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Abstract

Background: The calcium-imaging technique allows us to record movies of brain activity in the antennal lobe of
the fruitfly Drosophila melanogaster, a brain compartment dedicated to information about odors. Signal processing,
e.g. with source separation techniques, can be slow on the large movie datasets.

Method: We have developed an approximate Principal Component Analysis (PCA) for fast dimensionality
reduction. The method samples relevant pixels from the movies, such that PCA can be performed on a smaller
matrix. Utilising a priori knowledge about the nature of the data, we minimise the risk of missing important pixels.

Results: Our method allows for fast approximate computation of PCA with adaptive resolution and running time.
Utilising a priori knowledge about the data enables us to concentrate more biological signals in a small pixel
sample than a general sampling method based on vector norms.

Conclusions: Fast dimensionality reduction with approximate PCA removes a computational bottleneck and leads
to running time improvements for subsequent algorithms. Once in PCA space, we can efficiently perform source
separation, e.g to detect biological signals in the movies or to remove artifacts.

Introduction
The fruitfly Drosophila melanogaster is a model organ-
ism for research on olfaction, the sense of smell.
Calcium-imaging, i.e. microscopy with fluorescent cal-
cium-sensitive dyes as reporters of brain activity, allows
us to answer questions on how information about odors
is processed in the fruitfly’s brain [1].
The datasets we consider are in vivo calcium-imaging

movies recorded from the antennal lobe (AL). Here,
information from the odor receptors on the antennae is
integrated, processed and then relayed to higher-order
brain regions. In the AL, each odor smelled by the fly is
represented as a spatio-temporal pattern of brain activity
(see schematic in Figure 1). The coding units of the AL
are the so-called glomeruli that exhibit differential
responses to odorants. The combined response of all the

ca. 50 glomeruli in a single fruitfly AL forms an odor-
specific pattern [2].
A major objective of biological research in this field is

to map the Drosophila olfactome, i.e. odor representa-
tion and similarity as sensed by Drosophila. Odor
response patterns recorded so far are available in the
DoOR database [3].
In terms of data analysis, our goal is to extract glo-

merular signals and patterns from calcium-imaging
movies. Ideally, we would like to do this in a fast and
memory-efficient way, keeping in mind that the size of
the movies is going to increase further in the future due
to the advent of high-resolution and three-dimensional
2Photon microscopy [4].
Here, we process imaging movies from the Drosophila

AL with Independent Component Analysis (ICA) [5].
Source separation with ICA has proven helpful in the
analysis of brain imaging data [6-8], and can be employed
to “find” glomeruli in calcium-imaging movies, i.e. to
separate their signals from noise and artifacts [7].
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ICA algorithms are typically performed after decorre-
lation and dimensionality reduction with a Principal
Component Analysis (PCA) [9,10], delegating the main
computational load to the PCA pre-processing step
[6,7,11,12]. While PCA is generally feasible from a
computational point of view, the standard approach to
PCA by Singular Value Decomposition (SVD) [13] of
the data matrix scales quadratically with the number
of columns (or rows), and can be slow on the large
movies files.
We thus propose an approximate solution to PCA

that, while being substantially faster than exact PCA,
keeps biological detail intact. Apart from our specific
ICA application, fast dimensionality reduction is also
of general utility for computations on imaging
movies.
How do we achieve a high-quality approximation to

PCA? The observation is that, after processing, we
usually deem only a small fraction of the pixels to be
relevant, while many others do not report a biological
signal. Following a feature selection paradigm [14], we
could, at some computational expense, optimise a
small set of most relevant pixels as input for PCA.

Instead, we propose to quickly select not few but many
pixels (out of many more), and we do so by investing a
small amount of time into computing pixel sampling
probabilities that allow us to pick relevant pixels prefer-
entially. Evaluation of a pixel’s relevance relies on a priori
knowledge about the nature of the biological sources: sig-
nals from neighbouring pixels in the regions of interest,
the glomeruli, are correlated.
We proceed as follows: In the methods section, we

first introduce our notation and summarise prior work.
We then consider a general framework for approximate
SVD and modify it for our approximate PCA that is
explicitly designed for the imaging movies. In the results
section, we provide a technical evaluation with respect
to speed and accuracy of the results, as well as practical
examples for the fast analysis of Drosophila imaging
data with approximate PCA followed by ICA.

Methods
Preliminaries
Notation
PCA [9,10] provides the following low-rank approxima-
tion to a data matrix A based on orthogonal basis

Figure 1 Odor coding. An odor molecule is encoded as a pattern of glomerulus responses in the ALs of the fruitfly brain. The green and yellow glomeruli
remain inactive (not shown), whereas the blue and magenta glomeruli respond to the odor presentations (black bars mark two pulses of 1s each) with
differential strength. Left and right ALs, that receive input from the left and right antennae, are mirror-symmetric and contain the same types of glomeruli.
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vectors, the “lines of closest fit to systems of points in
space” [9], so-called principal components:

Am×n : Ak = Tm×k Sk×n =
k∑

r=1

TIr SrJ (1)

For our purposes, A is the calcium-imaging movie
with m timepoints and n pixels (images flattened into
vectors). Consequently, the rank-k approximation Ak

consists of a matrix T with a temporal interpretation
(distribution of loadings, timeseries) and a matrix S with
a spatial interpretation (principal component images).
Regarding notation, we refer to the jth column of A as
AIj, and denote the element at the intersection of the ith
row and the jth column as Ai, j. When we refer to col-
umn selection from matrix A, we select pixels, or, more
precisely, pixel-timeseries vectors of length m.
Computing PCA and features for PCA
PCA can be computed by a singular value decomposition
(SVD): A = UΣV [13]. SVD is a minimiser of ||A - Ak||Fr,
i.e. the error incurred by a rank-k approximation Ak to
matrix A with respect to the Frobenius norm. When the
data is centered, which we can assume as our algorithms
require one pass over the matrix prior to PCA, the top-k
right singular vectors V correspond to the top-k principal
components [15]. The usual approach is to compute
the SVD with full dimensionality in V , which is then
truncated to the top-k singular vectors with highest sin-
gular values. In contrast, NIPALS-style PCA [16,17] (s.a.
Algorithm 3) computes only the top-k components.
Another approach to PCA is the eigenvalue decomposi-
tion of the covariance matrix [10].
Regarding feature selection for PCA, Jolliffe [18,19] pro-

vided evidence that many variables can be discarded with-
out significantly affecting the results of PCA. Several
methods based on clustering or multiple correlation were
tested in these studies aimed at selecting few non-redun-
dant features in a PCA context. Similar, more recent work
was performed by Mao [20] and Li [21].
A paper on feature selection for PCA by Boutsidis et al.

[14] guarantees an error bound for the approximate solu-
tion to PCA based on a subset of the columns of matrix
A. While conceptually related to the randomised frame-
work discussed below, running time is in fact slightly
above that of PCA, the objective being not speedup but
identifying representative columns for data analysis.
Source separation with ICA
On imaging movies, source separation with ICA can be
cast into the same notation as PCA (1). Where PCA
relies on orthogonal, i.e. uncorrelated basis vectors, the
goal of ICA [5] is to find statistically independent basis
vectors, i.e. independent timeseries in T, or independent

images in S. ICA falls into the category of “blind source
separation” (BSS). It tries to unmix signal sources, such
as glomerular signals, artifacts and noise, mostly blind
with respect to the nature of both signals and mixing
process, based solely on a statistical model. The model
assumption behind ICA is that the sources are (approxi-
mately) independent and (for all but one source) non-
Gaussian.
ICA can detect the glomerular sources in calcium-ima-

ging movies [7] and therefore serves as an application
example: it is useful to compute ICA on such movies and
we can solve the unmixing problem much more effi-
ciently if we first perform fast dimensionality reduction
with approximate PCA. We employ one of the most
common ICA algorithms, the fixed-point iteration
fastICA [5,22].

Monte Carlo approximate SVD
Here, we rely on a Monte Carlo-type approximate SVD
proposed by Drineas et al. [23,24]. Randomly selecting c
columns from A into Cm×c, we can achieve an approxi-
mation to the sample covariance of A with an error of
||AAT - CCT||Fr.
In [24], the following relationship between the optimal

rank-k matrix Ak: = SVD(A) and the approximation Hk: =
SVD(C) was shown:

‖ A − HkH
T
k A ‖2Fr ≤

‖ A − Ak ‖2Fr +2
√
k ‖ AAT − CCT ‖Fr

(2)

The error of the approximate SVD of A thus depends
on the optimal rank-k approximation Ak from exact
SVD plus the difference in covariance structure due to
column sampling. The factor 2

√
k reveals that the error

bound is tighter for small k, implicating that, if larger k
are desired, we should attempt to reduce the error
||AAT - CCT||Fr , e.g. by selecting more columns.
The main result of [24] was that, given appropriate

sampling of c columns from A, the expected error with
respect to the Frobenius norm of A is ε:

E
[‖ A − HkHT

k A ‖2Fr
] ≤ ‖ A − Ak ‖2Fr + ε ‖ A ‖2Fr (3)

This result holds for column sampling probabilities pj
that are not uniform, but depend on the euclidean col-
umn norms |AIj|:

pnormj =
| AIj |2
‖ A ‖2Fr

(4)

In particular, the upper bound from (3) holds if we
sample with replacement c ≥ 4k

ε2
columns. This means

that the error ε can be made arbitrarily small by
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sampling a sufficient number of columns c, and we can
compute in advance the c required to achieve the
desired ε.
Following the Monte Carlo framework, we can sample

c pixel-timeseries into C and achieve an upper bound
on the error by approximate SVD with respect to
‖ A ‖2Fr and the approximation of the time × time cov-
ariance AAT.
The upper bound, is, however, not very tight. If we

wish to achieve ε = 0.05 for k = 20, we would need to
sample with replacement 32, 000 pixels, which leads to
considerable speedups on large datasets (≈ 150, 000 pix-
els), but is impractical for the medium-size datasets
(≈ 20, 000 pixels).
The main contribution of the norm-based Monte

Carlo approach is thus to show that the correctness of
SVD/PCA does not collapse under pixel sampling, but
that the error is rather asymptotical and can be
decreased further and further by sampling more pixels.

Covariation sampling
Although this pixel sampling may work well in practice,
the theoretical bound is not very tight. Can we then
more explicitly select biologically relevant pixels so as to
ensure our confidence in the fast approximation?
The intuition is, that, if our pixel sample covers all glo-

meruli, the “biological error” will be small. We thus moti-
vate a biological criterion, covariation between
neighbouring pixel-timeseries, as an importance measure.
The assumption we rely on is about the spatial aspect of
the data, namely that a glomerulus in an imaging movie
covers several adjacent pixels that all report the same sig-
nal (plus noise). This a priori knowledge is also exploited
in the “manual” analysis of imaging movies by visualising
the amount of neighbourhood correlation for each pixel
(see for example Figure 2 in [25]).
Our approach is to compute a small part of the pixels

× pixels covariance matrix exactly, and then to sample
those pixels that contribute much to the norm of this
matrix. We are interested in the local part of the sample
covariance matrix which we denote as L = f (AT A),
f (Xi, j) being defined as follows:

f (Xi,j) = Xi,j if pixels i and j are neighbours, else 0 (5)

The column norms of Ln×n correspond to the amount
of covariation with neighbouring pixels, i.e. if the col-
umn is from within one of the spatially local sources
(glomeruli), the norm is high. Consequently, if we apply
the column norm sampling according to (4) not to the
movie matrix A but to the derived matrix L, we will
more explicitly select columns with biological signal
content.

Departing from the error bound scheme regarding the
norm, we can now estimate in advance the biological
signal content by computing for how much of ||L||Fr
the pixel sample accounts. In the results section we will
see that small pixel samples can explain a large part of
||L||Fr.
In practice, it is more convenient not to construct the

entire matrix L, but to directly compute the column
norms of L on the movie A. Here, the index r enumer-
ates the 8 immediate neighbour pixels of the pixel in
column j, i.e. the pixels (x, y - 1), (x, y + 1), etc. in x/y
coordinates of the (unflattened) images.

| LIj |=
√∑

r

(AIj AIr)
2

(6)

Sampling from L with norm probabilities (4) amounts
to sampling from A with covariation probabilities pcov,

where ‖ L ‖Fr =
√∑

j

∑
r | AIj AIr |2 can be computed

on the fly while computing the column norms.

pcovj =
| LIj |2
‖ L ‖2Fr

(7)

Fast PCA for calcium-imaging movies
We first propose two alternative methods for pixel sam-
pling (Algorithm 1 and 2) which we then utilise to per-
form PCA on a small matrix (Algorithm 3). Sampling
allows for an adaptive resolution without a sharp cutoff
by a threshold.
Pixel sampling
In Algorithm 1, we sample exactly c pixel-timeseries
with replacement from the movie matrix A and scale
them as in the Monte Carlo framework [24]. We employ
norm-based probabilities (4), such that we can make use
of the theoretical upper bounds.
Algorithm 1 Pixel sampling with replacement,

input: movie matrix A Î ℝm×n, number of pixels c, norm
probabilities pnorm = (p0,..., p(n - 1)), output: sample
matrix C Î ℝm×c

for all t Î [1, c] do
pick column j from A with probability pj
C [ , t] := A [ , j] 1/

√
cpj

end for

The above sampling strategy is necessary for the
Monte Carlo scheme to work, however, for the covaria-
tion probabilities (7), the most parsimonious approach is
simply sampling without replacement: Algorithm 2.
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Algorithm 2 Pixel sampling without replacement,
input: movie matrix A Î ℝm×n, number of pixels c, cov-
ariation probabilities pcov = (p0,..., p(n - 1)), output: sam-
ple matrix C Î ℝm×c

R: = {}
for all t Î [1, c] do

sample j ∉ R from A with probability pj
C[, t]: = A[, j]; R: = R ∪ j;

end for

Note that we can generally assume absence of move-
ment, i.e. pixel identity remains the same throughout
the measurement. The AL is a fixed anatomical struc-
ture, and small-scale movement that leads to shaky
recordings can be eliminated by standard image stabili-
sation (as e.g. in [1]).
Computing PCA
We employ NIPALS-style PCA [16,17] for computing the
top-k components. Complexity for NIPALS-style PCA is
O(mnki) for k principal components and i iterations until
convergence of the components. Typically, k and i are
small numbers (i ≈ 5 - 10). In contrast, SVD with a space
and time complexity of O(min(n2m, nm2)) is generally
not efficient. In particular, the number of timepoints m
can still be the smaller dimension after sampling.
Note that Drineas et al. [24] assume that SVD is used

for Hk: = SVD(C), however proofs for the error bounds
do not depend on algorithm structure but rather on the
eigenvalue spectrum.

We have summarised the approach in Algorithm 3.
The first step consists of running Algorithm 1 or 2 in
order to obtain the n × c sample matrix C. To achieve
the PCA decomposition (1), we then sequentially com-
pute the top-k components in T and obtain full-size
images in S by S: = T+ A, where T+ is the generalised
Moore-Penrose pseudoinverse of T.
The approximate PCA requires O(mcki) only for the

timeseries in T and O(mcki + mnk) for both timeseries
and images. On top of that, we need O(n) for precomput-
ing the probabilities. In practice, we also profit from the
redistribution of the computational load, which allows for
greater speedups: unlike sequential PCA computation, the
final matrix multiplication is highly parallelisable.
Algorithm 3 Approximate PCA, input: A Î ℝm×n,

number of samples c, number of components k, output:
T Î ℝm×k , S Î ℝk×n

select c columns from A into C with Algorithm1 or
Algorithm2
//compute NIPALS-style PCA on matrix C
for all l Î [1, k] do
tl := argmax(CIj∈R) ‖ CIj ‖

while not converged do
sl := CTtl/(tTl tl); tl := (Csl)/(sTl sl) ;

end while
C := C − tTl sl; T[ , l] := tl ;
end for

//compute full-size images
S: = T+ A

Figure 2 Probability distributions. a) Image from the Drosophila2D movie, distribution of norm probabilities and distribution of covariation
probabilities. A 5% pixel sample (Algorithm 1 for norms, Algorithm 2 for covariance) is superimposed in black. b) Drosophila3D. For visualisation,
we discretised the continuous z-axis into 9 layers.
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Results
Datasets and pixel selection strategies
Our test datasets are “Drosophila2D” (Figure 2a: left and
right Drosophila AL; light microscopy, staining with
G-CaMP dye, 19, 200 pixels × 1, 440 timepoints), and
“Drosophila3D” (Figure 2b: single Drosophila AL; three-
dimensional 2Photon microscopy, G-CaMP, 147, 456
pixels × 608 timepoints).
Both datasets are concatenations of multiple measure-

ments. In the middle of each measurement (except for
controls), an odor was presented to the fly. A series of
different odors was employed which enables us to tell
apart glomeruli based on their differential response
properties.
In Figure 2, we give also visual examples for the prob-

ability distributions. In contrast to the norms, covariance
probabilities are concentrated on few regions, which can
be sampled very densely even with small c.

Empirical evaluation
As evaluation criteria we rely on the Frobenius norm
error ||A - TS||Fr = ||A - Ak||Fr as a standard measure
for low-rank approximation, and on the biologically
motivated covariation energy, the amount of local covar-
iation accounted for by the pixel sample (unique column
indices in R):

(
Rc∑
t=R1

| LIt |2)/ ‖ L ‖2Fr (8)

Results are presented in Figure 3. As baselines, we
give results from exact NIPALS-style PCA and approxi-
mate PCA with uniform pixel sampling. All algorithms
were implemented in Java, using the Parallel Colt library
[26].
Already small samples lead to low additional error

with respect to the Frobenius norm. E.g., on the Droso-
phila2D dataset, exact PCA achieves a Frobenius norm
error of 73, 754.64 for a rank-k = 30 approximation,
where ||A||Fr = 117, 668.99. In comparison, covariation
sampling with Algorithm 2 achieves a Frobenius norm
error of 75, 187.93 based on only 1% of the pixels.
Both, norm error and covariation energy, reach about

the level of accuracy of exact PCA already with sample
sizes of between 10% to 15% of the pixels, whereas time
consumption grows only slowly (Figure 3). Generally, sam-
pling based on norms or covariation is superior to uniform
pixel sampling, and the covariation sampling with Algo-
rithm 2 accumulates more covariation energy in smaller
samples than the other strategies. Error bars for Algorithm
1 and 2 are small, indicating that results are reproducible
despite of the randomised techniques.
How many pixels do we need to sample? While our

empirical measurements suggest that between 10% to

15% of the pixels are sufficient, even smaller samples of
about 1% of the pixels give good results in practice, the
error being already much lower than the expected upper
bounds. As a “safe” strategy we suggest to sample pixels
with Algorithm 2 until the cumulated covariation energy
exceeds a threshold, e.g. 0.95 (straight line in Figure 3).
To give a visual impression of how the technical qual-

ity measures translate into image quality, we compare
principal component images in S that were computed
with exact and approximate PCA (Figure 4). Both span
approximately the same space, however, due to the dif-
ferent input matrices, there is not necessarily a one-to-
one correspondence.

Application example: ICA
Recall that both PCA and ICA result in a decomposition
of the form Ak = T PCA SPCA, or Ak = T ICA SICA, respec-
tively. As input for ICA, we can either take the principal
component images in SPCA or the principal component
timeseries in matrix TPCA.
In Figure 5a we give an example for temporal ICA on

principal component timeseries (Drosophila2D data,
covariation probabilities, c = 0.15n). Here, the highest
(black) coefficients in the image SICA1J indicate the posi-
tions of a glomerulus pair, the same type of glomerulus
in the left and right AL. Both AL halves are mirror-sym-
metric and each contain a full set of glomeruli. Judging
from their positions, the two glomeruli are very likely a
pair, i.e. both receive input from the same types of
receptor neurons and therefore have equal (plus noise)
response properties.
Taking into account the corresponding timeseries in

TICA
I1 (Figure 5b), we can assume that we indeed have

found glomeruli and not some other pair of objects: we
see a double response to the double odor stimulation,
where a response is a sharp increase in fluorescence, fol-
lowed by a decline below baseline.
For comparison, we extracted (by thresholding) posi-

tions of all black pixels in SICA1J and computed their
mean timeseries on the raw movie A, i.e. the raw signal
of the glomerulus pair: Figure 5c. Here, we can see that
the movie consists of a concatenation of measurements
that each exhibit a strong trend: the dye bleaches due to
measurement light, an artifact which is absent in the
ICA component.
As another example, we have applied spatial ICA,

working on SPCA as input. This can be helpful to find
glomerulus positions in order to construct a glomerulus
map [7]. In Figure 6, we show all independent compo-
nent images from SICA that “contain” glomeruli. Note
that the sign is arbitrary in an ICA decomposition [5],
i.e. glomeruli can appear black on white or vice versa.
Based on approximate PCA we can detect all but one
(marked with a star) component already with a 1% pixel

Strauch and Galizia BMC Medical Informatics and Decision Making 2012, 12(Suppl 1):S2
http://www.biomedcentral.com/1472-6947/12/S1/S2

Page 6 of 10



Figure 3 Performance. Means and standard deviations for time and error measures (10 repetitions) for exact and approximate PCA. Number of
pixels c is given in % of the total number n. Running times (Intel Core Duo T6400, 2GHz) are for the entire Algorithm 3, including computation
of probabilities. All measurements are for rank-k = 30 approximations, as we found that 20-30 components are typically sufficient to detect all
glomeruli. Lower principal components only explain more of the noise (see also Figure 4).
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sample, whereas with a 15% sample we can also recover
the missing component.
Here, we have regarded the spatial and temporal

aspect of the data separately leading e.g. to spatial com-
ponents that are not entirely local (Figure 5a). For future
applications, it might be helpful to consider a spatio-
temporal criterion [11,12] that balances between spatial
and temporal independence of the sources.

Conclusions
We have shown that source separation can, in principle,
detect glomerulus positions and remove artifacts in Dro-
sophila imaging movies. Many source separation algo-
rithms exist that optimise different criteria and it
remains subject to further research which method is
most robust for a particular data type.
Here, we have concentrated on finding a fast approxi-

mate solution to PCA that reduces data size prior to
source separation. Delegating the main computational

load to the preprocessing with fast PCA allows any
source separation algorithm to scale up easily with the
growing data sizes in imaging. A further promising area
of application is, with due modifications, online analysis
such that denoised movies are available already during
the course of the experiment.
Our strategy for fast approximate PCA relies on simple

precomputations that can be performed in a single pass
over the data. Based on a priori knowledge and the infor-
mation gathered in this step, we can sample pixels from
the movie in order to perform exact PCA much more
efficiently on a smaller matrix. Sampling with norm
probabilities gives rise to an upper bound for the
expected error. Sampling with covariation probabilities,
we can ensure a high-quality approximation by requiring
a high amount of covariation energy in the sample.
Our empirical results show that small pixel samples

reliably lead to approximations with low error. It
remains as an interesting question for further research,

Figure 4 Example for PCA. Top principal components computed by exact PCA and approximate PCA with covariation probabilities (1% pixel
sample).

Figure 5 Example for temporal ICA. Performing ICA on the principal component timeseries matrix TPCA. a) above: spatial component SICA1J

that contains a glomerulus pair (black pixels); below: image from raw movie, indicating the shapes of the left and right ALs. b) Timeseries

component TICA
I1 (that corresponds to SICA1J ) on a 200-timepoints interval including a double odor presentation (marked by the bars). c) For

comparison, we show the mean timeseries for the glomerulus pair on the raw movie A.
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whether it is possible to translate these results into the-
ory, e.g. by proving tight error bounds that incorporate
the a priori knowledge.
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