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Abstract

of the diseases using genome-wide expression data.

Background: Despite the large increase of transcriptomic studies that look for gene signatures on diseases, there is still
a need for integrative approaches that obtain separation of multiple pathological states providing robust selection of
gene markers for each disease subtype and information about the possible links or relations between those genes.

Results: We present a network-oriented and data-driven bioinformatic approach that searches for association of
genes and diseases based on the analysis of genome-wide expression data derived from microarrays or RNA-Seq
studies. The approach aims to (i) identify gene sets associated to different pathological states analysed together;
(i) identify a minimum subset within these genes that unequivocally differentiates and classifies the compared
disease subtypes; (iii) provide a measurement of the discriminant power of these genes and (iv) identify links
between the genes that characterise each of the disease subtypes. This bioinformatic approach is implemented in
an R package, named geNetClassifier, available as an open access tool in Bioconductor. To illustrate the
performance of the tool, we applied it to two independent datasets: 250 samples from patients with four major
leukemia subtypes analysed using expression arrays; another leukemia dataset analysed with RNA-Seq that includes
a subtype also present in the previous set. The results show the selection of key deregulated genes recently
reported in the literature and assigned to the leukemia subtypes studied. We also show, using these independent
datasets, the selection of similar genes in a network built for the same disease subtype.

Conclusions: The construction of gene networks related to specific disease subtypes that include parameters such
as gene-to-gene association, gene disease specificity and gene discriminant power can be very useful to draw
gene-disease maps and to unravel the molecular features that characterize specific pathological states. The
application of the bioinformatic tool here presented shows a neat way to achieve such molecular characterization

Background

Last decade of experimental work using genomic tech-
nologies has provided many data on gene expression
profiling of different biological and pathological states
[1]. This great effort in biomedical research has lead to
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a large need for tools and strategies that allow clinicians
to translate the genome-wide expression data into useful
information, such as transparent and robust signatures
to characterize and distinguish multiple pathological
subtypes [2]. There are many machine learning and
computational procedures that can be applied to build
classification systems that allow identifying the type or
category of query samples whose class is not-known
a priori [3-5]. However, a common problem of these
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methods is that they often do not reveal any information
about the genes that are selected as variables for the
classification process [4]. Although obtaining an efficient
classifier might seem enough in some cases, there is a
clear loss of biological information if the value or power
of the chosen genes is not translated into parameters
that allow to characterize and rank the genes.

Many clinical and biomedical studies look for the
separation between multiple disease subtypes as distinct
pathological states, but they are also very interested in
finding the specific genes that are altered in each disease
subtype. To identify and quantify the power of such
‘marking genes’ is the only way by which machine learn-
ing techniques can bring back biological meaning to this
kind of biomedical studies. Moreover, gene products do
not work in isolation as ‘independent features’, but
rather interact with others in biomolecular networks to
perform specific biological functions [6]. Therefore,
together with the identification of the genes that mark a
disease, genome-wide studies of related biological states
should also provide information about the associations
between the affected genes [7].

Following these questions we have developed a bioin-
formatic approach to provide gene-based analysis and
characterization of different diseases and construction of
associated gene networks using expression profiles
derived from experimental transcriptomic data. The
approach integrates established statistical and machine
learning methods into a single tool that allows to
(i) identify the set of genes that are specifically altered in
a disease when a collection of several diseases (or disease
subtypes) are studied and compared together using gen-
ome-wide expression profiling; (ii) obtain a minimum
subset of these genes that enable to differentiate each dis-
ease subtype from the other; (iii) provide information
about how relevant each of these genes is for discriminat-
ing each studied class; and (iv) find associations between
the genes based on the analysis of the experimental
expression profiles. This tool has been implemented in
an R/Bioconductor package named geNetClassifier (avail-
able at http://www.bioconductor.org/). In order to vali-
date the tool as a whole and prove whether the results it
provides have biological and functional meaning, here we
present its application to two independent genome-wide
expression datasets of human samples isolated from indi-
viduals with different subtypes of leukemia: one using
high-density oligonucleotide microarrays and another
using deep RNA-sequencing.

Results and discussion

Finding genes associated to specific disease subtypes
The human gene landscape can be structured in function-
ally associated groups of genes which are specific to biolo-
gical processes or states. Since a disease will normally
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affect and alter one or several biological processes, we
could depict a theoretical multidimensional “gene space”
divided in regions that include genes associated to specific
pathological states (Figure 1A). The identification of these
groups of genes is a great scientific endeavour for biome-
dical research, and some biological databases (e.g. OMIM
[8]) have been built following the idea of a “gene-to-
disease mapping”, as it is known to happen in Mendelian
inherited diseases. In this theoretical scenario, the genes
that are affected by a given disease can be overlapping
with the ones affected by a similar pathological state. This
will define genes that can be altered in multiple patholo-
gies, but it will also define genes that are only affected by a
specific malignancy when compared with other diseases.

Considering the recognition of such theoretical gene-
disease space (Figure 1A), we apply expression profiling
to find the genes that are altered in one specific disease
subtype using differential expression analysis. To do so,
we compare each disease category versus all the others
using package EBarrays [9], that implements an empiri-
cal Bayes method [10]. This provides a posterior prob-
ability for each gene to be differentially expressed in
one of the classes (see Methods). Sorting the genes by
their probability allows to build a ranking of the genes
ordered by their statistical significance (Figure 1B).
Since each gene has a probability of differential expes-
sion per class, it is assigned to the class in which it has
the best ranking. This allows to build non-overlapping
gene lists that optimize the specificity and separation
between classes. The posterior probability also allows to
quantify the association of a gene with a class and iden-
tify how many genes are related to each class at a cer-
tain significance level.

Constructing gene-based classifiers for multiple diseases
Once the gene rankings have been established, the tool
selects from the top of the list the minimum subset of
genes required to identify each class. To achieve this, it
uses a multiclass implementation [11] of Support Vector
Machine (SVM), as a method that has been proven very
efficient for classification of gene expression microarray
datasets [12-14]. The SVM is integrated into a wrapper
forward selection scheme to test whether a selected subset
of genes is actually enough to discriminate the classes [15].
Several SVM classifiers are iterativelly trained with an
increasing number of genes taken from the ranked lists
and evaluated through double nested cross-validation. The
smallest subset of genes that provides the best perfor-
mance is selected as feature set (Figure 1C) and used to
train and build a final classifier that will include all the
available samples of the training set.

The classifier built for a given set of compared dis-
eases can be used to query and identify new unlabeled
samples. In addition, the classifier is analysed in order
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Figure 1 Description of geNetClassifier main features and results. (A) Scheme representing a gene-disease space for three hypothetical
diseases. The color-line ovals would enclose the genes (dots) affected by a given disease. The coloured-background circles would mark the
altered genes that are specific for a disease, which are the ones we aim to identify: i.e. genes affected by only one of the compared diseases.
(B) Graph presenting the posterior probability of the top 2000 genes included in the gene ranking for each of the 4 leukemia subtypes and the
non-leukemia samples. The genes are selected and ranked based on their posterior probability for each class. Genes with posterior probability
over the threshold (> 0.95) can be considered significant candidates to mark each disease subtype. (C) Lists presenting the top-15 genes in the
ranking of each class. The bottom row shows the total number of significant genes in the whole ranking. The shaded area contains the genes
selected as the minimum subset to separate the classes. The number of genes selected per class is shown on top. (D) Discriminant power plot
of the first ranked gene for each leukemia subtype: VPREBT (pre-B lymphocyte 1) for ALL; HOXA9 (homeobox 9) for AML; TYMS (thymidylate
synthetase) for CLL; and GJB6 (gap junction beta-6 30 kDa protein) for CML. The red numbers indicate the discriminat power values assigned to
each gene.

to obtain the discriminant power of the selected genes
(Figure 1D). Each gene’s discriminant power is a quanti-
tative parameter that resembles the value of such gene
in class differentiation. Therefore, a high discriminant
power (either positive or negative, in absolute value)
indicates that the gene is useful to mark and identify
samples from its assigned class. Full description of this
parameter is provided in Methods section.

Building networks of genes associated to diseases

To infer possible associations between the genes assigned
to each disease, geNetClassifier calculates gene-to-gene
correlation and mutual information [16] in the expres-
sion dataset. This allows to identify possible relations of
co-expression between the genes and possible relations
of mutual redundancy. The detected associations are
integrated in a network that also includes parameters
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derived from the differential expression analysis and from
the classification analysis. Since networks are built for
each class, they provide an integrative view of the gene
sets associated to each disease in a relational character-
ized context. Examples of these networks are presented
in the case studies in the following sections.

Using geNetClassifier: analysis of a leukemia dataset

We have applied geNetClassifier to a dataset of genome-
wide expression microarrays of samples from leukemia,
as a well known disease that allows to test the tool in a
real case study and confirm the biological relevance of
the results. This dataset includes 50 microarray samples
from bone marrow of patients of four major leukemia
subtypes (ALL, AML, CLL and CML; described in
Methods) plus non-leukemia controls (NoL), making a
total of 5 distinct classes.

The first result that geNetClassiffier provides is the set
of rank-ordered lists of genes selected for each class,
being the top genes the ones most significantly associated
with each disease (as indicated in Figure 1C). The result-
ing lists of genes-per-disease do not overlap, in this way
the method is optimized to find specific markers of each
compared disease. The number of genes associated to
each disease for a common threshold of significance is
quite different from one class to another (e.g. 799 genes
for ALL but only 213 genes for AML). This observation
seems to indicate that some diseases can affect more
genes than others according to their comparative changes
in the global expression profiles. These sizes do not
represent the absolute number of genes each disease
affects, but rather the genes that are only affected by each
disease in the specific contrast. In any case, this phenom-
enological consideration supports the proposed hypoth-
esis of a gene-disease space, where different diseases
affect different number of genes.

After the classification process the minimun subset of
genes that allow the best class separation were selected:
9 genes for ALL, 5 for AML, 1 for CLL, and 5 for CML
(blue-shaded boxes in Figure 1C; detailed information
about these genes is included in Additional File 1).

External validation and performance of geNetClassifier
Once the classifier for leukemias was built, an external
validation was conducted to evaluate the accuracy and
performance of the algorithm and to confirm the
robustness of the genes selected as markers of the corre-
sponding classes [17].

An external validation consists on querying the classi-
fication system with an independent set of samples
whose class is a priori known. We used a different set
of 200 samples of the same five classes (Figure 2). Sensi-
tivity, specificity, MCC, global accuracy and global call
rate were calculated to evaluate the performance. These
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statistical parameters were estimated in 10 runs of
external validation randomly splitting the available
samples.

The external validation could be performed following
two different approaches: (i) assigning all the samples to
their most likely class or (ii) leaving doubtful samples as
not-assigned. (See Methods).

When the not-assigned option was selected, the exter-
nal validation done with 200 leukemia samples provided
an average of 4 misclassifications per run (shaded region
in Figure 2A). All other samples were either correctly
assigned or left unclassified (not-assigned ), resulting in
an average global accuracy of 98% and average call rate
of 92% (assignment percentage). By contrast, since most
samples that would have been incorrectly assigned had a
probability under the thresholds (red dots in Figure 2A),
the accuracy when all samples were forced to be
assigned to their most likely class was 94.85%.

In overall, the external validation for the leukemias
showed that the best performance (allowing not assign-
ment) was obtained for ALL and CLL (100% sensitivity
and specificity, MCC = 1.0), while nk-AML presented the
lowest values (90.9% sensitivity, 0.94 MCC and 77% call
rate). Difficulties in the identification and classification of
nk-AMLs were already described in a large-scale interna-
tional leukemia study where the rate of misclassification
for this specific subtype was 11.4% [18]. In conclusion, the
classification accuracy rates provided by geNetClassifier
confirms that the genes sets selected for each class can be
good markers of the analysed disease subtypes.

Genes and networks associated to each leukemia subtype
The gene networks produced for each leukemia subtype
are presented in Figure 3. The plots include the top-30
genes selected for each class as characteristic markers of
each leukemia subtype.

Several of these genes have been already reported as
functionally associated to these diseases. For example, in
the case of ALL, the gene VPREBI -that is the first gene in
ALL ranking-encodes a protein that belongs to the immu-
noglobulin superfamily and is expressed selectively at the
early stages of B lymphocytes development (i.e. on the sur-
face of pro-B and early pre-B cells). This gene has already
been proposed as a useful marker for the detection of nor-
mal and malignant human pre-B lymphocytes [19]. Since
all ALL samples included in this study correspond to pre-
B-ALL without t(9;22), the selection of VPREBI seems
quite adequate. Another gene selected to mark ALL is
DNTT. The protein encoded by DNTT is expressed in a
restricted population of normal and malignant pre-B and
pre-T lymphocytes during early differentiation.

In the case of the genes selected for nk-AML, the net-
work shows a cluster of homeobox genes (HOXA4,
HOXAS, HOXA7, HOXA9, HOXA10). The co-expression
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Figure 2 External validation of geNetClassifier using a large dataset of leukemia samples. (A) Assignment of 200 leukemia samples in one
run of external validation. Green dots correspond to samples in which the most likely class is correct and red dots to samples in which it is
incorrect. Samples in the blue background area are assigned to the most likely class; samples under any of the two thresholds (dashed blue
lines) are considered doubtful samples and can be left as “Not-Assigned”. (B) Summary of the results of 10 independent external validations.
Average confusion matrices (in percentage values) and statistical parameters: sensitivity, specificity, MCC, call rate (calculated per class), global
accuracy and global call rate (calculated globally for all the classes). On the right (labelled All Assigned ) the statistics are calculated assigning all
the samples to their most likely class. On the left (With Not-Assigned ) the statistics are calculated leaving doubtful samples unassigned.
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of these genes detected in the dataset reveals that they
are coregulated. MEISI is a transcriptional regulator
also included in the homeobox co-expression cluster
and selected as one of the genes with best discriminant
power for the nk-AML class. Two recent publications
have reported that downregulation of MEISI and HOXA
genes impair proliferation and expansion of acute mye-
loid leukemia cells [20,21]. Moreover, HOXA has a spe-
cific translocation event that has been associated with
myeloid leukemogenesis, and overexpression of HOXA9
has been shown as representitative of nk-AML patients
during first diagnosis and if they suffer relapse [22].
These and other reports support the selection of MEISI
and HOXA9 in the gene network that characterizes
AML with normal karyotype [23]. Another gene related
to AML is ANGPT1, that encodes protein angiopoietin
1. Angiopoietins are proteins with important roles in
vascular development and angiogenesis which have also
been identified as over expressed in bone marrow of
AML patients [24].

Finally, the gene network produced for CML includes
characteristic genes such as PRG3, that encodes for eosi-
nophil major basic protein 2 (MBP2) which is specific of
eosinophil granulocytes, a myeloid cell type. Moreover,
it has been shown that many molecules essential for
tumor cell growth (like polyamines) enter cells via a
proteoglycan-dependent pathway that involves PRG3
[25]. All these published reports do not prove that the
genes included in the networks for each leukemia sub-
type are essential for the development of such diseases.
However, they give important support to the results and
underline the value of the method for creating signifi-
cant gene sets and gene networks associated to specific
disease subtypes.

Application of geNetClassifier to an RNA-Seq dataset

geNetClassifier can be applied to different types of geno-
mic data produced with different platforms. We have
also applied it to an RNA-Seq dataset of acute leukemia
samples [26] from which we selected 45 samples from
patients with two AML subtypes: (i) 11 samples of
patients with t(15;17) chromosomal translocation char-
acteristic of acute promyelocytic leukemia (APL), and
(ii) 34 samples of AML patients with normal karyotype
and no detected FISH abnormalities (nk-AML). APL is
an AML subtype that has good clinical prognosis. Its
sensitivity to all-trans retinoic acid (ATRA) allows an
efficient treatment unique among leukemias. By contrast,
nk-AML is one of the most frequent subtypes of AML
(approx. 50%) and usually has a poor clinical prognosis
due to the lack of an efficient treatment [26]. Out of
these two AML subtypes, nk-AML was also present in
the previous microarray dataset analysed. This allows us
to investigate the performance of the algorithm studying
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a common disease subtype in a different context and
using a different type of expression data.

geNetClassifier was applied to the RNA-Seq dataset of
APLs and nk-AMLs using 8 samples from each class as
training samples and then validated with the rest of the
samples. We repeated this process 10 times randomly
selecting the training samples. The global accuracy
obtained in this analysis was 100% with a call rate of
91.38%. The list of genes most frequently selected for
classification (Figure 4A) included several homeobox
genes (HOXA and HOXB) and MEIS]1, showing agree-
ment with the results obtained for nk-AML in the
microarray analysis. In this way, the expression profiles
from these genes in the RNA-Seq dataset are consistent
with the results obtained with the array dataset, e.g.:
genes HOXA9 and MEISI were down regulated in APL
in comparison to nk-AML (Figure 4D and 4F). In addi-
tion, the network generated for nk-AML selected a set
of homeobox genes that form a highly connected co-ex-
pression cluster (Figure 5). Other genes detected in this
analysis, for example MEG3, showed over-expression in
APL versus nk-AML (Figure 4C). In fact, it has been
reported that MEG3 expression is lost in multiple can-
cer cell lines of various tissue origins and it inhibits
tumor cell proliferation in vitro. The identification of
MEG3 as marker over-expressed in the AML subtype
with better prognosis (i.e. APL) provides support to the
selection of this gene as a discriminant feature between
APL and nk-AML.

Finally, to have a better estimation of the global agree-
ment provided by the algorithm in the analysis of the genes
assigned to a given disease subtype, we analysed the total
overlapping of the genes selected for nk-AML in the arrays
dataset and the RNA-Seq dataset. Both platforms included
a common set of 16,611 human protein-coding genes.
Within this set, the number of significant genes selected for
nk-AML were 202 (using posterior probability > 0.95). The
RNA-Seq results included 95 of these genes (considering
the 10 runs indicated above), and 76 of them were selected
in more than three runs. An overlap of 95 genes corre-
sponds to an odds ratio of 3.27 and to an enrichment
p-value < 0.000001 (using hypergeometric test). Therefore,
it can be said that the consistency of the method to select
genes that mark a specific disease subtype is high.

Comparison of geNetClassifier with other methods

Finally, we have evaluated the performance of geNet-
Classifier relative to other gene selection and classifica-
tion methodologies. We compared geNetClassifier with
four machine learning methods for feature selection using
CMA package [27], which provides a comprehensive collec-
tion of various microarray-based classification algorithms
(see Additional File 2). We have also evaluated the classifi-
cation procedure of geNetClassifier using svb-IMPROVER
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contest platform [28], which includes a Diagnostic Signa-
ture Challenge with several datasets to assess and verify
computational approaches that classify clinical samples
based on transcriptomics data (see Additional File 3). In
both cases, the performance of geNetClassifier algorithm is
within the best methods. However, it should be noted that
we could only compare the classification and gene selection
procedures. The other features included in our package
could not be found integrated in other methods.

Conclusions
Biological annotation of the genes selected and the net-
works built to mark and separate different pathological
states confirm the value of using geNetClassifier to ana-
lyse multiple disease subtypes based on genome-wide
expression profiles. The tool is provided open access in
Bioconductor to facilitate the type of studies illustrated in
this report.

As a general conclusion, the results using geNetClassi-
fier showed a robust selection of gene markers for char-
acterizing disease subtypes and allowed the construction

of specific and weighted gene networks associated to
each disease subtype. The method can be applied to
data derived from different types of technologies (such
as microarrays or RNA-Seq) and it is designed to ana-
lyse datasets with multiple categories of samples.

Methods

Implementation and availability

geNetClassifier has been developed as an R package follow-
ing Bioconductor (BioC) standards and technical requisites
(www.bioconductor.org). It has attained BioC package
submission process and package guidelines to be included
in BioC software release. It is freely available, open source
and open access. The package includes help pages with
usage examples for each specific function. Together with
the package, we have written a vignette including a
detailed tutorial to use the algorithm (Additional File 4).

Microarray dataset
The microarray leukemia dataset is a subset of 250 sam-
ples collected from the Microarray Innovations in
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Figure 5 Gene network obtained for AML with the RNA-seq
dataset. The network contains the top-30 ranked genes selected
after running geNetClasifier to analyse the RNA-Seq expression data
of normal karyoptype AML (nk-AML) versus AML with t(15;17) (APL)
samples. The network shows two clear clusters: one including genes
that are up-regulated in nk-AML and another with down-regulated
genes. The red cluster includes many homeobox (HOX) genes
highly correlated. These genes are characteristic of nk-AMLs and
show good agreement with the results obtained with microarrays in
spite of being two totally independent datasets.

Leukemia (MILE) study [18] available at Gene Expres-
sion Omnibus database (www.ncbi.nlm.nih.gov/geo/)
under series accession number GSE13159. The genome-
wide expression signal corresponding to these samples
was measured using Affymetrix Human Genome U133
Plus 2.0 microarrays. The samples correspond to mono-
nuclear cells isolated by Ficoll density centrifugation
from bone marrow of untreated patients with: (1) Acute
Lymphoblastic Leukemia (ALL) subtype childhood or
precursor B-cell (c-ALL/pre-B-ALL) without transloca-
tion t(9;22); (2) Acute Myeloid Leukemia (AML) subtype
normal karyotype (nk); (3) Chronic Lymphocytic Leuke-
mia (CLL) subtype B-cell ; (4) Chronic Myeloid Leuke-
mia (CML); (5) Non-leukemia and healthy bone marrow
(NoL).

The microarrays were normalized using the algorithm
Robust Multi-Array Average (RMA) [29] and applying a
gene-centric redefinition of the probes from the Affyme-
trix arrays to Ensembl genes (Ensembl IDs ENSG). This
alternative Chip Definition File (CDF) with complete
unambiguous mapping of microarray probes to genes is
available at GATExplorer (http://bioinfow.dep.usal.es/
xgate/) [30].

RNA-Seq dataset
The leukemia dataset analysed with RNA-sequencing
corresponds to a subset of samples collected by the
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Cancer Genome Atlas (TCGA) [26] available at the
TCGA data portal (https://tcga-data.nci.nih.gov/). These
RNA-Seq data correspond to samples obtained from
bone marrow aspirate of patients with AMLs of de novo
diagnosis. Out of the available samples in TCGA, we
selected 45 samples of the following subtypes: (1) AML
patients with translocation t(15;17) (also called Acute
Promyelocytic Leukemia, APL) (11 samples); and
(2) AML patients with normal karyotype and no
detected FISH abnormalities (nk-AML) (34 samples).
The preprocessed RNA-Seq expression data matrices
containing the reads per kilobase per million mapped
reads (RPKM) were downloaded from the TCGA data
portal and were log2 transformed (log2(RPKM+1)) prior
to be analysed with geNetClassifier.

Statistical methods and algorithm procedures

Gene ranking

To create the gene ranking, geNetClassifier uses the func-
tion emfit, a Parametric Empirical Bayes method,
included in package EBarrays [9]. This method imple-
ments an expectation-maximization (EM) algorithm for
gene expression mixture models, which compares the
patterns of differential expression across multiple condi-
tions and provides a posterior probability. The posterior
probability is calculated for each gene-class pair with a
One-versus-Rest contrast: comparing the samples of one
class versus all the other samples. In this way, the poster-
ior probability represents how much each gene differenti-
ates a class from the other classes (being 1 the best value,
and O the worst). The ranking is built, in a first step, by
ordering the genes decreasingly by their posterior prob-
ability for each class. To resolve ties, the algorithm uses
the value of the difference between the signal expression
mean for each gene in the given class and the mean in
the closest class. In a second step, the ranking procedure
assigns each gene to the class in which it has the best
ranking. As a result of this process, even if a gene is
found associated to several classes during the expression
analysis, it will only be on the ranking of its best class. In
addition, genes that do not show any significant differ-
ence between classes are filtered out before building the
ranking. Finally, the set of genes considered significant in
the ranking of each class is determined by a threshold of
the posterior probability, which by default is set up to be
greater than 0.95.

Classifier

The classifier included in the algorithm is a multi-class
Support Vector Machine (SVM) available in R package
el1071 [11]. This package provides a linear kernel imple-
mentation that allows the classification of multiple classes
by using a One-versus-One (OvO) approach, in which all
the binary classifications are fitted and the correct class is
found based on a voting system.
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Gene selection

The gene selection is done through a wrapper forward
selection scheme based on 8-fold cross-validation. Each
cross-validation iteration starts with the first ranked
gene of each class: it trains a temporary internal classi-
fier with these genes, and evaluates its performance.
One more gene is added in each step to those classes
for which a ‘perfect prediction’ is not achieved (i.e. in
case not all samples are correctly identified). The genes
are taken in order from the gene ranking of each class
until reaching zero error or the maximum number of
genes allowed (determined by the arguments maxGene-
sTrain and continueZeroError ). The error for each of
the classifiers and the number of genes used to con-
struct them are saved. Once the cross-validation loop is
finished, it selects the minimum number of genes per
class which produced the classifier with minimum error.
To achieve the best stability in the number of selected
genes, the cross-validation is repeated with new sam-
plings as many times as indicated by the user (6 times
by default). In each of these iterations, the minor num-
ber of genes that provided the smallest error is selected.
The final selection is done based on the genes selected
in each of the iterations. For each class, the top ranked
genes are selected by taking the ‘highest number’ of
genes selected in the cross-validaton iterations, but
excluding possible ‘outlier numbers’ (i.e. selecting
trimmed values).

Discriminant power

The discriminant power is a parameter calculated based
on the Lagrange coefficients (alpha) of the support
vectors for all the genes selected for the classification.
Since the multi-class SVM algorithm is a One-versus-
One implementation, it produces a set of support vectors
for each binary comparison between classes. For each
gene, the Lagrange coefficients of all the support vectors
for each class are added up to give a value per class
(represented as piled up bars in Figure 1D). The discrimi-
nant power is then calculated as the difference between
the largest value and the closest one (i.e. the distance
marked by two red lines in the plots in Figure 1D).
Assignment conditions

The whole tool geNetClassifier is built considering an
expert decision system approach, because once the classi-
fier is build it keeps open the possibility of ‘do not
assign’ when it is not sure about the class of a query
sample. To make the assignment decision the probabil-
ity to assign a sample to a given class should be at least
double than the random probability, and the difference
with the second most likely class should be higher than
0.8 times the random probability. If these conditions are
not met, the sample is left as Not-Assigned (NA). These
probability thresholds for assignment conditions are set
up by default, but they can be changed by the user.
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Additional material

Additional file 1: Table S1. Table with data and information about the
genes selected by geNetClassifier in the analyses of the leukemia
microarrays dataset (classes: four leukemia subtypes and control class
Nol): Class: The category a gene has been assigned to. Rank: Position of
the gene within the list of genes ranked by significance assigned to a
disease. Posterior probability: Probability value given by the
expectation-maximization algorithm to each gene. This value is used to
establish the ranking. In this result all values were very close to 1 (with
more than 10 significant digits). Ties are further ranked based on the
differential expression. Expression: Difference between the mean
expression of the gene within its class and the mean expression in the
other classes. UP or DOWN indicates whether the gene is overexpressed
or repressed in its class compared to the other classes. Discriminant
Power: Parameter calculated based on the Lagrange coefficients of the
support vectors of the classifier. Represents the weight that the classifier
gives to each gene to differentiate a given class. Redundancy: If TRUE,
the gene has a high correlation or mutual information with other genes
in the list. The threshold to consider a gene redundant can be set
through the arguments (by default: correlations Threshold = 0.8 and
interactions Threshold = 0.5). Chosen for classification: Number of
times the gene was chosen for classification (as part of the minimum
required subset) in the 5 internal cross-validation loops. Rank mean and
rank standard deviation (SD) of the gene in these classifiers. Cross-
validation: Mean and standard deviation of the rank that the gene has
obtained in geNetClassifier's internal cross-validation, including the times
it was not selected for classification.

Additional file 2: Table S2. Comparison of geNetClassifier gene selection
procedure with four other machine learning methods for gene selection
(i.e. feature selection): Limma, F-test, Boosting and Random Forest. The
comparison has been done on the dataset of 250 leukemia samples,
using R/Bioc package CMA that provides a comprehensive collection of
various microarray-based classification algorithms [27].

Additional file 3: File S3. Evaluation of the performance of
geNetClassifier classification procedure in the sbv-IMPROVER contest
platform (https://sbvimprover.com/), which includes a Diagnostic
Signature Challenge to assess and verify computational approaches that
classify clinical samples based on transcriptomics data [28]. The
performance has been evaluated using the dataset from IMPROVER that
includes four classes corresponding to lung cancer subtypes.

Additional file 4: File S4. geNetClassifier vignette including a tutorial with
executable examples and description of all the methods. This vignette is
available in Bioconductor: http://www.bioconductor.org/packages/
release/bioc/vignettes/geNetClassifier/inst/doc/geNetClassifier-vignette.pdf

List of abbreviations used
MCC: Matthews Correlation Coefficient
1(9;22): translocation between chromosomes 9 and 22
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