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Abstract

Background: It is well known that carcinogenesis is in part dictated by dysregulated transcription events and
signal pathways. Large-scale transcriptional profiling studies in each cancer type have reported aberrant gene
expression associated with cancer development. However, common and specific patterns altered across cancer
types, especially the contribution of transcriptional and post-transcriptional regulators, are rarely explored.

Results: Using transcriptional profiles from matched tumor and normal samples in the Cancer Genome Atlas pan-
cancer dataset, we performed a comprehensive analysis on the altered expression across 9 cancer types, focusing
on transcriptional and post-transcriptional regulators and cancer-related genes. As we expected, the transcription of
cancer-related genes was significantly deregulated in tumor vs. normal across all cancer types. Surprisingly, the
expression of RNA-binding proteins (RBPs), master regulators of post-transcriptional gene expression, was also
significantly changed across most studied cancer types. Although the expression of RBPs was not as strongly
deregulated as cancer-related genes, their direct interaction partners are enriched by cancer-related genes,
suggesting the cascade regulation effect of RBPs. Integrating genetic and epigenetic profiles found that
deregulated RBPs were frequently caused by genetic rather than epigenetic alterations. Furthermore, tissue-specific
genes were under-expressed in tumor vs. normal across all cancer types except prostate cancer.

Conclusions: Dysregulated transcription across cancer types reveals the importance of RBPs in carcinogenesis. The
aberrant expression of RBPs is caused by genetic alterations and spreads their effect to cancer-related genes. In
addition, disruption of tissue-specific genes contributes to the corresponding cancer pathology.

Background
Cancer development is characterized by uncontrolled cell
proliferation, which is in part due to expression alteration
of genes which regulate cell growth and differentiation,
such as the improper over-expression of oncogenes, or
the under-expression or disabling of tumor suppressor
genes [1]. Comparative analysis of expression alterations
between tumor and matched normal samples in each
individual cancer type has identified many transcriptional
and post-transcriptional regulators associated with

carcinogenesis [2-13]. For instance, compared to normal
mucosa, transcription factor (TF) NRF2 was found over-
expressed in head and neck squamous cell carcinoma [2].
Using transcriptional data of 17 adenomas and paired
samples of normal mucosa, the transcription-regulating
network of colorectal adenomas is characterized by
significantly altered expression of over 250 TF genes [13].
Compared to TFs, expression alteration of RNA-binding
proteins (RBPs), master regulators at the post-transcrip-
tional level, was less studied but deregulated transcrip-
tions of several RBPs also have been reported to play a
critical role in human cancers [9-12]. For example, QKI
was frequently down-regulated in lung cancer, and
QKI-5 inhibited the proliferation and transformation of
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lung cancer cells [14]. Transcription profiling analysis of
RBPs uncovered their aberrant function associated with
prostate adenocarcinoma, colon adenocarcinoma, and
breast carcinoma as well [9,12,15]. Additionally, aberrant
expression of microRNAs (miRNAs) and long non-
coding RNAs’ (lncRNAs’) also led to cancer development
[16-20]. However, common and specific patterns altered
across different cancer types, especially the contribution
of transcriptional and post-transcriptional regulators, are
rarely known.
Large-scale genomics projects, such as the Cancer

Genome Atlas (TCGA), provided various omics data for
thousands of tumors with matched normal samples,
including genetic, epigenetic, transcriptomics and proteo-
mics data [21], which gave us a great opportunity to per-
form pan-cancer studies for understanding the common
and specific profiles across multiple cancer types. Recently,
landscapes of somatic mutation, copy number alterations
and oncogenic signatures across major cancer types have
been studied [22-24], as well as microRNA-target interac-
tion and functional proteomics data analysis [25,26].
However, as far as we know, comparative analysis of
expression alterations of transcriptional and post-tran-
scriptional regulators across cancer types has never been
explored.
In this study, we characterized the expression perturba-

tion of TFs, RBPs, lncRNAs, cancer related genes
(allOnco) and other genes on 522 matched tumor and
normal tissue pairs across 9 cancer types. We first ana-
lyzed the differential expression between matched tumor
and normal for each type of gene sets across all studied
cancer types, and compared their amplitude of altera-
tions. Then we integrated genetic and epigenetic data
and protein-protein interaction network (PPI) to explain
the upstream cause and downstream effect of dysregu-
lated transcription. Finally we compared expression
changes of tissue-specific genes with non-specific ones
and investigated the consistent pathway changes across
different cancer types.

Results and discussion
Expression alteration of RBPs contributes to cancer
development
Thousands of differentially expressed genes were
detected in each individual cancer type. The number of
TFs, RBPs, lncRNAs, cancer related genes (allOnco), as
well as other genes whose expressions were significantly
changed was shown in Table 1. As we expected, allOnco
were enriched in the differently expressed genes across
all cancer types (Figure 1, Table 1), which was sup-
ported by many previous reports [27-31]. Mutations in
COSMIC with frameshift, germline and missense muta-
tions were also significantly changed across most cancer
types, while those with large deletions, translocations

and splicing mutations were not (Figure 1, Table 1)
[32,33].
Surprisingly, RBPs were significantly changed in 6 of

the 9 cancer types. Marginal significance was observed
in PRAD (p-value = 0.01) and HNSC (p-value = 0.04),
while highly statistical significance was detected in
COADREAD, LUAD and LUSC (p-value = 3.82e-13,
1e-15 and 4.04e-16 respectively) (Figure 1). Consistent
expression alterations of RBPs across different cancer
types suggested that they play an important role in
carcinogenesis. Compared to RBPs, TFs only showed
marginally significant enrichment in HNSC, possibly
due to the fact that the activity changes of TF are at
the protein level which cannot be reflected at the tran-
scription level (Figure 1). lncRNAs were significantly
depleted across all cancer types (Figure 1), which are
possibly biased because only 264 of 9227 lncRNAs
were included in the standardized mRNA-Seq data in
Firehose (see Materials and Methods). Additionally the
expression level of lncRNAs is especially low compared
to other regulation factors [15].
To further analysis to which extent expression levels

were altered in tumor vs. normal, we compared the
amplitude of alterations between TFs, RBPs, lncRNAs
and allOnco across cancer types. Similar patterns were
observed across all cancer types (Figure 2), where cancer-
related genes changed most and RBPs had the smallest
alterations. Since RBPs and cancer-related genes were
both significantly changed across most cancer types, we
tried to explore the potential relationships between them.
As a result, we found the occurrence of differentially
expressed genes and cancer-related genes in the interact-
ing proteins of the RBP of interest. Among the top
20 RBPs changed mostly in tumor compared to normal
tissue in LUSC, PUF60, DHX36, FIP1L1 and POLR2B
were identified that both differentially expressed genes
and allOnco were enriched in their directly interacting
targets (Figure 3). PUF60, NOP2 and PABPC1 were also
identified in LUAD (Additional file 1). It is known that
PUF60 involved in apoptosis and transcription regulation
and isoform 6 may contribute to tumor progression by
enabling increased MYC expression and greater resis-
tance to apoptosis in tumors than in normal cells [34,35].
Moreover, there were 7 allOnco genes (BARD1, ERG,
FHL2, FUBP1, HSPD1, ID3 and IGF2BP3) that interacted
directly with PUF60 and were also differentially
expressed in both LUAD and LUSC (Figure 3 and Addi-
tional file 1). BARD1 acts as tumor suppressors, and
plays a central role in the control of the cell cycle and
death (apoptosis) and regulates cell division [36-38].
Zhang YQ et al. reported that one isoform of BARD1 was
specifically upregulated in tumors of non-small cell lung
cancer [39]. IGF2BP3, ERG, FUBP1 and FHL2 were also
reported being over-expressed/ de-expressed in cancer
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[40-45]. These results revealed that expression alteration
of RBPs might spread their effect to allOnco, which
drives the cancer development.
To explore the upstream regulators that changed the

RBPs expression, we first compared the correlations of
DNA copy number alterations with expression changes
between differentially expressed RBPs and non-differentially
expressed RBPs. The correlation was represented as R2 to
see the extent to which the variation in RBP expression can
be explained by DNA copy number alterations at the RBP

locus. As aforementioned, RBPs were remarkably enriched
in differentially expressed genes in COAD, LUAD and
LUSC. Here the results showed that these differentially
expressed RBPs had a higher R2 than non-differentially
expressed RBPs in all these three cancer types (p-value <
0.05, Wilcoxon rank-sum test; Figure 4A) We also stu-
died the effect of DNA copy number alteration for other
6 studied cancer types and no significance was observed
(Additional file 2). We then analyzed the influence of
DNA methylation on RBP expression alterations using

Table 1. Number and significance of differently expressed genes

CancerType BRCA COADREAD HNSC KIRC LIHC LUAD LUSC PRAD THCA

Diff-Expressed 8556 4139 2226 8210 3385 6422 7981 3133 5727

TF 772 369 233* 667 309 556 704 291 556

RBP 383*** 244*** 102* 303 148 354*** 420*** 144* 192

lncRNA 83 30 14 89 24 46 67 33 54

Other 7352 3522 1890 7175*** 2920 5506 6838 2680 4943

allOnco 1020* 445* 313*** 960*** 429*** 752*** 924*** 385*** 661***

COSMIC 217* 101 77*** 218** 101** 177** 218*** 67 150*

Fshit 55* 29* 17 58** 26* 47* 50* 15 34

Germ 44* 28** 11 40* 22* 38** 39* 14 32*

Missense 86* 42* 26* 81* 40* 71** 77* 25 59*

LDel 18 11 6 20* 9 15 12 1 13

Splic 31 16 10 36* 16 32* 30 8 19

Trans 127 55 48** 131* 53 99 124* 38 88

P < 0.05 *, P < 0.001 **, P < 0.0001 ***

Fshit: frameshift, LDel: large deletions, Trans: translocations, Splic: splicing mutations, and Germ: germline.

Figure 1 Differential expression of different types of genes across cancers. The color represents p-values of enrichment analysis, which
ranges from blue, which corresponds to derichment, to red at enrichment. The p-values that greater than 0.05 are colored as white. Fshit refers
to frameshift, and Germ, LDel, Trans and Splic refers to germline, large deletions, translocations and splicing mutations respectively.
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similar statistical methods, and results showed that DNA
methylation changes were not significantly associated
with RBP expression alterations (Figure 4B, Additional
file 2). These results suggested that the aberrant expres-
sion of RBPs was caused by genetic alterations rather
than epigenetic alterations.

Tissue-specific genes lost function in tumor
It is known that some genes are overexpressed in one or
several tissues [46], and these tissue-specific genes are
highly correlated with tissue-specific diseases [47]. We
sought to better understand the role of tissue-specific
genes in pan-cancer. We investigated the profile of 2570
specific genes for 7 tissues from PaGenBase (Methods and
Materials) [48], and compared their expression in tumor
with that in normal. We observed that tissue-specific
genes were more likely to be significantly changed in their
corresponding cancer type except prostate-specific genes
(Figure 5A). For instance, kidney-specific genes were sig-
nificantly enriched in differentially expressed genes of

KIRC (p-value = 3.47e-5) and lung-specific genes showed
enrichment in differentially expressed genes for both
LUAD and LUSC (p-value = 4.72e-7 and 3.4e-10). How-
ever, prostate-specific genes didn’t show significance in
PRAD, which might be due to the reason that most of the
PRAD data were collected from patients in the late stage.
Furthermore, most tissue-specific genes were under-
expressed in tumor vs. normal across all cancer types
except for PRAD (Figure 5B). These results suggested
tissue-specific genes generally lost their function in cancer
and that defects of tissue-specific genes leads to cancer
pathology.

Functional similarity across different cancer types
Pathways play key roles in genomic studies, and facilitate
the understanding of molecular mechanisms behind spe-
cific cancers [49]. We estimated the similarity of cancer
types not only based on all differentially expressed genes,
but also based on the expression alterations of cancer-
related pathways from KEGG [50,51], including pathways

Figure 2 Comparison of expression alterations between RBPs and other kinds of genes. Each of the 9 plots illustrate the cumulative
distribution function (cdf) of expression change in tumor vs. normal across BRCA, COADREAD, HNSC, KIRC, LIHC, LUAD, LUSC, PRAD and THCA.
The x-axis is the absolute value of log2 transformation of fold change.
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in cancer, cell cycle and the p53 signaling pathway
(Figure 6). As we expected, LUAD and LUSC were clus-
tered together in all kinds of clustering, illustrating their
close relationship. Surprisingly, BRCA, LIHC, LUAD and
LUSC clustered together in the cell cycle pathway,

indicating the cell cycle are disrupted similarly in these
cancer types [52-54]. Meanwhile, HNSC and COAD-
READ were more close to each other in the p53 signaling
pathway, which can be explained by the similar regula-
tion role of p53 on these two types of cancer [55,56].

Figure 3 Network of RBP-target interactions in LUSC. (A) Enrichment level of differentially expressed genes and allOnco in the targets of top
20 RBPs with highest fold change in LUSC. (B) PPI network comprising interactions between RBPs and differentially expressed targets in LUSC.
The RBPs are those in top 20 and both differentially expressed genes and allOnco enriched in their interaction targets. RBPs are color coded as
red, and their target allOnco are color coded as yellow.

Figure 4 Genetic and epigenetic alterations regulating RBPs. For the differentially expressed and other RBPs in COADREAD, LUAD and LUSC,
we estimated the extent to which changes in copy number (A) and methylation (B) could explain the variation in their expression (R2).
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Conclusions
Dysregulated transcription of RBPs plays an important
role in cancer development. The aberrant expression of
RBPs is caused by genetic alterations and spreads their
effect to cancer-related genes. In addition, disruption of
tissue-specific genes contributes to the corresponding
cancer pathology.

Methods and materials
Genetic, epigenetic and transcriptomics data for 9 cancer
types
The mRNA-Seq data of 522 matched tumor and adjacent
normal samples for 9 cancer types, the copy number
alterations, and the DNA methylation data were down-
loaded from Firehose developed by the Broad GDAC
(https://confluence.broadinstitute.org/display/GDAC/
Dashboard-Stddata). The nine cancer types are BRCA
(Breast cancer carcinoma), COADREAD (colon/ rectum
adenocarcinoma), HNSC (head and neck squamous cell
carcinoma), LUAD (lung adenocarcinoma), KIRC (kidney
renal clear cell carcinoma), LIHC (liver hepatocellular
carcinoma), LUSC (lung squamous cell carcinoma),
THCA (thyroid carcinoma) and PRAD (prostate adeno-
carcinoma). There are 111 paired samples for BRCA, 32
for COADREAD, 41 for HNSC, 72 for KIRC, 57 for

LUAD, 59 pairs for THCA and 50 for each type of LUSC,
LIHC and PRAD, respectively.

Different gene sets
1889 TFs were collected from TRANSFAC [57], and 799
experimentally characterized RBPs were obtained from a
recent publication dissecting transcriptional profiles of
RNA-binding protein in cancer [15]. Over 9,000
lncRNAs were downloaded from Genecode [58,59], but
only 264 of these were included in mRNA-Seq data
from the Broad GDAC standardized data packages. A
comprehensive list of 2102 cancer related genes
(allOnco), which is a non-redundant union of 8 studies
[33,60-64], was downloaded from Bushman Lab (http://
www.bushmanlab.org/links/genelists). About 2570 tis-
sue-specific genes were collected from PaGenBase,
which defines genes to be tissue-specific if they are
dominantly expressed in one tissue. There are 145
breast-specific, 364 colon-specific, 480 kidney-specific,
628 liver-specific, 643 lung-specific, 263 prostate-specific
and 227 thyroid-specific genes, respectively [48]. Differ-
ent types of somatic mutations, including frameshift
mutations, germline mutations, missense mutations,
large deletions, splicing mutations and translocations
were collected from COSMIC [32].

Figure 5 Tissue-specific genes lost function in tissue associate cancers. (A) Enrichment p-values of tissue-specific genes in differentially
expressed gene set across studied cancer types. (B) Comparison of expression fold change of tissue-specific genes with other genes expressed
differently across 8 cancer types.
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Statistical evaluation of differential expression
Paired t-test was used to detect differentially expressed
genes between matched tumor and normal tissue pairs.
Bonferroni method was used to adjust p-values for multi-
ple testing. Hypergeometric test was used to evaluate the
enrichment of different types of genes in the set of

differentially expressed genes. All statistical tests in this
study were implemented in R (version 3.0.3) [65].
Cytoscape was used to visualize Protein-protein inter-

action data from PINA2 [66]. Only genes interacting
with the RBP of interest were shown in Figure 3 and
Additional file 1.

Figure 6 Cancer type clustering by expression perturbation pattern of genes involved in different pathways. The four plots present
clustering results by all expressed genes, genes involved in pathways in cancer, cell cycle and p53 signaling pathways respectively. The distance
of two cancer types is measured by correlation of their expression fold change of involved genes.
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Pairwise Spearman correlations were calculated
between the copy number alterations/DNA methylation
alterations and gene expression changes for differentially
and non-differentially expressed RBPs. The statistical
difference of the correlation coefficients were assessed
by Wilcoxon Rank Sum test [67].

Clustering by biological pathways
KEGG pathways are wiring diagrams of molecular inter-
actions, reactions, and relations, and mainly used for bio-
logical interpretation of higher-level systemic functions.
Different cancers may have consistent changes in some
cancer related pathways. To find those pathways similarly
altered across different cancers, we performed hierarchal
clustering under some specific pathways, including cell
cycle, cell proliferation, pathways in cancer and etc. The
distance matrix was calculated by Spearman correlation
coefficient of expression alteration between different
cancer types.

Additional material

Additional file 1: Network of RBP-target interactions in LUAD.
(A) Enrichment level of differentially expressed genes and allOnco in the
targets of top 20 RBPs with highest fold change in LUAD. (B) PPI network
comprising interactions between RBPs and differentially expressed targets
in LUAD. The RBPs are those in top 20 and both differentially expressed
genes and allOnco enriched in their interaction targets. RBPs are color
coded as red, and their target allOnco are color coded as yellow.

Additional file 2: Genetic and epigenetic alterations regulating RBPs. For
the differentially expressed and other RBPs in cancer types of BRAD,
HNSC, KIRC, LIHC, PRAD and THCA, we estimated the extent to which
changes in copy number and methylation could explain the variation in
their expression (R2).
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