which is tightly associated with breast cancer and subse-
quent treatment [65]. Also, the magenta and turquoise
modules were significantly involved in the p53 signaling
pathway, a tumor suppressor gene showing one of the
largest frequencies of SNPs among all human genes that
have been related to cancer [1]. It has also important
roles in diagnosis, in prognostic assessment and, ulti-
mately, in treatment of breast cancer [66-70]. The
inferred network topologies for the first three modules
(red, green, and magenta) highlighting their identified
driver genes are presented in Figure 2. The other network
modules are shown in Additional files S3, and S4. Then
we utilized the gplk solver [48] via OpenOpt [49] on the
10 inferred network modules to find the minimal set of
nodes that dominate and regulate all nodes in each net-
work. In total, we identified 94 key dominating/driver
genes in all network modules (Table 1). The follow-up
analysis of these driver genes is discussed below.
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miRNA-mRNA interactions
To extract the breast cancer specific subnetworks from
the human genome wide regulatory interactome induced
by miRNAs and mRNAs, we examined two possible reg-
ulation types between the differentially expressed miR-
NAs and mRNAs: miRNAs regulating target mRNAs
and mRNA products (TFs) regulating expression of the
miRNAs. We relied on the experimentally validated
interactions of both types in building the two networks,
(see methods for details). The identified miR-
NA®mRNA interactions consist of 65 unique miRNAs
and 770 unique genes involved in 1949 links. The
TF®miRNA interactions include 112 unique TFs and
100 unique miRNAs composing 336 links. A total of
869 genes (including TFs) and 120 miRNAs were pre-
sent in the combined miRNA®mRNA and TF®miRNA
interaction network. 13 mRNAs and 45 miRNAs were
common in both interaction types. The 869 genes were
mostly involved in regulation of macromolecular meta-
bolic processes and cancer pathways of multiple organs
(Table 1). Moreover, the HMDD (Human miRNA Dis-
eases Database) [71] analysis of the 120 miRNAs
revealed their implication in cancerogenesis of various

organs (Table 1). Next, the two networks comprising
the dysregulated miRNAs and mRNAs as well as the
interactions among them were combined and further
analyzed using OpenOpt [49] and gplk solver [48] to
identify genetic drivers and major regulators. This
yielded in total 85 key dominating molecules (68 miR-
NAs and 17 genes) that regulate the entire network
nodes (Table 1). The network topologies highlighting the
dominating genes and miRNAs are shown in Figure 3
and 3A Additional file S5, respectively.
Interestingly, some of the identified key driver genes

such as MYC, AKT1, and TP53 were previously impli-
cated and significantly mutated in breast cancer samples
[1]. Also the TCF3 gene, a well-known TF controlling
stem cell identity and self-renewal, is highly expressed in
tumor samples and has a central regulatory role in the
onset of breast cancer cell differentiation and tumor
growth [72]. Additionally, many studies have reported
the aberrant expression patterns of the CREB1 gene and
its role in breast tumor cell growth [73-76] suggesting its
protein product as a worthwhile target for anti-cancer
drugs [77,78]. It has been demonstrated that the E2F3
gene plays a critical role in the transcriptional activation

Figure 1 The integrative network-based approach. A schematic diagram describing data processing and integration of different data sources
to detect major determinants and key driver molecules controlling breast carcinomas.
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Table 1. The key driver elements identified TF-gene interactions and miRNA-mRNA interactions

Module Gene
count

Top GO category Top KEGG categories Key
driver
count

Key drivers

TF-mRNA
interactions

black 41 Regulation of transcription Pathways in cancer, Renal cell
carcinoma

5 SORBS3, ZNF43, ZNF681, RBMX,
POU2F1

blue 247 Nucleobase, nucleoside,
nucleotide and nucleic acid
metabolic process

Cell cycle, Prostate cancer,
Melanoma

9 AR, BRCA1, ESR1, JUN, MYB, RPN1,
E2F1, E2F2, PPARD

brown 195 Anatomical structure
morphogenesis

Leukocyte transendothelial
migration

5 TMOD3, CREB1, POU5F1, SP3, TERT

green 110 Cellular macromolecule
metabolic process

Endometrial cancer, Insulin
signaling pathway

15 B4GALT7, OS9, CDC34, MAN2C1,
MYO1C, SH3GLB2, INPP5E, PLXNB1,
USF2, PPP1R12C, CDK9, DAP, E4F1,
E2F4, USF1

grey 148 Anatomical structure
development

Sulfur metabolism 18 AHCTF1, NQO2, FGFR2, CCDC130,
ABCG4, BIRC6, CA6, SP4, RNF2,
SPRR1B, C16orf65, DNAJC5G, SNCAIP,
GRIK5, SLC6A4, SMAD1, DAD1, POU4F2

magenta 26 Regulation of metabolic
process

p53 signaling pathway,
Alzheimer’s disease

3 ATF6, NGEF, POGK

pink 30 Transcription initiation from
RNA polymerase II promoter

Basal transcription factors 4 CCDC92, TMEM70, RNF139, E2F5

red 93 Regulation of cellular
process

Endometrial cancer,
Neurotrophin signaling pathway

14 ATP1B1, STAT3, ABCB8, MYC,
TGFB1, SP1, TP53, PCGF1, SUMF2,
GTF3A, IPO13, GMPPA, HTR6, TGIF1

turquoise 295 Regulation of cellular
metabolic process

p53 signaling pathway,
Pancreatic cancer, Apoptosis

2 UBL5, RNF111

yellow 132 Immune system process Chemokine signaling pathway,
Natural killer cell mediated
cytotoxicity

19 APOC1, CD2, CD79B, LRRC28,
DAPK1, FAM124B, EML2, LAP3,
TSPAN2, FCRL3, ELMO1, SLC7A7,
RASSF5, SLC31A2, TRAF3IP3, GALNT12,
ITGA4, SPI1, TFAP2A

Total 1317

miRNA-
mRNA
interactions

Genes Gene
count

Top GO category Top KEGG categories Key
driver
count

Key drivers

869 Regulation of
macromolecule metabolic
process

Pathways in cancer, Pancreatic
cancer, Prostate cancer

17 MYC, ATG4C, TGFB1, NFKB1, AKT1,
EGR1, TP53, SOX10, SPI1, MECP2,
E2F3, CREB1, TCF3, TPP1, FLICE, LPS,
PACS1

miRNAs miRNA
count

Top functional categories Top HMDD categories Key
driver
count

Key drivers

120 miRNA tumor suppressors,
immune response, Onco-
miRNA, cell death, human
embryonic stem cells
regulation

Breast cancer (65), Neoplasms
(58), Melanoma (56), Ovarian
Neoplasms (51), Pancreatic
Neoplasms (38), Prostatic
Neoplasms (38)

68 mir-126, mir-609, mir-488, mir-191,
mir-200c, mir-200a, mir-30a, mir-30d,
mir-335, mir-190b, mir-223, mir-106b,
mir-519e, mir-210, mir-379, mir-203,
mir-205, mir-708, mir-29c, mir-29a,
mir-182, mir-183, mir-127, mir-187,
mir-425, let-7g, let-7d, mir-152, mir-155,
mir-21, mir-22, mir-758, mir-921, mir-922,
mir-375, mir-377, mir-181a-2, mir-657,
mir-302d, mir-100, mir-10b, mir-10a,
mir-625, mir-629, mir-92a-2, mir-26b,
mir-25, mir-145, mir-143, mir-141,
mir-221, mir-193b, mir-193a, mir-374a,
mir-134, mir-146a, mir-31, let-7a-2,
mir-27a, mir-27b, mir-133a-1, let-7i,
mir-93, mir-23a, mir-148a, mir-196a-2,
mir-487b, mir-149

For the 10 gene modules identified in TF-mRNA interactions, we list counts of the involved genes, the most significant GO and KEGG terms, and the identified
key driver genes from each module. Similarly for the miRNA-mRNA interactions, we list the key driver molecules of both genes and miRNAs. The driver genes,
whose protein products are known to be targeted by drugs, are in bold.

Hamed et al. BMC Genomics 2015, 16(Suppl 5):S2
www.biomedcentral.com/1471-2164/16/S5/S2

Page 6 of 14



of genes that control the rate of proliferation of tumor
cells [79-81]. Furthermore, Vimala et al. [82] recently
showed that the E2F3 gene is overexpressed in 11 breast
cancer cell lines and siRNA-E2F3 based gene silencing
facilitates the silencing of E2F3 overexpression and limits
the progression of breast tumors. This strongly conforms
to our findings and implies that E2F3 may be a potential
therapeutic target for human breast cancer. HMDD ana-
lysis of the 68 driver miRNAs revealed that 36 miRNAs

are involved in breast neoplasms, and the rest are asso-
ciated with various cancer types such as hepatocellular
carcinoma, adenocarcinoma, and prostate cancer. Also
the identified key miRNA mir-29c as well as the key gene
POU2F1 have recently been characterized as common
hub nodes for three types of breast cancer [7]. Thus,
unlike the traditional separate analysis of gene expression
profiles [83-87] or the aberration of miRNA expression
in cancer tissues [88-90], this integrated molecular

Figure 2 Gene network modules of TF-gene interactions. (a) Topological overlap matrix (TOM) heatmap corresponding to the ten
co-expression modules. Each row and column of the heatmap represent a single gene. Spots with bright colors denote weak interaction
whereas darker colors denote strong interaction. The dendrograms on the upper and left sides show the hierarchical clustering tree of genes.
(b), (c), and (d) are the final GRN networks highlighting the identified key drivers genes for the green, magenta, and red modules, respectively.
Square nodes denote the identified driver genes that are targeted by drugs. Networks were visualized using the Igraph package in R.
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analysis of the dysregulated miRNAs and mRNAs was
able to uncover important aspects of the miRNA-mRNA
interactome, the co-regulation mechanisms, and the
underlying pathogenesis of human cancer.

Proximity analysis of somatic mutations
Although next generation sequencing of cancer genomes
has unraveled thousands of DNA alterations, the func-
tional relevance of most of these mutations and how
they relate to other epigenetic mechanisms (such as

DNA methylation and deregulation of miRNAs) are still
poorly understood [54]. To this end, we scrutinized
whether the significantly differentially expressed miR-
NAs are in genomic vicinity to the respective somatic
variants so that dys-regulation of miRNA expression
due to carcinogenesis may depend on the associated
nearby somatic variants. We searched for the coding
sequences of the dysregulated miRNAs in a genomic
window of 250 kb around the somatic variants as pre-
viously described in [91]. We detected 21 cases of

Figure 3 Regulatory interactions of the 17 key driver genes identified from miRNA-mRNA interactions. Large nodes represent key driver
genes and small nodes represent miRNAs, which regulate or are regulated by these driver genes. Square nodes are the identified driver genes
that are targeted by drugs. The network was visualized using the Igraph package in R.
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physical proximity between somatic variants and the
deregulated miRNAs (Additional file S6), which are
mostly located in chromosomes 1, 7, and 19 (Figure 4-a).
These 21 cases encompass 15 distinct mutations and 20
distinct dysregulated miRNAs. To test the significance of
these cases, we performed 1000 Wilcoxon tests against
random SNV positions considering the same mutation
frequency for each chromosome. The deregulated miR-
NAs identified in the 21 cases were significantly closer to
their somatic SNVs pairs in comparison to random SNV
positions (p-value equals to 0.001). We also checked
whether the non-dysregulated miRNAs (925 miRNAs)
are in genomic proximity to the 15 somatic mutations
involved in the 21 cases as well. We found that 52 non-
dysregulated miRNAs (5.6%) were in vicinity to only
8 mutations so that the other 7 mutations are exclusively
associated with the dysregulated miRNAs (Additional
file S6).
Similarly, we analyzed the somatic mutations that mainly
occur at differentially methylated CpG sites in promoter
regions. Overall we identified 347 cases of SNV-differen-
tially methylated gene pairs. These are mostly located on
chromosomes 1, 5, and × (Figure 4-b). To address how
changes in methylation levels caused by tumorigenesis

correlate with mutation rates of different mutation geno-
types, we separately analyzed the cases of up- and down-
methylated genes. 234 cases involved up-methylated
genes, whereas only 113 were associated with down-
methylated genes. Generally, mutations in the promoter
areas of up-methylated genes occur at a remarkably
higher rate than its peers in down-methylated genes espe-
cially the C->T genotypes (Additional file S7) since
methylated cytosines are prone to thymine transitions by
via deamination. This result is in line with the findings of
Xia et al. [51] who examined the relationship between
DNA methylation and mutation rate. Further, we exam-
ined which of the above somatic mutations, which were
identified on the basis of their vicinity to either dysregu-
lated miRNAs or differentially methylated genes, could
potentially drive tumor cell proliferation in breast cancer.
For this, we applied the random forest as a machine
learning method implemented in the CHASM tool [54]
to distinguish between driver and passenger somatic
mutations. As training set, we used the breast cancer
labeled data (BRCA) curated from the COSMIC database
[92] and provided by CHASM. We identified nine driver
mutations (three from miRNA cases and six from differ-
entially methylated gene cases) suggesting their causative

Figure 4 Proximity analysis of the somatic mutations with the dysregulated miRNAs and differentially methylated genes. Ideogram
plots showing the genomic distribution for (a) the 21 cases of deregulated miRNAs adjacent to somatic mutations. The outer green circle shows
the entire dataset of miRNAs, whereas the next highlighted red lines refer to the adjacent deregulated miRNAs (20 miRNAs where one miRNA is
matched to 2 SNVs). The inner blue circle represent the entire set of somatic SNVs and the next highlighted red lines depict the SNVs matched
to the 21 cases. (b) The 347 cases of somatic mutations occurring in the promoter regions of differentially methylated genes. The outer green
circle shows the entire set of differentially methylated genes, whereas the next highlighted red lines refer to the identified cases adjacent to the
somatic mutations. The inner blue circle represents the entire set of somatic SNVs and the next highlighted red lines depict the SNVs matched
to the identified cases. The plot illustrates also the fractions of the three considered types of mutations (C->T, C->G and C->A) showing the
occurrence frequency for each one.
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role in breast tumorigenesis (Table 2). All these nine
mutations are missense and lead to an amino acid substi-
tution. Next, we analyzed the possible impact of the
resulting amino acid substitution on structure and func-
tion of the respective protein using the PolyPhen [58]
and SIFT [56] prediction tools. Interestingly, both meth-
ods predict damaging effects of these mutations on pro-
tein function conforming their role in driving cancer
(Table 2).

Druggability analysis of protein products of the
identified driver genes
As mentioned above, we identified 94 driver genes from
the TF-mRNA interactions and 17 driver genes from
the miRNA-mRNA interactions. The five well-known
breast cancer associated genes CREB1, MYC, TGFB1,
TP53, and SPI1 were common in both sets. Hence, in
total 106 driver genes were identified. Also, we charac-
terized 68 dominating miRNAs from the miRNA-mRNA
interactions, and nine driver mutations from the proxi-
mity analysis. To identify driver genes marked as anti-
breast cancer drug-targets, we looked up the drugs and
the anti-neoplastic agents that target the proteins corre-
sponding to the 106 driver genes based on the experi-
mentally validated drug-targets reports (see methods).
We found that 31% (33 proteins) of the proteins belong-
ing to the identified driver genes are binding targets of
at least one anti-breast cancer drug (Additional file S8).
These 33 genes are highlighted as square nodes in the

network visualizations of TF-mRNA interactions (Figure 2,
Additional file S3, and Additional file S4) and miRNA-
mRNA interactions (Figure 3). The remaining 73 driver
genes were involved in the regulation of biological pro-
cesses as well as metabolic processes of cancerogenesis in
multiple organs such as lung, prostate, and bladder (Addi-
tional file S9). This supports the hypothesis that products
of the remaining 73 identified driver genes as well as the
identified 68 driver miRNAs and the 9 driver mutations
may open up new avenues for novel therapeutic drugs.

Network validation and performance assessment
In order to validate the proposed approach and the con-
structed network topology [TF-gene interactions only], we
applied a peer knowledge-based differential network
method, KDDN (Knowledge-Guided Differential Depen-
dency Network) [93] on the same dataset. The same prior
was used for KDDN. The networks predicted by our
approach showed 61% edges overlap with the inferred dif-
ferential KDDN interactions due to tumorigenesis.
To assess the reliability of our predictions of key dri-

vers, we further included another differential network
method, DiffCoEx (Differential Co-expression Modules)
[28] for identifying differential co-expression modules
between two biological cohorts. As mentioned above, 33
genes (31%) out of the total 106 driver genes suggested
here are known key drivers and are targeted by cur-
rently known drugs. In contrast, only 114 KDDN genes
(~20%) out of 584 hot spot genes involved in the

Table 2. List of the identified driver mutations ordered by CHASM score

Chrom Occurring
gene

SNV
position

CHASM
score

P-value Ref Alt Amino
acids

Codons SIFT score PolyPhen score

1 PTPRC 198711494 0.158 6.00E-
04

G A E/K Gag/
Aag

Deleterious (0) probably_damaging
(0.999)

8 TNKS 9413850 0.162 6.00E-
04

C T S/F tCc/tTc Deleterious
(0.01)

Unknown (0)

X GRIA3 122319694 0.298 0.0119 C A F/L ttC/ttA Deleterious (0) probably_damaging
(0.996)

5 PCDHB14 140604126 0.308 0.0134 C T S/L tCg/tTg Deleterious
(0.02)

Benign (0.368)

X HUWE1 53644041 0.31 0.0136 C A R/L cGa/cTa Deleterious (0) probably_damaging (1)

17 NFE2L1 46136186 0.326 0.0175 C T S/F tCc/tTc Deleterious
(0.01)

probably_damaging
(0.994)

9 NAIF1 130829249 0.336 0.0204 C G K/N aaG/aaC Deleterious (0) probably_damaging
(0.995)

2 KLHL23 170592167 0.354 0.0251 C G R/G Cga/
Gga

Deleterious (0) probably_damaging
(0.999)

12 KCNA1 5021107 0.384 0.0406 C T T/M aCg/aTg Deleterious (0) probably_damaging
(0.997)

The CHASM score is defined as the fraction of trees in the Random Forest that voted for the mutation being classified as a passenger. Lower scores increase the
confidence of driver mutations. P-values are calculated based on the null score distribution. The table reports also the changes in the related codons and amino
acids. The SIFT and PolyPhen scores refer to the prediction of whether an amino acid substitution affects the function and structure of the human proteins. The
SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments derived from closely related sequences (lower scores
represent high impacts), whereas the PolyPhen prediction uses physical and evolutionary comparative considerations (higher scores represent high impact and
severe influence on the protein function and structure).
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KDDN network, are binding targets for anti-cancer
drugs (Additional file S10). We detected an overlap of
44%, and 16% of the key genes identified by our
approach and those obtained by KDDN and DiffCoEx,
respectively. DiffCoEx yielded five different modules of
genes in which the correlation of gene pairs within the
module was significantly different between normal and
tumor samples (Additional file S11). Only 151 genes
(17%) out of total 886 genes involved in these modules
were marked as anti-cancer drug targets. These percen-
tages strongly support the reliability and robustness of
our strategy in identifying genomic drivers that could be
further experimentally examined as drug targets.

Conclusions
The enormously increasing availability of transcriptomic
and epigenomic data from different biological experi-
ments allow for deep and comprehensive integrative
analysis. To this end, this study provides new insights
into the complex regulatory mechanisms between gene
expression, miRNA biomarkers, epigenetic modifications
(represented at the level of DNA methylation) and
genetic variants that are associated with the human
breast cancer network.
In this work, we demonstrated an integrative network-

based approach to conduct combinatorial regulatory net-
work analysis and to identify genomic driver elements
that control breast carcinomas. Our results showed a
strong association between the regulatory elements of the
heterogeneous data sources in terms of the mutual regu-
latory influence and genomic proximity. By analyzing
three different types of interactions, TF-mRNA, miRNA-
mRNA, and proximity analysis of somatic variants, we
were able to identify various key driver elements (106
genes, 68 miRNAs, and 9 mutations) that could possibly
drive breast invasive carcinomas. We also unraveled
underlying regulatory interactions among these key dri-
vers and other genetic elements in the breast cancer net-
work. Interestingly, anti-breast cancer drugs target
protein products of about one third of the key driver
genes and most of the identified key miRNAs are
involved in cancerogenesis of multiple organs. Also, the
identified driver mutations are predicted to cause dama-
ging effects on protein functions and structures.
These results expand our knowledge base of prospec-

tive genomic drivers and provide encouraging support
that many of the novel identified genetic elements are
potential targets for new drugs. We note that these key
drivers were identified based on the presented computa-
tional framework and further wet lab work is warranted
to confirm their efficacy as putative anti-cancer drug
targets. Especially when combined with experimental
validation, this network-based approach could promote

novel insights on cancer genomic data to develop new
therapeutic strategies and thus better treatment. Finally,
this approach can be applied to other cancer types or
complex diseases and could be extended for studying
cellular development as well.
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Additional material

Additional file S1: TCGA barcodes of the samples considered in our
analysis. We selected only normal and tumor samples from the TCGA
portal where all four datasets have been measured.

Additional file S2: Size of datasets after the pre-processing step.

Additional file S3: The inferred regulatory networks for the black,
pink, grey, and yellow gene modules. For clarity, we visualized only
the identified key driver genes and the nodes connected to them.

Additional file S4: The co-expression networks of the brown,
turquoise, and blue gene modules. Due to the large sizes of those
modules, the Bayesian approach was not able to infer causal interactions
among them. Therefore we display the co-expression networks for these
three modules. For clarity, we visualized only the identified key driver
genes and the nodes connected to them.

Additional file S5: Regulatory interactions of the identified 68 key
miRNAs from the miRNA-mRNA interactions. Large nodes represent
the 68 key miRNAs and smaller nodes represent the TFs or mRNAs that
regulate or are regulated by these key miRNAs.

Additional file S6: The deregulated miRNAs in proximity to somatic
mutations. 21 cases of miRNA-SNV pairs were identified. The genomic
distance between miRNAs and SNVs is reported in base pairs. SNVs
marked with (*) are the exclusive ones associated only with the
dysregulated miRNAs and not with any of the non-dysregulated miRNAs.

Additional file S7: Proximity analysis of somatic mutations with the
up-and down-methylated genes. Ideogram plots showing the genomic
distributions of the somatic mutations occurring at promoter regions of
(a) the up-methylated genes (234 cases), and (b) down-methylated genes
(113 cases). The outer green circle shows the entire set of differentially
methylated genes, whereas the next highlighted red lines refer to the
identified cases adjacent to the somatic mutations. The inner blue circle
represents the entire set of somatic SNVs and the next highlighted red
lines depict the matched SNVs in the identified cases. The plot illustrates
also the fractions of the three considered types of mutations (C->T, C->G
and C->A) showing the occurrence frequency for each. Obviously the
C->T mutations for the up-methylated genes occur at a higher rate than
its peers in the down-methylated genes.

Additional file S8: A list of the 33 genes whose gene products are
targeted by anti-cancer drugs, characterized from the three
considered drug databases, CTD, PharmGKB, and Cancer resource.
(1) means that at least one drug that targets this gene product is
reported in this database, and (0) means no drugs are reported for the
respective gene in this database. Not included are substances that are
known to be cancerogenous or mutagenic.

Additional file S9: Ten most significant GO terms and KEGG
pathways enriched in the list of the 73 candidate driver genes.

Additional file S10: The network inferred using the KDDN method.
For clarity, we visualized only the known drug target genes (red and
labelled) and the genes connected to them (green).

Additional file S11: The network modules inferred using the DiffCoEx
method. Each network corresponds to the highlighted module color in the
heatmap. For clarity, we visualized only the known drug target genes
(labelled and square nodes) and the genes connected to them.

Hamed et al. BMC Genomics 2015, 16(Suppl 5):S2
www.biomedcentral.com/1471-2164/16/S5/S2

Page 11 of 14

http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S9.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S10.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-16-S5-S2-S11.pdf


List of abbreviation
TCGA: The Cancer Genome Atlas
TF: Transcription factor
GRN: Gene regulatory network
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
TOM: Topological overlap matrix
HMDD: Human MicroRNA Disease Database
KDDN: Knowledge-Guided Differential Dependency Network
DIffCoEx: Differential Co-expression Modules
Ensembl VeP: Ensembl Variant effect Predictor

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MH designed the study and developed the main pipeline used in the
analysis. CS participated in identification of key drivers and writing the
manuscript. AZ carried out the proximity analysis. VH revised and helped to
draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
MH was supported by the German Academic Exchange Service (DAAD), by
DFG SFB 1027, and by the graduate school of computer science,
Saarbrucken, Germany. We also thank PD.Dr.Michael Hutter, Kerstin Reuter,
and Thorsten Will for their valuable comments and critical reading of the
manuscript.

Declarations
Publication costs for this article were funded by Saarland University,
Saarbrucken, Germany.
This article has been published as part of BMC Genomics Volume 16
Supplement 5, 2015: Proceedings of the 10th International Conference of
the Brazilian Association for Bioinformatics and Computational Biology
(X-Meeting 2014). The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcgenomics/supplements/16/S5.

Published: 26 May 2015

References
1. Network CGA: Comprehensive molecular portraits of human breast

tumours. Nature 2012, 490(7418):61-70.
2. Macaluso M, Montanari M, Giordano A: The regulation of ER-α

transcription by pRb2/p130 in breast cancer. Annals of Oncology 2005,
16(suppl 4):iv20-iv22.

3. Siegel R, Ma J, Zou Z, Jemal A: Cancer statistics, 2014. CA: a cancer journal
for clinicians 2014, 64(1):9-29.

4. Volinia S, Croce CM: Prognostic microRNA/mRNA signature from the
integrated analysis of patients with invasive breast cancer. Proceedings of
the National Academy of Sciences 2013, 110(18):7413-7417.

5. Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Della Rosa PA, Gilardi MC,
Castiglioni I: Integration of mRNA Expression Profile, Copy Number
Alterations, and microRNA Expression Levels in Breast Cancer to
Improve Grade Definition. PloS one 2014, 9(5):e97681.

6. Sengupta D, Bandyopadhyay S: Topological patterns in microRNA-gene
regulatory network: studies in colorectal and breast cancer. Mol BioSyst
2013, 9(6):1360-1371.

7. Qin S, Ma F, Chen L: Gene regulatory networks by transcription factors
and microRNAs in breast cancer. Bioinformatics 2014, 30(1):76-83 [http://
bioinformatics.oxfordjournals.org/content/31/1/76].

8. West J, Bianconi G, Severini S, Teschendorff AE: Differential network
entropy reveals cancer system hallmarks. Scientific reports 2012, 2:802.

9. Teschendorff AE, Severini S: Increased entropy of signal transduction in
the cancer metastasis phenotype. BMC systems biology 2010, 4(1):104.

10. Schramm G, Kannabiran N, König R: Regulation patterns in signaling
networks of cancer. BMC systems biology 2010, 4(1):162.

11. Tuck DP, Kluger HM, Kluger Y: Characterizing disease states from
topological properties of transcriptional regulatory networks. BMC
bioinformatics 2006, 7(1):236.

12. Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G,
Moreno V, Kirchhoff T, Gold B: Network modeling links breast cancer

susceptibility and centrosome dysfunction. Nature genetics 2007,
39(11):1338-1349.

13. Platzer A, Perco P, Lukas A, Mayer B: Characterization of protein-
interaction networks in tumors. BMC bioinformatics 2007, 8(1):224.

14. Ulitsky I, Shamir R: Identification of functional modules using network
topology and high-throughput data. BMC systems biology 2007, 1(1):8.

15. Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of
breast cancer metastasis. Molecular systems biology 2007, 3(1).

16. Milanesi L, Romano P, Castellani G, Remondini D, Liò P: Trends in
modeling biomedical complex systems. BMC bioinformatics 2009,
10(Suppl 12):I1 [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762057/].

17. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S,
Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction
networks predicts breast cancer outcome. Nature biotechnology 2009,
27(2):199-204.

18. Hudson NJ, Reverter A, Dalrymple BP: A differential wiring analysis of
expression data correctly identifies the gene containing the causal
mutation. PLoS computational biology 2009, 5(5):e1000382.

19. Nibbe RK, Koyutürk M, Chance MR: An integrative-omics approach to
identify functional sub-networks in human colorectal cancer. PLoS
computational biology 2010, 6(1):e1000639.

20. Yao C, Li H, Zhou C, Zhang L, Zou J, Guo Z: Multi-level reproducibility of
signature hubs in human interactome for breast cancer metastasis. BMC
systems biology 2010, 4(1):151.

21. Komurov K, White MA, Ram PT: Use of data-biased random walks on
graphs for the retrieval of context-specific networks from genomic data.
PLoS computational biology 2010, 6(8):e1000889.

22. Komurov K, Ram PT: Patterns of human gene expression variance show
strong associations with signaling network hierarchy. BMC systems
biology 2010, 4(1):154.

23. Vazquez A: In In: Neuroproteomics 2010, Alzate O: CRC Press, Boca
Raton;135-145.

24. Olex AL, Turkett WH, Fetrow JS, Loeser RF: Integration of gene expression
data with network-based analysis to identify signaling and metabolic
pathways regulated during the development of osteoarthritis. Gene 2014,
542(1):38-45.

25. Califano A: Rewiring makes the difference. Molecular Systems Biology 2011,
7(1).

26. Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R, Jaehnig EJ,
Bodenmiller B, Licon K, Copeland W, Shales M: Rewiring of genetic
networks in response to DNA damage. Science 2010, 330(6009):1385-1389.

27. Ideker T, Krogan NJ: Differential network biology. Molecular systems biology
2012, 8(1).

28. Tesson BM, Breitling R, Jansen RC: DiffCoEx: a simple and sensitive
method to find differentially coexpressed gene modules. BMC
bioinformatics 2010, 11(1):497.

29. Zhang B, Tian Y, Jin L, Li H, Shih I-M, Madhavan S, Clarke R, Hoffman EP,
Xuan J, Hilakivi-Clarke L: DDN: a caBIG® analytical tool for differential
network analysis. Bioinformatics 2011, 27(7):1036-1038.

30. TCGAPortal: Nationl Human Genome Research Institute [https://tcga-data.nci.
nih.gov/tcga/].

31. Akulenko R, Helms V: DNA co-methylation analysis suggests novel
functional associations between gene pairs in breast cancer samples.
Human molecular genetics 2013, 22(15):3016-3022.

32. Dreos R, Ambrosini G, Périer RC, Bucher P: EPD and EPDnew, high-quality
promoter resources in the next-generation sequencing era. Nucleic acids
research 2013, 41(D1):D157-D164.

33. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics
2011, 27(12):1739-1740.

34. Chu G, Li J, Narasimhan B, Tibshirani R, Tusher V: Significance Analysis of
Microarrays Users Guide and Technical Document 2001.

35. Hahne F, Huber W, Gentleman R, Falcon S: Bioconductor case studies
Springer; 2010.

36. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L: Hierarchical
organization of modularity in metabolic networks. science 2002,
297(5586):1551-1555.

37. Langfelder P, Horvath S: WGCNA: an R package for weighted correlation
network analysis. BMC bioinformatics 2008, 9(1):559.

38. Ihaka R, Gentleman R: R: a language for data analysis and graphics.
Journal of computational and graphical statistics 1996, 5(3):299-314.

Hamed et al. BMC Genomics 2015, 16(Suppl 5):S2
www.biomedcentral.com/1471-2164/16/S5/S2

Page 12 of 14

http://www.biomedcentral.com/bmcgenomics/supplements/16/S5
http://www.ncbi.nlm.nih.gov/pubmed/23589849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23589849?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/31/1/76
http://bioinformatics.oxfordjournals.org/content/31/1/76
http://www.ncbi.nlm.nih.gov/pubmed/23150773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23150773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762057/
http://www.ncbi.nlm.nih.gov/pubmed/21245848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22252388?dopt=Abstract
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/


39. Jiang C, Xuan Z, Zhao F, Zhang MQ: TRED: a transcriptional regulatory
element database, new entries and other development. Nucleic acids
research 2007, 35(suppl 1):D137-D140.

40. Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an
open-access database for eukaryotic transcription factor binding profiles.
Nucleic acids research 2004, 32(suppl 1):D91-D94.

41. Marschall T, Rahmann S: Efficient exact motif discovery. Bioinformatics
2009, 25(12):i356-i364.

42. Friedman N, Nachman I, Peér D: Learning bayesian network structure
from massive datasets: the «sparse candidate «algorithm. Proceedings of
the Fifteenth conference on Uncertainty in artificial intelligence: 1999 Morgan
Kaufmann Publishers Inc.; 1999, 206-215.

43. Carvalho AM: Scoring functions for learning bayesian networks. Inesc-id
Tec Rep 2009.

44. Csardi G, Nepusz T: The igraph software package for complex network
research. InterJournal, Complex Systems 2006, 1695(5).

45. Zeller C, Dai W, Steele N, Siddiq A, Walley A, Wilhelm-Benartzi C, Rizzo S,
van der Zee A, Plumb J, Brown R: Candidate DNA methylation drivers of
acquired cisplatin resistance in ovarian cancer identified by methylome
and expression profiling. Oncogene 2012, 31(42):4567-4576.

46. Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A, Kaufmann M,
Vogel B, Katus HA, Meder B: miRTrail-a comprehensive webserver for
analyzing gene and miRNA patterns to enhance the understanding of
regulatory mechanisms in diseases. BMC bioinformatics 2012, 13(1):36.

47. Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor-microRNA
regulation database. Nucleic acids research 2010, 38(suppl 1):D119-D122.

48. Makhorin A: GLPK (GNU linear programming kit) 2008.
49. Kroshko D: OpenOpt. 2007, Software package downloadable from http://

openopt.org.
50. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and

deep-sequencing data. Nucleic acids research 2011, 39(suppl 1):D152-D157.
51. Xia J, Han L, Zhao Z: Investigating the relationship of DNA methylation

with mutation rate and allele frequency in the human genome. BMC
genomics 2012, 13(Suppl 8):S7.

52. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ,
Jones PA: Footprinting of mammalian promoters: use of a CpG DNA
methyltransferase revealing nucleosome positions at a single molecule
level. Nucleic acids research 2005, 33(20):e176-e176.

53. Sander N, Abel GJ, Bauer R, Schmidt J: Visualising migration flow data
with circular plots. Vienna Institute of Demography Working Papers; 2014.

54. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW,
Vogelstein B, Karchin R: Cancer-specific high-throughput annotation of
somatic mutations: computational prediction of driver missense
mutations. Cancer research 2009, 69(16):6660-6667.

55. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F: Deriving
the consequences of genomic variants with the Ensembl API and SNP
Effect Predictor. Bioinformatics 2010, 26(16):2069-2070.

56. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect
protein function. Nucleic acids research 2003, 31(13):3812-3814.

57. Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm.
Nature protocols 2009, 4(7):1073-1081.

58. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR: A method and server for predicting
damaging missense mutations. Nature methods 2010, 7(4):248-249.

59. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: database for annotation, visualization, and integrated discovery.
Genome biol 2003, 4(5):P3.

60. Hamed M, Ismael S, Paulsen M, Helms V: Cellular functions of genetically
imprinted genes in human and mouse as annotated in the gene
ontology. PloS one 2012, 7(11):e50285.

61. Lu M, Shi B, Wang J, Cao Q, Cui Q: TAM: a method for enrichment and
depletion analysis of a microRNA category in a list of microRNAs. BMC
bioinformatics 2010, 11(1):419.

62. Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB, Klein TE:
PharmGKB: the pharmacogenetics knowledge base. Nucleic acids research
2002, 30(1):163-165.

63. Davis A, Murphy C, Johnson R, Lay J, Lennon-Hopkins K, Saraceni-
Richards C, Sciaky D, King B, Rosenstein M, Wiegers T: CTD-Comparative
Toxicogenomics Database [http://nar.oxfordjournals.org/content/early/2014/
10/17/nar.gku935.fu].

64. Ahmed J, Meinel T, Dunkel M, Murgueitio MS, Adams R, Blasse C, Eckert A,
Preissner S, Preissner R: CancerResource: a comprehensive database of
cancer-relevant proteins and compound interactions supported by
experimental knowledge. Nucleic acids research 2011, 39(suppl 1):
D960-D967.

65. Jones ME, van Leeuwen FE, Hoogendoorn WE, Mourits MJ, Hollema H, van
Boven H, Press MF, Bernstein L, Swerdlow AJ: Endometrial cancer survival
after breast cancer in relation to tamoxifen treatment: pooled results
from three countries. Breast Cancer Res 2012, 14(3):R91.

66. Gasco M, Shami S, Crook T: The p53 pathway in breast cancer. Breast
Cancer Research 2002, 4(2):70.

67. Walerych D, Napoli M, Collavin L, Del Sal G: The rebel angel: mutant p53
as the driving oncogene in breast cancer. Carcinogenesis 2012,
33(11):2007-2017.

68. Lacroix M, Toillon R-A, Leclercq G: p53 and breast cancer, an update.
Endocrine-related cancer 2006, 13(2):293-325.

69. Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D’Incalci M, Piccolo S,
Veronesi A, Zambelli A, Del Sal G: Targeting triple negative breast cancer:
Is p53 the answer? Cancer treatment reviews 2013, 39(5):541-550.

70. Scata KA, El-Deiry WS: p53, BRCA1 and breast Cancer chemoresistance.
Adv Exp Med Biol. Springer; 2007, 70-86.

71. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of
human microRNA and disease associations. PloS one 2008, 3(10):e3420.

72. Slyper M, Shahar A, Bar-Ziv A, Granit RZ, Hamburger T, Maly B, Peretz T,
Ben-Porath I: Control of Breast Cancer Growth and Initiation by the Stem
Cell-Associated Transcription Factor TCF3. Cancer research 2012,
72(21):5613-5624.

73. Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG: Expression of
transcription factor CREB1 in human breast cancer and its correlation
with prognosis. Oncology reports 2007, 18(4):953-958.

74. Haakenson JK, Kester M, Liu DX: The ATF/CREB family of transcription
factors in breast cancer. Targeting New Pathways and Cell Death in Breast
Cancer In: Aft RL 2012, intech;71-85 [http://www.intechopen.com/books/
howtoreference/targeting-new-pathways-and-cell-death-in-breast-cancer/
the-atf-creb-family-of-transcription-factors-in-breast-cancer].

75. Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I,
Kladde MP, Vyhlidal C, Safe S: Mechanisms of transcriptional activation of
bcl-2gene expression by 17β-estradiol in breast cancer cells. Journal of
Biological Chemistry 1999, 274(45):32099-32107.

76. Zhang S, Chen L, Cui B, Chuang H-Y, Yu J, Wang-Rodriguez J, Tang L,
Chen G, Basak GW, Kipps TJ: ROR1 is expressed in human breast cancer
and associated with enhanced tumor-cell growth. PloS one 2012, 7(3):
e31127.

77. Xiao X, Li B, Mitton B, Ikeda A, Sakamoto K: Targeting CREB for cancer
therapy: friend or foe. Current cancer drug targets 2010, 10(4):384-391.

78. Sakamoto KM, Frank DA: CREB in the pathophysiology of cancer:
implications for targeting transcription factors for cancer therapy. Clinical
Cancer Research 2009, 15(8):2583-2587.

79. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS: A census of
amplified and overexpressed human cancer genes. Nature Reviews Cancer
2010, 10(1):59-64.

80. Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA: E2f3
is critical for normal cellular proliferation. Genes & development 2000,
14(6):690-703.

81. Reyes A: The Role of E2F3 in the Macrophage Assisted Metastasis of
Breast Cancer. 2007.

82. Vimala K, Sundarraj S, Sujitha MV, Kannan S: Curtailing Overexpression of
E2F3 in Breast Cancer Using siRNA (E2F3)-Based Gene Silencing. Archives
of medical research 2012, 43(6):415-422.

83. Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM,
Laiho P, Aaltonen LA, Laurberg S, Sørensen FB, Hagemann R, Ørntoft TF:
Gene expression in colorectal cancer. Cancer Research 2002,
62(15):4352-4363.

84. Ma X-J, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T,
Pistone M, Stecker K, Zhang BM: Gene expression profiles of human
breast cancer progression. Proceedings of the National Academy of Sciences
2003, 100(10):5974-5979.

85. Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-
Jauffret E, Loriod B, Bachelart L, Montfort J: Gene expression profiling of
colon cancer by DNA microarrays and correlation with histoclinical
parameters. Oncogene 2004, 23(7):1377-1391.

Hamed et al. BMC Genomics 2015, 16(Suppl 5):S2
www.biomedcentral.com/1471-2164/16/S5/S2

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/23281708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23281708?dopt=Abstract
http://nar.oxfordjournals.org/content/early/2014/10/17/nar.gku935.fu
http://nar.oxfordjournals.org/content/early/2014/10/17/nar.gku935.fu
http://www.ncbi.nlm.nih.gov/pubmed/17993233?dopt=Abstract
http://www.intechopen.com/books/howtoreference/targeting-new-pathways-and-cell-death-in-breast-cancer/the-atf-creb-family-of-transcription-factors-in-breast-cancer
http://www.intechopen.com/books/howtoreference/targeting-new-pathways-and-cell-death-in-breast-cancer/the-atf-creb-family-of-transcription-factors-in-breast-cancer
http://www.intechopen.com/books/howtoreference/targeting-new-pathways-and-cell-death-in-breast-cancer/the-atf-creb-family-of-transcription-factors-in-breast-cancer


86. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez M, Elledge R,
Mohsin S, Osborne CK, Chamness GC, Allred DC: Gene expression profiling
for the prediction of therapeutic response to docetaxel in patients with
breast cancer. The Lancet 2003, 362(9381):362-369.

87. Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR, Elkahloun AG: In
vivo gene expression profile analysis of human breast cancer
progression. Cancer research 1999, 59(22):5656-5661.

88. Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathé EA,
Takenoshita S, Yokota J, Haugen A: The association of microRNA
expression with prognosis and progression in early-stage, non-small cell
lung adenocarcinoma: a retrospective analysis of three cohorts. Clinical
cancer research 2011, 17(7):1875-1882.

89. Yang L, Belaguli N, Berger DH: MicroRNA and colorectal cancer. World
journal of surgery 2009, 33(4):638-646.

90. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J:
Prognostic values of microRNAs in colorectal cancer. Biomarker insights
2006, 1:113.

91. Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendschlag A,
Giese N, Tjaden C, Ott K: Toward the blood-borne miRNome of human
diseases. nature methods 2011, 8(10):841-843.

92. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R,
Leung K, Menzies A: COSMIC: mining complete cancer genomes in the
Catalogue of Somatic Mutations in Cancer. Nucleic acids research 2010,
gkq929.

93. Tian Y, Zhang B, Shih I-M, Wang Y: Knowledge-guided differential
dependency network learning for detecting structural changes in
biological networks. Proceedings of the 2nd ACM Conference on
Bioinformatics, Computational Biology and Biomedicine: 2011 ACM; 2011,
254-263.

doi:10.1186/1471-2164-16-S5-S2
Cite this article as: Hamed et al.: Integrative network-based approach
identifies key genetic elements in breast invasive carcinoma. BMC
Genomics 2015 16(Suppl 5):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hamed et al. BMC Genomics 2015, 16(Suppl 5):S2
www.biomedcentral.com/1471-2164/16/S5/S2

Page 14 of 14


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Datasets and pre-processing
	Differential analysis
	Gene regulatory network construction
	Pruning the GRN using methylation and expression profiles
	Constructing miRNA-mRNA interactions
	Identifying the genetic key drivers/determinants
	Proximity analysis of somatic mutations
	Enrichment and druggability analysis

	Results and discussion
	Differential analysis
	TF-gene interactions
	miRNA-mRNA interactions
	Proximity analysis of somatic mutations
	Druggability analysis of protein products of the identified driver genes
	Network validation and performance assessment

	Conclusions
	Financial disclosure
	List of abbreviation
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

