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Abstract

Background: The epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a
number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell
proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result
in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and
tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the
EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this
paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to
gain insight into the structural changes observed in the target protein upon mutation. We also report two novel
inhibitors identified by combined approach of QSAR model development.

Results: The wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA
analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using
38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds
of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751),
q2(0.9491) and pred_r2(0.9525).

Conclusion: Analysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the
mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against
erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both
wild-type and mutant structure.

Introduction
The epidermal growth factor receptor (EGFR) is a mem-
ber of the ErbB family that is involved in a number of
processes responsible for cancer development and pro-
gression such as angiogenesis, apoptosis, cell proliferation
and metastatic spread [1]. The EGFR family comprises of
four receptors namely, EGFR (ErbB1/HER1), ErbB2
(HER2/neu), ErbB3 (HER3) and ErbB4 (HER4). Various

mechanisms including gene amplification and mutations
result in a disturbed regulatory mechanism of EGFR sig-
nalling [2]. Malfunction in activation of such kinases has
been shown to result in uncontrolled cell growth. The
EGFR TK domain has been identified as suitable target in
cancer therapy and drugs such as erlotinib have been
used for treatment of cancer. However, mutations in the
region of the EGFR gene encoding the tyrosine kinase
(TK) domain causes altered responses to EGFR TK inhi-
bitors (TKI) [2]. In 2004, these mutations were first iden-
tified in patients with non-small cell lung cancer
(NSCLC)[1]. NSCLC of Caucasian origin account for
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15% while NSCLC of Asian ethnicity for 30% of EGFR
mutations. These mutations are known to be associated
with non-smoking status, adenocarcinoma histology and
female gender [3,4].
The most common mutations involve point mutations

in exon 18 and exon 21, insertions or deletions in exon 19,
insertions/duplications and point mutations in exon
20 [5]. Destabilization of equilibrium between the active
and inactive state of EGFR kinase activity toward promot-
ing enzyme activation is a result of these mutations which
in turn causes EGFR to translate into tumor growth and
gives a survival advantage [1,6]. Mutations T790M (gate-
keeper), M766T (C helix), L718A (solvent chanel) and
T854A (activation loop) are most common in erlotinib
resistance [7]. For this study we will be studying a drug-
sensitive second-site EGFR mutation, T854A, which
occurs due to change of Guanine in place of Adenine at
nucleotide 2560 (exon 21)[8]. This non-synonymous single
nucleotide polymorphism (SNP) results in substitution of
Alanine for Threonine at position 854. The T854A residue
is located at the bottom of the ATP binding site on C-lobe
and its side chain is in contact distance of erlotinib or gefi-
tinib. Thus, T854A substitution results in loss of contacts
and binding affinity to these inhibitors.
In silico methodology for drug development is a viable

and good option when compared to conventional drug
development methods. One such in silico method
involves development of quantitative structure activity
relationship (QSAR) which establishes a correlation
between the structure and inhibitory activity of molecular
fragments of interests. 3D-QSAR is a robust technique in
drug design process used to predict the inhibitory activ-
ities of the prospective lead compounds by applying the
knowledge of three-dimensional properties of the lead
compounds through a chemometric approach [9,10]. It
develops models which indicate the synthesis of novel
inhibitors assuming that the receptor binding ability is
related to its inhibitory activity [11,12]. For development
of QSAR model, the binding site of receptor is consid-
ered to be rigid and that the ligand molecules belong to a
set of congeneric series [12]. Molecular fields including
hydrophobic, steric and electrostatic interaction energies
are calculated for the set of compounds. A molecular
field analysis model is generated and evaluated for its
robustness by calculation of statistical parameters.
In this study we performed molecular dynamics simu-

lations on both wild-type (WT) and mutant (T854A)
structures and analysed the structural changes [13-16].
A 3D-QSAR model was developed using 38 thiazolyl-
pyrazoline derivatives reported by Lv et al (2011) against
WT EGFR [17]. This model was then used to screen
ZINC libraries for compounds with high predicted activ-
ity values which can be considered as lead drug candi-
dates against both WT and mutant (T854A). This paper

gives insights to the structural changes brought about
by single nucleotide polymorphism in tyrosine kinase
domain of EGFR. The compounds reported in this study
can be considered for further experimental validation as
potent lead compounds.

Materials and methods
Generation of wild-type and mutant EGFR structures
The crystal structure of WT EGFR was extracted from
Protein Data Bank (PDB) [PDB ID: 4G5J][18]. The
obtained crystal structure was first prepared using Protein
preparation utility of Schrodinger [19-21]. Mutant struc-
ture was generated using Schrodinger Glide software
through Maestro interface. The WT structure of EGFR
was also subject to the identical in silico mutational
method in which the wild-type residue (Threonine) was
mutated to itself (Threonine) to ensure that mutation pro-
cess is uniform for all structures. These structures were
then subject to MD simulations.

Molecular dynamics simulations
The GROMACS package [22,23] was used for carrying
out MD simulations using the same conditions as men-
tioned in previous works of our lab [15,24,25]. Com-
parative analysis of structural deviations in WT and
mutated (T854A) structures of EGFR were carried out
using Gromacs utility tools such as g_rmsf, g_rms,
g_gyrate, g_sas etc.

Principal component analysis
The essential dynamics (ED) method was used for the
computation of eigenvectors and eigenvalues with their
projection along the first two principal components with
the help of a protocol present in the GROMACS software
package [26]. The principal component analysis (PCA) or
ED is a protocol that simplifies the complexity of data
obtained and extracts the important motion in MD that
are significant for the biological function of the protein
[26]. In this evaluation, a covariance matrix was created
from the obtained trajectories once the rotational and
translational movements were removed. The matrix was
then diagonalized to identify a set of eigenvectors and
eigenvalues. The amplitude of eigenvectors and the dis-
placement of atoms along each of these eigenvectors
show the concentrated motions of protein along each
direction and were represented by eigenvalues. This ana-
lysis was performed using g_covar and g_anaeig of GRO-
MACS utility tools.

Selection and presentation of data set for QSAR model
development
The dataset of 45 thiazolyl-pyrazoline derivatives [30]
and the template (Figure 1a) was drawn using Chems-
ketch (ACD/Chemsketch Freeware Version 12.01) These
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compounds were prepared by Vlife Engine module of
Vlife MDS as described previously [9,27-29].

Computation of force field
The 38 thiazolyl-pyrazoline derivatives along with their
pIC50 (negative logarithm of IC50) values (Table S1;
additional file 1) were used for calculation of force field
as described previously [9,27-29].

Building the 3D-QSAR model of thiazolyl-pyrazoline
derived compounds
Sphere exclusion method was applied for division of 38
compounds comprising the dataset into training and test
set. Stepwise forward multiple regression method was uti-
lized using the advanced variable selection and model
building wizard for development of the 3D-QSAR model
with default values. The stepwise forward variable selec-
tion algorithm has been described in previous studies
[9,27,28,31].

Validation of the developed 3D-QSAR model
The integrity of the developed 3D-QSAR model was con-
firmed with the help of different statistical parameters
including squared correlation coefficient (r2), cross vali-
dated squared correlation coefficient (q2), predicted
squared correlation coefficient (pred_r2), F-test and stan-
dard error. The model is said to be robust if it has the fol-
lowing statistical parameters r2 > 0.6, q2 > 0.6 and pred_r2 >
0.5 [32-34]. The F-test is described as the variance observed
by the developed QSAR model divided by the variance due
to the error in the regression. Hence, statistical significance
of the developed model can be explained with high F-test.
The low standard error of Pred_r2se, q2_se and r2_se
showed absolute fitness quality of the model.

Model cross-validation
The developed model was first validated internally and
then externally as described previously [9,27,28,31].

Briefly internal validation was carried out using the
leave-one-out (q2, LOO) method while external valida-
tion involved prediction of inhibitory activity of each
molecule comprising the test set by means of the QSAR
model generated using compounds in the training set.
Y randomisation test was employed for examining the

robustness of the developed models for training sets by
calculation of Z-score as described previously [9,27,28,31].

Prediction of ZINC library using developed 3D-QSAR
model
A natural compound ZINC database containing 0.2 mil-
lion compounds was prepared and used for prediction
of inhibitory activity using the developed 3D-QSAR
model. Compounds with high predicted inhibitory activ-
ity were selected for docking analysis.

Docking of top scoring compounds with EGFR
Docking of the top two compounds with WT and
T854A structures was performed using the Glide mod-
ule of Schrodinger [35,36] as described previously
[13,25,37].

Results and discussion
Structural and functional analysis of EGFR tyrosine kinase
domain upon mutation
Molecular dynamics simulations for WT and mutant
(T854A) EGFR TK protein was performed to gain
insight into the structural and functional behaviour of
the drug resistance associated mutation. We studied
RMSD, RMSF, radius of gyration (Rg), solvent accessible
surface area (SASA) and ED analysis between the WT
and mutant (T854A) EGFR protein. RMSD for the back-
bone of the protein structures were calculated from the
initial structure (Figure 2a). In this figure, till 14ns WT
showed backbone RMSD of ∼0.13 to ∼0.27 nm during
this part of simulations. After 14 ns WT structure
exhibited minimum deviation till the end of simulation

Figure 1 (a) Representation of structure of common template of thiazolyl-pyrazoline compounds. (b) Depiction of aligned set of
molecules and 3D descriptors in cubic grid.
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that is 40 ns with its backbone RMSD ranging from
∼0.14 to ∼0.22 nm, where as mutant structure showed
maximum deviation till the end of simulation resulting
backbone RMSD of ∼0.13 to ∼0.47 nm respectively.
This stable RMSD provided a suitable basis for further
analysis. For determining the effect of mutation on the
behaviour of residues, the RMSF values of WT and
mutant (T854A) structures were calculated (Figure 2b).
The results indicate higher degree of flexibility in
mutant (T854A) in comparison to WT.
Another parameter radius of gyration (Rg) defined as

the mass-weight root mean square distance of collec-
tion of atoms from their common centre of mass was
helpful in giving further insight into the structural
changes due to mutation and the overall dimension of
the protein. Plot of radius of gyration of protein vs.
time is shown in Figure 2c. It can be seen that mutant
(T854A) structure exhibited higher Rg value in com-
parison to WT structure. Variation of SASA for both

WT and mutant (T854A) proteins with respect to time
can be seen in Figure S1(a). WT structure was observed
to have higher value of SASA with time, while mutant
(T854A) showed lower value of SASA. Greater fluctua-
tion in Rg in mutant (T854A) structure suggested struc-
tural alteration in the mutant structure. Since, hydrogen
bonds play an important role in maintaining the stable
conformation of protein, analysis of WT and mutant
(T854A) proteins were performed with respect to time
(Figure S1(b)). The total energy (Figure S1(c)) was
observed to be more or less the same throughout the
simulations for both WT and mutant (T854A).
All these results indicate that mutation (T854A) ren-

dered the protein structure more flexible affecting the
structural and functional behaviour of EGFR TK protein.
This result was further validated by principal component
analysis (PCA) analysis.
Essential dynamics (ED) analysis gives an improved ana-

lysis of dynamical mechanical properties of the protein

Figure 2 Graphs showing (a) RMSD (b) RMSF and (c) Radius of gyration of wild-type (blue) and mutant (T854A) (red) protein.
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system. To further support our MD simulations results,
the large-scale collective motions of the WT and mutant
(T854A) protein using ED analysis were determined. Prin-
cipal components are the eigenvectors of a covariance
matrix. This projection gives the change of particular tra-
jectory along each eigenvector. The range of the corre-
sponding eigenvalues (Figure 3) indicated that the
fluctuation of the protein system was basically restricted
to the first two eigenvectors. The motion of the two pro-
teins in phase space can be shown by the projection of tra-
jectories obtained at 300 K onto the first two principal
components (PC1, PC2) in which we observe clusters of
stable states. Analysis of these plots reveals that the clus-
ters are well defined in WT than mutant (T854A). Also,
mutant (T854A) covers a greater region of phase space
mainly along PC1 plane than WT. It can thus be said that
mutant (T854A) is more flexible than WT at 300 K. The
values for trace of the diagonalized covariance matrix of
the Ca atomic positional fluctuations obtained for WT
protein and mutant (T854A) protein were 7.603 nm2 and
18.3734 nm2 respectively. Trace is the total variance of the

dataset thus again confirming the overall increased flexibil-
ity of mutant than WT at 300 K.
Also it can be seen in Figure 4, T854A mutation causes

change in active site. Since, 854 lies in the contact region
of erlotinib but not close to ATP, this mutation results in
reduced affinity for erlotinib while maintaining its kinase
activity. Substitution of alanine in place of threonine
causes the binding surface to move away from erlotinib
indicating a possible reason for its decreased binding affi-
nity. This mutation causes flexibility in the binding
region of erlotinib while not affecting binding of ATP
thus explaining its acquired resistance and maintained
functionality.

3D QSAR model data selection
A 3D-QSAR model development gives a statistical rela-
tionship between the structures and activity of chemical
compounds by calculation of 3D molecular descriptors
involving steric, electrostatic and hydrophobic points
marked on the 3D spatial grid. The invariable columns
were removed after computing the force field grid
descriptors which resulted in 3163 descriptors from 3268
descriptors, thus removing 105 invariable descriptors. For
development of the QSAR model, pIC50 was chosen as
the dependent variable while the calculated 3D descrip-
tors as independent variable. Division of dataset resulted
in 11 compounds in test set while the rest 27 compounds
in training set. The test set consisted of compounds 6, 9,
12, 28, 29, 32, 36, 37, 40, 44 and 45.

3D-QSAR model development and validation
Stepwise forward (SW) multiple regression (MR)
method was applied for development of 3D-QSAR
model. The descriptors chosen were E_337, S_335,
E_832, E_424, S_151 and E_721 belonging to steric and
electrostatic field energy of interactions with the num-
bers representing their respective spatial grid points. In
this model, no hydrophobic descriptors were selected in
the final model. The 3D QSAR model obtained is:

pIC50 = [0.2989(±0.0020)× E 337] + [3.2763(±0.5560)× S 335]
+[0.1785(±0.0003)× E 832] + [0.4938(±0.0033)× E 424]
−[11.7460(±0.3402)× S 151]− [0.6486(±0.0019)× E 721]

+5.0198

Each descriptor is associated with a numerical coeffi-
cient and its error while the last single numerical value is
the regression coefficient. Internal and external validation
of the developed model was carried out using the LOO
method by calculating statistical parameters and meeting
critical requirements for a model to be robust. The statis-
tical parameters obtained for this model included correla-
tion coefficient r2 (0.9751), cross-validated correlation
coefficient q2 (0.9491), predicted correlation coefficient
pred_r2 (0.9525), low standard error value, r2_se (0.0966),
q2_se (0.1380) andpred_r2_se (0.1282) which confirm the

Figure 3 (a) Projection of the motion of the protein in phase
space along the first two principal eigenvectors of wild-type
(blue) and mutant (T854A) (red) protein structures.
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model to be robust. Along with this, high value of F-test
(130.3822) implied that the developed QSAR model is
99% statistically valid with 1 in 10000 chance of failure.
There are other important statistical parameters such as
Z-scores for r2, q2 and pred_r2 which are also important
for QSAR model validation. Zscore_r2 of 6.7926 implies a
100%area under the normal curve, Zscore_q2 of 4.3671
implies a 99.99% area under the normal curve and Zscor-
e_pred_r2 of 1.6521 implies a 95.0743% area under the
normal curve. These percentages indicate that the
respective scores are near the mean ‘μ’ thus validating
the model’s statistical robustness. A parameter p-value
for each of r2, q2 and pred_r2 was also obtained to be sta-
tistically significant with values 0.0001, 0.0001 and 0.09
respectively.
The robustness of the model can also be validated by

radar and fitness plots. The fitness plot (Figure 5a) shows
the extent of variation between the actual and predicted
inhibitory activities of the thiazolyl-pyrazoline derived
compounds. The radar plots (Figure S2 (a,b); Additional
file 1) express the quality of the 3D-QSAR model by the
extent of overlap between the actual value (blue) and pre-
dicted activity (red) lines. The contribution plot for each
descriptor (Figure S2(c); additional file 1) specifies contri-
bution of the properties that should be present in the
lead compound for improving its inhibitory activity.
Descriptors with positive contribution enhance the inhi-
bitory activity of the lead compound whereas those with
negative contribution reduce the same. Positive contribu-
tion for electrostatic descriptor shows a requirement of

electropositive group at the substitution site and an elec-
tronegative group in case of negativeshi contribution.
The grid points E_337, E_832, S_335 and E_424 had

a positive contribution (8.087%, 17.767%, 5.291% and
13.366% respectively) in the developed 3D-QSAR
model against EGFR, while the descriptors S_151 and
E_463 show negative contribution of 24.048% and
31.442% respectively. The grid points can be seen in
Figure 1b. Steric descriptors represent the class of bulk
descriptors which describe both size and shape of the
molecules and fragments. Thus, positive contribution
of a steric descriptor at specific grid point indicates
the importance of a bulky group at that position. The
value for each descriptor and predicted inhibitory
activity for the dataset is mentioned in Table S2 (addi-
tional file 1).

Figure 4 Change in erlotinib binding site due to T854A mutation.

Figure 5 Graph of observed versus predicted activity for
training and test set.
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The second class of descriptors, electrostatic descriptors
give the importance of electronegative and electropositive
groups at a particular site. Electrostatic descriptors with
positive contribution imply the significance of presence of
electropositive groups while those with negative contribu-
tion signify the importance of presence of electronegative
groups.

Activity prediction of ZINC libraries using developed
3D-QSAR model
A total of 0.2 million natural compounds from ZINC
library were screened and the highest predicted activity
was observed to be 13.436 with 195 compounds having
predicted activity above 8 and extrapolation between -1
and 1. We report the top two compounds with highest
predicted activity. The first compound 7-hydroxy-3-(4-
methoxyphenyl)-8-[(4-methylpiperazin-1-yl)methyl]-4H-
chromen-4-one [ZINC ID: 20391511] (HCO) had a
predicted activity (pIC50) of 13.44 while the second com-
pound N-(2-(1H-indol-3-yl)ethyl)-2-((8-oxo-8H-benzo[c]
indolo[3,2,1-ij][1, 5]naphthyridin-12-yl)oxy)propanamide
[ZINC ID: 08792354] (NOP) possessed a predicted activ-
ity value of 11.92 (Figure 6). The QSAR model generated
was also used to predict the inhibitory activity of a sec-
ond generation drug, BIBW2992, as reported by Bean et
al as a positive control [8]. It was observed that HCO and
NOP possessed better predicted inhibitory activity than
BIBW2992 (4.3). Values of top 10 ZINC compounds with
their predicted activity can be seen in Table 1.

Docking analysis of HCO and NOP to both WT and T854A
structures
Both compounds (HCO and NOP) with highest pre-
dicted inhibitory activity against WT were docked with

WT and T854A structures. The first compound HCO
showed a binding affinity of -13.025 kJ/mol with WT
while showing a better binding affinity of -16.485 kJ/mol
with T854A structure. The second compound NOP also
showed a better binding affinity to T854A (-8.598 kJ/mol)
than WT (-8.037 kJ/mol). The results are summarised in
table 2. Thus these compounds can be considered as lead
compounds against both WT and T854A structures.

Conclusion
In the present study, we performed molecular dynamics
simulations on both wild-type (WT) and mutant
(T854A) structures of EGFR to analyse the structural
changes brought about by missense SNP resulting in
T854A mutation. A 3D-QSAR model was developed
using 38 thiazolyl-pyrazoline derivatives against WT
which was then used to screen ZINC libraries by predict-
ing their inhibitory activity (pIC50). The top two com-
pounds were docked against WT and T854A structures.
These compounds can be considered as lead drug candi-
dates against both WT and mutant (T854A). The results
indicate stability loss observed in RMSD, RMSF, Rg and
SASA analysis. Thus it can be said that WT structure
becomes more flexible upon mutation (T854A) which
brings about changes in the binding site of erlotinib thus
reducing its binding affinity and rendering the mutated
protein to become drug resistant while maintaining its
functionality. This was further supported by results
obtained in PCA analysis. This generates the need to
develop drugs that inhibit both WT and mutant proteins.
We report two novel compounds (HCO and NOP) which

Figure 6 Structure of top (a) HCO and (b) NOP.

Table 2. Binding affinity of HCO and NOP with WT and
T854A mutant structures

Compound Score (kJ/mol)

WT T854A

HCO -13.025 -16.485

NOP -8.037 -8.598

Table 1. Predicted activity value (pIC50) of top ten ZINC
compounds

S.No. ZINC ID Predicted Activity Extrapolation

1 ZINC20391511 13.436 -0.22

2 ZINC08792354 11.92 0.104

3 ZINC34105774 11.075 0.232

4 ZINC12892580 9.957 -0.373

5 ZINC11865797 9.883 0.314

6 ZINC68604752 9.68 -0.364

7 ZINC08877152 9.513 0.34

8 ZINC70700724 9.295 -0.051

9 ZINC33832195 9.142 -0.462

10 ZINC41669357 8.92 0.342
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have high predicted inhibitory activity against WT and
high binding affinity against both WT and T854A mutant
structure. Since these compounds possess better pre-
dicted inhibitory activity than BIBW2992 a known sec-
ond-generation EGFR inhibitor for T854A change, they
can be considered for further experimental validation as
potent lead compounds. We present a comprehensive
view of the correlation between the structure and inhibi-
tory activity of thiazolyl-pyrazoline derived molecules.
This study advances the use of thiazolyl-pyrazoline moi-
ety as anti-cancer. Results of this study will also prove to
be useful in designing potent anti-tumorals based on
EGFR TK inhibition to further develop drugs against
cancer.

Additional material

Additional file 1: This file includes the following figures and tables.
Figure S1: Graphs showing (a) solvent accessible surface area (SASA) (b)
Hydrogen bonds and (c) Total energy of wild-type (blue) and mutant
(T854A) (red) protein. Figure S2: Depicting radar plots for (a) training set
(b) test set and (c) contribution plot for 3D descriptors. Table S1: Details
of thiazolyl-pyrazoline derived compounds along with their actual activity
value against WT EGFR. Table S2: Values for descriptors and predicted
activity value of thiazolyl-pyrazoline derivatives.
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