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Abstract

Background: Systems biology calls for studying system-level properties of genes and proteins rather than their
individual chemical/biological properties, regarding the bio-molecules as system components. By characterizing
how critical the components are to the system and classifying them accordingly, we can study the underlying
complex mechanisms, facilitating researches in drug target selection, metabolic engineering, complex disease, etc.
Up to date, most studies aiming at this goal are confined to the topology-based or flux-analysis approaches.
However, proteins have tertiary structures and specific functions, especially in metabolic systems. Thus topological
properties such as connectivity, path length, etc, are not good surrogates for protein properties. Also, the manner
of individual sensitivity analysis in most flux-analysis approaches cannot reveal the simultaneous impacts on
collateral components as well as the overall impact on the system, thus lacking in system-level perspective.

Results: In the present work, we developed a method to directly assess protein system-level properties based on
system dynamics and in silico knockouts, regarding to the conceptual term “criticality”. Applying the method to £
coli central carbon metabolic system, we found that multiple enzymes including phosphoglycerate kinase, enolase,
transketolase-b, etc, had critical roles in the system in terms of both system states and dynamical stability. In
contrast, another set of enzymes including glucose-6-phosphate isomerise, pyruvate kinase, phosphoglucomutase,
etc, exerted very little influences when deleted. The finding is consistent with experimental characterization of
metabolic essentiality and other studies on E. coli gene essentiality and functions. We also found that enzymes
could affect distant metabolites or enzymes even greater than a close neighbour and asymmetry in system-level
properties of enzymes catalyzing alternative pathways could give rise to local flux compensation.

Conclusions: Our method creates a different angle for evaluating protein criticality to a biological system from the
conventional methodologies. Moreover, the method leads to consistent results with experimental references,
showing its efficiency in studying protein system-level properties. Besides working on metabolic systems, the
application of the method can be extended to other kinds of bio-systems to reveal the constitutive/functional
properties of system building blocks.

Background components. By exploring their interplay structure in
Systems biology focuses on studying properties of bio-  the system, we can evaluate how critical a building
molecules like genes and proteins at the system level, block is and how different parts vary in properties [1,2].
especially their constitutive/functional roles as system Based on such knowledge, we can understand how a

system is formed, how the system-level function is
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coli is the best-studied organism, with knowledge accu-
mulated in each of its biological hierarchies, e.g. genetic
regulation, genomic information, metabolism, etc [5-7].
The central carbon metabolism contains glycolysis and
pentose phosphate pathways as principal parts (Addi-
tional file 1). It is the most common and conservative
pathway among prokaryotes, with close resemblance in
eukaryotes [5,7,8].

Up to date, multiple genome-scale networks have been
built on the organism with regard to the pathway to
reveal essentiality of genes and proteins [9,10]. However,
most of such studies are based on network topology or
flux analysis. In topology-based approaches, system-level
properties are defined as the connectivity of a molecule
or shortest path lengths, etc [11,12]. Such properties
usually have poor consistency with experimental charac-
terizations, especially on the protein level. For example,
multiple studies suggest that proteins with large connec-
tivity in protein-protein interaction networks are not
essential. Also, many enzymes associated with large
number of accompanies exert very little influence on
cell growth [6,13,14]. We think the possible reason is
that mere topology does not encode specific biochem-
ical/biological functions of proteins, whereas topology-
based approaches purely regard the bio-molecules as
vertices in an abstract graph. While in flux-analysis
approaches (e.g. flux balance analysis - FBA; metabolic
control analysis - MCA), they calculate the extent of
how a perturbation on a system parameter influences a
specific, pre-defined system objective. Although such
individual sensitivity analyses give a quantitative mea-
sure of a component’s control on a functional pathway,
they cannot reveal the simultaneous impacts on other
parts of the system and the overall system. In other
words, besides the pre-defined objective in interest, we
will not know if a perturbation triggers collateral influ-
ences on other parts of the system and what it impli-
cates to the overall system. The lack in system-level
perspective possibly gives rise to false positive results,
because a simulated perturbation favouring an objective
may not be actually carried out as we do not know if it
has lethal impacts on collateral but crucial components
in the system.

Under such consideration, we developed a new
method to characterize protein criticality based on
kinetic systems, which can accurately reflect system
behaviours and has explicit context on the biophysical/
biochemical basis [5,15]. Because E. coli central carbon
metabolism is the only system with comprehensive
kinetic data, we used it as our model. The system com-
ponents (bio-molecules) were the enzymes, and we
defined the criticality of a component by its in silico
knockout. We explored how the deletion of an enzyme
influenced the system state, i.e. whether state
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fluctuations were restricted in a limited area or spread
throughout a broader range; and how large their ampli-
tudes were. Moreover, we investigated the dynamical
stability of the residual system to see whether the sys-
tem maintained or lost metabolic robustness after
removing the enzyme (Figure 1). From these computa-
tions, we characterized the criticality of proteins and our
results were consistent with published experiments.
Furthermore, our method may create a new viewpoint
for protein system-level property characterization, which
differs from conventional methodologies and is more
comprehensive for analyzing complex systems.

Results

We computed the criticality for all enzymes in the sys-
tem, and observed that they can be categorized into two
classes: those with critical properties and those with
uncritical properties. An enzyme is characterized as cri-
tical if its deletion caused large influences on system
states and qualitative changes to system dynamical
stability.

System state fluctuation

We first simulated the system to obtain metabolite
kinetics and flux distributions under normal conditions.
Next, we carried out in silico enzyme knockouts by
modifying the corresponding parameters and re-simulat-
ing the system. Following the definition in previous stu-
dies, we regarded concentrations as the primary system
state [6,16]. We calculated state deviations of the modi-
fied system and computed the fluctuation amplitude of
each metabolite upon the enzyme’s removal. Here we
encoded them with a vector f. Second, we assessed the
impact area by calculating the distances of metabolites
from the removed enzyme and encoded them with a
vector d. This allowed us to see whether the influence
was within a limited radius or propagated to distant
parts of the system. In short, we used a vector pair U =
(d.f) to represent system state fluctuation, and we could
quantify the overall impact with a measurement formula
(see section “Methods” for details). All results here were
summarized in Additional file 2.

We discovered that many enzymes could exert (upon
deletion) large influences on the kinetics of many
metabolites, i.e. caused large system state fluctuations
if deleted. For example, transketolase-b (TKb), an
enzyme catalyzing a coupling branch of the glycolysis
and the pentose phosphate pathways, had relatively
large influences on many metabolites in the central
carbon metabolism, especially for glucose, sedoheptu-
lose-7-phosphate, and erythrose-4-phosphate (Figure
2A). Phosphoglycerate kinase (PGK), the enzyme cata-
lyzing the conversion between 1,3-diphosphoglycerate
and 3-phosphoglycerate on a linear branch in the
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Figure 1 Schematic illustration of the protein criticality characterization method. System components may exert different impacts when
perturbed. Color gradient corresponds to amplitudes, with empty color representing zero effect. (A) Circumstance that the impact is within a
limited area near the epicenter (i.e. the perturbed component, marked as “1"). (B) Circumstance that the impact spreads throughout the network,
with many distant spots severely affected (marked as “2"). (C) A stable equilibrium (X,,) attracts its neighboring trajectories. (D) An unstable
equilibrium repels the trajectories. Stable equilibriums may collapse due to perturbations on critical system components. Components whose
perturbations exert large impacts, or cause qualitative changes in system dynamics (upon perturbation) are regarded as critical.

perturbation /—\%e of X,

glycolysis pathway, exerted even greater impacts on
these metabolites as well as other ones throughout the
system such as glucose-6-phosphate, fructose-6-phos-
phate, glyceraldehydes-3-phosphate, ribulose-5-phos-
phate, etc. Moreover, it could also exert large impact
on oxaloacetate, an intermediate in the tricarboxylic

acid (TCA) cycle, as well as on polysaccharide synth-
esis, an external pathway connected with central car-
bon metabolism (Figure 2B). Similarly, enzymes at
other locations such as enolase (ENO), glyceralde-
hydes-3-phosphate dehydrogenase (GAPDH), ribose-5-
phosphate isomerase (R5PI), aldolase (ALDO),
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Figure 2 System state fluctuations caused by enzyme deletions. The impacts of enzyme deletions on system states are shown. In all
subfigures, x-axis: state variable (metabolite) indexes (denoted as “Metab”, see Additional file 6 for details); y-axis: distance of state variable from
the deleted enzyme ('Dist"); z-axis: the impact amplitude ("Amp”"). (A - D) The influences of TKb, PGK, TIS, and PGl deletions on system state,
respectively. The figures exemplify that an enzyme can affect distant metabolites even greater than its closest neighbours.
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transaldolase (TA), etc., also exhibited large impacts on
system states (Additional file 2). The overall influences
of PGK, ENO, and GAPDH were superior to those of
ALDO, R5PI, TKb and TA, especially at the distance >
4 and 5 (Figure 2, Additional file 2). This indicated
that enzymes like PGK, ENO and GAPDH could
impact distant areas more strongly and exert a more
persistent impact with respect to system structure.
Noteworthy, triosephosphate isomerase (TIS), which
catalyzed inter-conversions between glyceraldehydes-3-
phosphate and its isomer dihydroxyacetonephosphate,
would be regarded as a peripheral component in the
system by traditional topology-based and flux-analysis
approaches as it was not on any uni-directional or rate
limiting steps. However, our computation results
showed that its deletion also resulted in large impact
(Figure 2C). The difference in prediction was because
our method assumed that the influence exerted by an
enzyme was not only depend its location (network
topology), but also determined by its parametric prop-
erties (kinetic parameters).

Meanwhile, we also found that there were another
group of enzymes, in contrast to those mentioned
above, having very little influences on system states. For
example, multiple enzymes such as glucose-6-phosphate
isomerase (PGI), pyruvate kinase (PK), phosphogluco-
mutase (PGM), etc., only resulted in very small state
fluctuations when deleted. The amplitudes were slight,
and the influences were mostly within limited areas as
the amplitudes were negligible at the distance > 2 (Fig-
ure 2D, Additional file 2). Hence, for system-level prop-
erties so far as system state fluctuation was considered,
the former enzymes were much greater to those in the
latter group.

More interestingly, we found that the most severely
influenced metabolites did not always concentrate in the
close neighborhood of the perturbed enzyme. For exam-
ple, the largest impacts of TKb deletion were at the dis-
tances of 2 and 3 but not at the distance of 1 (Figure
2A). Likewise, the largest impacts of PGK deletion
occurred at the distances of 3 and 4 also not at the dis-
tance of 1 (Figure 2B). Similar patterns were also seen
from the results of other enzymes like ENO, R5PI,
ALDO, GAPDH, TA and PGI (Figure 2, Additional file
2). This suggested that in contrast to the intuition that
perturbation would cause largest changes to its neigh-
borhood, distant effects could occur due to the leverage
of system dynamics.

We also examined the impacts of enzyme knockouts
from the enzyme-centric view with our method. With
each enzyme representing a reaction and using fluxes as
system states, we computed flux change amplitudes and
impact radiuses on the enzyme-centric network in the
same way stated previously. The results showed a
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similar pattern with the results presented here (Addi-
tional file 3).

System dynamical stability

We found that the original system had an asymptotically
stable equilibrium point X, in a large range of ordinary
intracellular concentrations in the parameter/state space,
which made all trajectories in a wide neighborhood
tending to it (Figure 3). This gives rise to metabolic
robustness, as slight perturbations in initial values do
not cause large changes in system states [17,18]. As it is
well in accord with the Lyapunov stability, we could
characterize an enzyme’s criticality by examining the
bifurcations of X, with respect to the deletion of the
enzyme. Such bifurcations included: (1) whether deleting
this enzyme made the residual system have no equili-
brium; (2) if the residual system still had equilibrium(s),
how far its location deviated from X,,; and (3) whether
its stability property changed (i.e. if there are changes in
the neighborhood orbit structure). Equilibrium(s) was
computed by dynamical simulation and optimization
methods. When it was located, its deviation from X,
was calculated and its neighborhood orbit structure was
described by the rules of topological conjugacy (see the
“Methods” section for details). As multiple enzyme dele-
tions might generate topologically identical orbit struc-
tures, we showed several typical cases as examples here.
See Additional file 4 for a complete catalogue of all
results.

After in silico knockout of TKb, the residual system
had large qualitative changes in system dynamics. It
exhibited equilibrium far away from X, with very differ-
ent stability property (Figure 4A-4B). It was an unstable
equilibrium with the trajectory representing sedoheptu-
lose-7-phosphate kinetics being divergent and the two
dimensions representing ribulose-5-phosphate and xylu-
lose-5-phosphate forming a limit cycle when certain
initial values held. By setting different initial values on
the 2-dimensional plane of the limit cycle and investi-
gating the trajectory dynamics, it was seen that the limit
cycle was an unstable one. Trajectories on the plane
inside its range converged to the equilibrium’s projec-
tion on the plane; and trajectories outside its range
spread quickly through both dimensions (Figure 4B).
Likewise, deleting TA caused the system equilibrium to
relocate to a similar distance and it had similar proper-
ties to those in the case of TKb. It was also an unstable
one with one dimension being divergent and another
two dimensions forming an unstable limit cycle. What
differs from TKbD is only that the divergent dimension
was 6-phosphogluconate and the two cycling dimensions
were xylulose-5-phosphate and sedoheptulose-7-phos-
phate. R5PI knockout also made the equilibrium shift a
long distance and reversed its stability. For the
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Figure 3 The asymptotically stable equilibrium point. The stable equilibrium (X.,) is illustrated by trajectories and phase orbits in the 18D
space with 10% perturbations. The red line: the original curve with respect to the experimental initial value [5]; the yellow/blue lines: the curves
whose initial value has a -10%/+10% perturbation from the experimental one; the triangular spots: projections of X., on the corresponding
dimensions. (A) Asymptotical stability shown by trajectories. Each subplot represents a dimension in the 18D space, i.e. the kinetics of a
metabolite. All trajectories eventually and consistently converge to the X, (projection on the corresponding dimension) although a 10%
perturbation is in the initial value. The x-axis: time (s); y-axis: concentration (mM). (B) Asymptotical stability shown by phase orbits. Stability is
more clearly illustrated in such presentation. We randomly chose 2 state variables (metabolites #7 and #8 in the plot) to form the phase orbit in
the 2D subspace. Arrows denote the directions of orbits and they eventually and consistently converge to X4 (projection on the 2D subspace,
marked by the triangular spot). For other 2D subspaces, the orbit profiles are the same.
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Figure 4 Equilibrium deviations and orbit structure changes caused by enzyme deletions. Impacts of enzyme deletions on dynamical
stability are shown in terms of equilibrium deviations and orbit structure changes. The curves are drawn under the principle of topology
conjugacy. They show the qualitative dynamics but they are not real-value trajectories. Lines in different colors represent different curves
initiated at different values (init 1-3). In each subfigure, the 3 dimensions represent the metabolites that differ most from the original kinetics. (A)
The original equilibrium (X), denoted by (0,0,0). Al trajectories converge to it. (B) The unstable equilibrium after deleting TKb. The dimension
sed7p is divergent, (ribubp, xyl5p) form an unstable limit cycle. The 3 colored orbits initiated from different values lead to convergence, limit cycle
and divergence on the 2D plane (ribusp, xyl5p). (A) and (B) are separately drawn in order to show the limit cycle clearly. Orbits are centred at
(0,0,0) to achieve a better visual effect. (C) Deleting R5PI causes a long-distance equilibrium deviation and alters the system stability. The source
and target ends of the grey arrow mark X., and the re-established equilibrium (X;) respectively, with the distance (in the metric unit of the state
space) marked in the box. Initiated from identical values, X, attracts the orbits and Xy repels the orbits along the dimensions fdp and 3pg. (D)
Deleting TIS causes the equilibrium to deviate an even larger distance. Legends are the same. (E) Deleting PGK makes the system have no
equilibrium. The deviation is denoted as infinite (). (F) Deleting PGl does not cause obvious changes in system dynamics. The re-established
equilibrium is also asymptotically stable and it is very near to X,,. See Additional file 6 for abbreviations of metabolite names.
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neighborhood orbits, the divergent dimensions were
fructose-1,6-biphosphate and 3-phosphoglycerate (Figure
4C).
Deleting TIS or ALDO caused the system to re-
establish equilibrium over an extreme distance beyond
the ordinary range (Figure 4D). This indicated that

after such a deletion, if the residual system was run-
ning on its own, it would approach an extreme posi-
tion beyond the regular state space due to its special
dynamics. In other words, the residual system could
not maintain its own regular operating and functional-
ity, thus the deletions of ALDO and R5PI were both
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regarded as having large qualitative influence in system
dynamics.

Moreover, the system had no equilibrium at all after
deleting enzymes such as PGK, ENO or GAPDH (Figure
4E). This meant that the original equilibrium was
destroyed and the residual system could not re-establish
another one. This was because that the residual system
upon the removal of anyone of the three enzymes was
so ill-suited that its trajectories did not exhibit the nor-
mality of well-imposed biological kinetic systems, in
which all trajectories tended to stabilize near some
regions in the state space. This also indicated that the
residual system, if operating on its own, could not effec-
tively maintain its functionality. Hence, the deletions of
PGK, ENO and GAPDH were regarded as having even
larger qualitative influences in system dynamics com-
pared with the previously mentioned enzymes.

In contrast to the above, enzymes like PGI, PK and
PGM again showed a different property. After deleting
anyone of them, the residual system still had an equili-
brium locating very near to X,,. Moreover, this equili-
brium was also asymptotically stable, with all
dimensions converging to it (Figure 4F). Therefore, PGI,
PK or PGM knockout did not qualitatively change the
system dynamics. Hence, for system-level properties so
far as dynamical stability was considered, enzymes like
PGK, ALDO, TKb, etc. were more critical than enzymes
like PGI, PK, and PGM. Based on all above, we could
see that one class of enzymes exemplified by PGK,
ENO, TKb, ALDO, TIS, R5PI, GAPDH, and TA have
critical properties in terms of both impact on system
states and dynamical stability. And the other class of
enzymes exemplified by PGI, PK, and PGM had oppo-
site properties. Therefore, the former class was charac-
terized as “critical” and the latter was “uncritical”.

Comparison with experimental characterizations

We compared our characterizations of system-level
properties with characterizations of essentiality from the
basis of multiple (previous) validated studies. Kim et
al’s work on E. coli metabolism defined a set of essen-
tial metabolites and demonstrated that if the flux-sum
of an essential metabolite reduced by more than 50%,
the cell growth rate would decrease by more than 50%
correspondingly [6]. There were 12 such metabolites in
our working model and we examined their flux-sums by
utilizing the simulation power of the kinetic model with
respect to perturbations (i.e. enzyme deletion). A naive
method was modifying the corresponding enzymatic
parameter to zero and leaving the rest of the system as
they originally were. However, the theory of Minimiza-
tion of Metabolic Adjustment (MOMA) suggested that
when a severe perturbation occurred, the system
adjusted itself to some extent towards a state that was
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close to normal [16]. Since MOMA was accepted as a
rationale, we adopted it in flux simulation upon enzyme
deletions, formulating the computation as an optimiza-
tion problem and solving it numerically (see section
“Methods” for details). We found that the flux-sums of
the essential metabolites were reduced much more than
50% by deleting any of the enzymes that we predicted as
critical (Figure 5A-5C, Additional file 5), thus their dele-
tions would each result in more than 50% reduction in
cell growth according to Kim et al. On the other side,
deleting any of the (predicted) uncritical enzymes did
not cause any of the flux-sums to drop by 50% (Figure
5D-5E, Additional file 5), thus they had relatively mild
effect on cell growth. This indicated that the predicted
critical enzymes had much more weight in functional
essentiality than the uncritical enzymes, which well sup-
ported our characterizations of criticality.

We also compared our results with other E. coli gene
essentiality studies such as the Keio collection, the
genetic footprinting study and the Profiling of E. coli
Chromosome (PEC) database, and our results were sup-
ported by some of the experimental characterizations.
For example, the “critical” enzymes PGK and GAPDH
are encoded by genes pgk and gapA respectively. And
the 2 genes are both characterized as essential by studies
of both the Keio collection and genetic footprinting
[14,19]. ENO is encoded by gene eno and this gene is
also essential, according to the Keio collection and the
PEC database [19,20]. Moreover, the gene fbaA, which
encodes ALDO, is characterized as essential by all the
Keio collection, genetic footprinting and the PEC data-
base [14,19,20]. Furthermore, the “uncritical” enzymes
PGI, PK and PGM are encoded by genes pgi, pykF and
pgm respectively, and the 3 genes are all characterized
as nonessential by all the Keio collection, genetic foot-
printing and the PEC database [14,19,20]. Such compari-
sons showed that our predictions were consistent with
experimental results (Table 1). In addition, ribulose-5-
phosphate epimerase (Ru5P) is encoded by gene rpe.
However, this gene is characterized as essential by
genetic footprinting but nonessential by the Keio collec-
tion and PEC database. Given that Ru5P is critical to
the central carbon metabolic system as revealed by our
method and verified by the flux-sums of essential meta-
bolites (earlier context), we propose from the viewpoint
of criticality that gene rpe might be essential.

Discussion

Studying system-level properties of bio-molecules is
essential to systems biology [1,2]. But most studies are
based on either network topology that is not working
very well at the protein level, or flux analysis that lacks
in system level perspective [13,14,21]. To overcome
such drawbacks, we propose a method of criticality
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Figure 5 The flux-sums of essential metabolites before and after enzyme deletions. The flux-sum values of the 12 essential metabolites
before and after enzyme knockout are shown. The x-axis: metabolites; y-axis: the flux-sum values. The blue bars: the flux-sum values in the
original system; the red bars: the flux-sum values in the system after enzyme knockout. (A - C) Flux-sums of the essential metabolites upon the
knockouts of TKb, PGK and TIS respectively. All metabolites suffer devastating flux reductions. (D - E) Flux-sums of the essential metabolites upon
the knockouts of PGl and PGM respectively. All metabolites’ flux-sums can be sustained at a high level compared with the original values. The
observations support our conclusion that the former enzymes are more critical than the latter ones. See Additional file 6 for abbreviations of
metabolites.

Table 1 Comparison with multiple E. coli gene essentiality studies

Protein Gene Criticality Flux-sum Keio collection Genetic footprinting PEC database
PGK pgk Critical \J \J N

GAPDH gapA Critical \ V v

ENO eno Critical N N, N,

ALDO fbaA Critical Vv Vv v v

PG pgi Uncritical v v v Vv

PK pykF Uncritical v v Vv v

PGM pgm Uncritical V v v Vv

RusP rpe Critical N N

GIPAT glgC Uncritical V v vV Vv

Our characterizations of protein criticality (Col 3) are compared with multiple gene essentiality studies (Col 5-7) besides the validations through flux-sum (Col 4).

Note: “y" means this evidence supports the characterization of criticality
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characterization on the basis of kinetic modeling. In a
kinetic system, every interaction is expressed by a
kinetic rate equation. How a component influences the
system is determined by both its position and the
kinetic parameters. Position is equivalent to topological
property, while kinetic parameters encode specific bio-
chemical/biological functions. Both kinds of information
are integrated in modeling and revealed by dynamical
simulation [15,22]. According to the typical formulism
of biochemical systems, the kinetic rate equations con-
stitute the deterministic part of the complex system
dynamics and they can be viewed as the “driving force”
of the system [23]. Thus theoretically, the criticality
characterization proposed in our method is the study of
structural factors built into the “driving force” of a
system.

Differing from topology-based methods, our method
characterizes system-level properties on the quantitative
basis. But unlike the conventional sensitivity analysis, we
employ the network structure information by calculating
the distances from the deleted spot to the affected enti-
ties besides computing the fluctuations. Moreover,
unlike conventional flux-analysis approaches, we explore
the system stability and retrieve system dynamics struc-
ture. Incorporating the network/dynamics structure
information allows us to reveal the simultaneous/collat-
eral influences and the overall impact on the system.
Another major difference from the sensitivity analysis is
that we use in silico deletions instead of mild perturba-
tions (e.g. 5% or 10%, as most flux-analysis approaches
do). Because a well-casted biological network usually
has parametric properties favouring the robustness in
dynamics, critical components may well tolerate mild
perturbations (i.e. parameters exhibiting the Lyapunov
stability). Therefore, individual sensitivity analysis often
fails to identify such critical spots, and its inability to
reveal simultaneous influences worsens the situation.
That is why we develop the “criticality characterization”.
In silico deletion is equivalent to investigating how the
system would be if the component is forcefully assumed
to be absent, eliminating the parametric properties sta-
ted earlier. Furthermore, our method’s capacity of
revealing simultaneous/overall impacts at the system
level enables it to distinguish real critical spots from
uncritical ones more effectively. In addition, utilizing
kinetic model as the analytical basis is a superiority over
the stoichiometric flux-balance modeling in traditional
flux-analysis methods, enabling us to appropriately
explore system behaviours in the real-time scale [15].
For example, both traditional topology-based and flux-
analysis approaches regard TIS as peripheral as it is not
highly connected and it is not on any uni-directional or
rate limiting reactions. However, there were experimen-
tal studies showing that knocking out tpiA (i.e. the gene
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encoding TIS) attenuated the cell growth by about 70%.
And our method appropriately revealed that TIS could
exert large impacts on the system if deleted, because of
the designs we made (mentioned above). Hence metho-
dologically, our method creates a different angle from
topology-based methods and can be viewed as an
improvement of conventional flux-analysis approaches.

After in silico deleting a protein, the residual system is
actually a virtual structure. We assume that this struc-
ture encodes important information about whether the
mutant can maintain its functionality and how it would
dynamically behave/evolve provided that it stills operates
on its own. The residual system fails to maintain func-
tionality when its kinetics goes beyond regular ranges (e.
g. occurring negative values, or soaring to extreme
values exceeding regular intracellular molecular concen-
trations), or its dynamics is trapped in a mode where
the stable equilibrium is sabotaged, as stable equilibrium
gives rise to robustness and is an essential prerequisite
for valid mathematical formulations of living cell
dynamics [17,24-26]. Either case indicates that deleting
the protein makes the system so ill-suited that it cannot
run on its own.

By applying our method to E. coli central carbon
metabolism, we find that deleting enzymes such as PGK,
GAPDH, etc. causes the system to become a very ill-sui-
ted structure as some state values soaring to levels
beyond the normal range and the trajectories are highly
divergent throughout the state space (Figure 2B and
4B). Likewise, deleting enzymes such as TKb, ALDO,
etc. also causes relatively large impacts on both system
kinetics and qualitative dynamics (Figure 2A and 4A).
On the contrary, knocking out enzymes such as PGI,
PK, etc. exerts very small influences (Figure 2D and 4E).
We also find enzymes can mediate large influences on
distant metabolites or enzymes. For instance, TKb, PGK,
PGI, etc. can all exert the largest impacts on entities of
distances other than 1 (Figure 2A, 6A-6B and Additional
file 2, 3). This is because bio-systems have complex
structures consisting of branches, alternative pathways
and loops, as well as various kinetic parameters differing
in orders of magnitudes [6,24]. Such structure acts as a
special leverage, determining special ways of interactions
and influence propagations. Only kinetic modeling can
reveal such knowledge, and such analyses can give us
more clues on selecting potential regulatory targets for
use in drug development, metabolic engineering, etc.

By utilizing the power of kinetic model for approaching
real-time events, we simulated fluxes after enzyme dele-
tions and compared the results with a previously validated
study of metabolic essentiality [6]. The comparison shows
that our characterization of criticality is well supported by
functional essentiality. Interestingly, we discovered that
the asymmetry in criticalities of building blocks might give
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Figure 6 Remote impact and local flux compensation. A system component can affect distant entities even greater than its closest
neighbours, which is illustrated by TKb. Moreover, asymmetry in the criticalities of components can result in local flux compensation, which is
illustrated by the alternative paths of TKb, TA and PGI. (A) An explicit demonstration of Figure 2A in the biological network overlay. It is
organized as a metabolite network with TKb highlighted in blue and metabolites arranged along green circles representing distance levels. The
amplitude is proportional to the color gradient (upper-right corner, “red-yellow” corresponds to “strong-slight”). (B) The enzyme-centric view of
(A). Subfigure (A) and (B) mainly show the distributions of distances and amplitudes in a network’s view, whereas the exact vertices' labels are
not important here. To see the two pictures in high resolution, refer to Additional file 7 and 8. (C) Metabolites ribu5p, sed7p, rib5p and e4p in the
pentose-phosphate pathway have increased fluxes after PGl knockout due to the asymmetry of system-levels properties of PG, TKb and TA. The
three enzymes mutually form alternative paths associating to the essential metabolite f6p.

rise to local flux compensation. For instance, multiple
metabolites (e.g. ribulose-5-phosphate, sedoheptulose-7-
phosphate, etc.) in the pentose phosphate pathway have
increased flux-sums after PGI knockout (Figure 5D and
6C). The cutoff of PGI induces the two alternative path-
ways for generating the essential metabolite fructose-6-
phosphate, TKb and TA, to operate at a greater volume.
Thus fluxes through relative reactions are compensated,
resulting in local amplified fluxes. This is a likely result in
accordance to the MOMA mechanism [17]. Although
MOMA can compensate system fluxes/states to some
degrees, our results show that the effects caused by dele-
tions of critical components such as TKb, TA, PGK, etc.
cannot be smoothed by such compensations (Figure 5A-
5B, Additional file 5). This is because such compensations

are mainly mediated by alternative pathways [6]. When a
critical component is deleted, leaving inferior components
as backup to rely on, the system cannot work efficiently.
On the contrary, deleting PGI leaves its two alternative
pathways that are of superior properties at the “ON” state
and the system still works, thus fluxes/states can be effi-
ciently compensated. This gives a hint on how criticality
characterization can help in bio-system modifications such
as in metabolic engineering. We can delete some system
components with inferior properties, leaving alternative
pathways with superior properties to work. And pheno-
types in the local areas relating to such alternative path-
ways might be compensated due to the leverage of system
structure and the MOMA mechanism. Therefore, compre-
hensive methods of exploring system-level properties can
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help us make use of bio-complexity in engineering, as well
as in knowledge discovery.

It is noteworthy that functionally important compo-
nents are not necessarily critical, as studies suggest that
the more important a reaction is in function, the more
likely that it has a backup pathway [6,13]. For example,
PK connects very fundamental chemical compounds but
it is regarded as uncritical at the system level, because
there are alternative paths (e.g. the phosphotransferase
system - PTS, in bacteria glycolysis; Additional file 1)
that can prevent large impacts on system kinetics/
dynamics. This exemplifies that bio-system components
have dichotomy. They have “importance” as biochemical
molecules, and they also have “criticality” to the system
as constitutive building blocks. Actually, our method
does not aim to find the “functionally important” mole-
cules, but those “critical” to the system, i.e. components
that cannot be absent, or the system will be severely aber-
rant. Since the criticality of an enzyme depends on many
factors (e.g. kinetic parameters, substrates inhibiting/acti-
vating other reactions, degree of the effects, etc.), the
assignments of system boundaries in modeling might
affect prediction results. As the enzymes located on the
boundary might have incomplete interplay structure, the
above factors may not occur properly in the kinetic equa-
tions. Therefore, accurate criticality characterization is
facilitated by appropriate system inclusiveness in model-
ing. For example, glucose-1-phosphate adenyltransferase
(G1PAT) only connects the external polysaccharide
synthesis pathway, with few interactions with large-capa-
city reactions both in the system and outside pathways.
Thus as the boundary is assigned up to it, the validity of
the results are enhanced (Table 1). Furthermore, funda-
mental, common and conserved pathways must be cho-
sen for comparison with genome-scale gene essentiality
studies that regard to global cellular functionality. For
instance, the bacteria central carbon metabolism here is
an appropriate example [5,7,8], thus various predictions
of protein criticality are well consistent with global gene
essentiality characterizations [13,14,19].

Although we used a metabolic system as the working
model, the application of our method is not confined to
metabolic systems. For instance, we can model gene
transcription dynamics by deriving gene transcription
rate with the power-law formulism, the Hill equation, or
equations of chemical kinetic actions [27-29]. Or we can
describe ligand-receptor and protein-protein binding
actions with the mass action law and build models for
signaling networks [22]. We even do not have to obtain
exact parameters fitting the modeled solutions to assay
measurements when analyzing the generic behavioral
potential of the system, e.g. in what parameter ranges
the system exhibits certain dynamics and how they
change with parameters. Such qualitative predictions are
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also useful in revealing general principles governing
complex bio-systems. Naturally, complicated bifurcation
dynamics will be harder to analyze; but the idea of our
method can be well applied once the coexisting dynami-
cal characteristics in bifurcation are associated with bio-
logical implications [28]. By integrating knowledge and
using theoretical generic forms of models [15,30],
kinetic modeling will be eventually feasible for more
organisms. Hence, instead of the traditional approaches,
we propose that complex systems be studied by casting
the network into kinetic equations and computing the
system-level properties with respect to system kinetics/
dynamics (criticality). Overall, our method may provide
a new viewpoint in revealing constitutive/functional
properties of building blocks in a biological system.

Conclusions

Our method creates a new angle from traditional topol-
ogy-based methodologies for evaluating system-level prop-
erties of bio-molecules. Moreover, the proposed method
can be viewed as an improvement of the conventional
flux-analysis approaches such as FBA and MCA. In addi-
tion, the method leads to results that are consistent with
experimental references, showing that it is efficient in
characterizing protein criticality and studying biological
systems. Furthermore, the method’s application can be
extended to other types of bio-systems (e.g. transcriptional
networks and signaling networks) to reveal the constitu-
tive/functional properties of system building blocks.

Methods

Kinetic modeling

We utilized existing kinetic data in E. coli central carbon
metabolism and adopted a previous modeling frame-
work as our working platform [5]. The kinetic model
consists of 30 metabolites (including external metabo-
lites and biosynthesis products) and 30 biochemical
reactions (24 enzymes and 6 lumped reactions standing
for transport/biosynthetic processes relating to external
pathways; Additional file 1). The model can also be re-
casted into an enzyme-centric network, by adding a
directed connection from enzyme A to B if any of A’s
products was B’s substrate. We could explicitly see the
interactions among enzymes from the enzyme-centric
view (Additional file 1).

All kinetic rate equations were formulated according
to biochemical mechanisms [5]. Most of them were
casted in the uni-/bi-substrate Michaelis-Menten formu-
lism. The kinetics for each metabolite was expressed by
an ordinary differential equation (ODE; Eqn (1)).

‘3: = A-R(X,P) + B(X,P) (1)
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Here vector X denoted system state and P denoted
kinetic parameters. R was a function vector collocated
by all rate equations, and A was the stoichiometric
matrix. B was the term standing for extra reactions (e.g.
transport, metabolite utilization for cellular growth, etc).
Most parameters were found in published studies and
the rest could be estimated using the experimental con-
ditions, steady-state reaction rates and concentrations
reported in previous studies [5,31,32]. For complete
descriptions of metabolites, reactions, forms of kinetic
rate equations and ODEs, see Additional file 6.

Dynamical simulation and state fluctuation

By substituting in an initial value, a typical Cauchy pro-
blem was formed and numerical integration curves were
computed for Eqn (1). We used the Gear method in
computation so as to alleviate the stiffness problem of
ODEs [33]. With an initial value for normal experimen-
tal conditions [5], we obtained the kinetic states of the
system X% i.e. time-courses of metabolite concentrations
under normal conditions. After deleting an enzyme, we
computed the kinetics of the residual system X° to see
how it deviated from the original state. Thus the influ-
ence of the deleted enzyme could be assessed. Assuming
solution X was organized as a matrix and each column
represented the kinetics of a metabolite, we could calcu-
late the amplitude of metabolite k’s state fluctuation as
= Xl l2/11XGell2 2

ok

e = 11X

We could calculate the distances of metabolites from
the deleted enzyme by the structure of metabolite-cen-
tric network. Metabolites directly associating with the
enzyme were assigned a distance of 1; metabolites not
directly associating with the enzyme but associating
with the 1% distance level metabolites within a direct
single reaction were assigned a distance of 2, and so on.
We combined the distances and amplitudes to see in
which ranges influences occurred and how strong they
were. We also computed the flux distributions of the
residual system based on the metabolites concentrations
and rate equations. Thus we could observe how the flux
distributions deviated from the original system and
assessed them in the same way as Eqn (2). The dis-
tances of effects could be directly counted from the
enzyme-centric network. Furthermore, we could com-
bine the amplitude and distance data into a single mea-
surement for assessing the overall impact, both for
metabolite-centric network and enzyme-centric network

(Eqn (3)).

M(d, f) = \/kad”,n eN, (3)
k
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Dynamical stability

Normal bio-systems are subjected to robustness as they
structurally consist of abundant alternative pathways
and feedback loops [6,17,24]. Thus valid formulations of
bio-systems usually have stable equilibrium, attracting
neighborhood trajectories and allowing slight changes to
be tolerated without disturbing normality [5,25,26]. The
trajectories tend to some area over adequately large
ranges of time and parameter spaces if the system has
equilibrium. And if it did not, trajectories spread out
along some dimensions traversing several orders of mag-
nitudes. To locate the equilibrium, we utilized the state
at the end time point of simulation as an initial guess
and used the trust-region method to solve the problem
[26,34]. By carefully refining the numerical approach,
the equilibrium could be computed and distances from
the original X, were calculated by the Euclid norm.

We defined the dynamical stability following the con-
cept of the Lyapunov stability, which has explicit physi-
cal/chemical context and is suitable for describing
metabolic robustness [25,26]. The stability of equilibrium
is determined by the eigenvalues of the Jacobian matrix
evaluated at the equilibrium (Eqn (4)). If all eigenvalues
have negative real parts, the equilibrium is asymptotically
stable; if any of them has a positive real part, the equili-
brium is unstable; and if the Jacobian matrix has a pair of
purely imaginary conjugate eigenvalues, a limit cycle is
likely to bifurcate out of the equilibrium.

9 (A-R(X, P)):|
]Xeti = [ (4')
90X x,

The Hartman-Grobman Theorem and Center Manifold
Theorem prove that if the Jacobian matrix evaluated at an
equilibrium has 2 conjugate purely imaginary eigenvalues,
N eigenvalues with negative real parts and N,, eigenvalues
with positive real parts, the trajectories of Eqn (1) near the
equilibrium are topologically equivalent to those of Eqn
(5). Here B is a part of kinetic parameters and ¢ is +1
according to our system. In other words, the orbit struc-
ture (near the equilibrium) of Eqn (5) is topologically con-
jugate with that of Eqn (1). Because Eqn (5) is much
simpler, we could investigate it instead of the complex
Eqn (1). In this way, we explicitly drew the orbit structure
of Eqn (5) near the equilibrium and could know the quali-
tative system dynamics of Eqn (1) accordingly.

dy
=B —pron (7 +13)

;f =y 4B+ on (7 +93)
e )
Ve 7)//\1‘
dIN
dy™ = N

dt
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If the bifurcation caused by an in silico deletion (para-
meter modification) yields multiple equilibriums, the
impact on dynamical stability is regarded as large if any-
one of the equilibriums exhibit qualitative difference
from X,, in dynamical properties.

MOMA and flux-sum

MOMA suggested that metabolic systems were sub-
jected to biological robustness. When perturbed, it
could adjust itself towards a state that was relatively
close to the original state. We could formulate the pro-
cess as an optimization problem as

min S(P,) = |X(P.) — Xo|,

dx
dt =A-R(X,P,)
- (6)
s.t 0<X
0<P,
X(t() = 0) =Cp

Here P, was the parameter set with the relevant enzy-
matic parameters deleted, X, was the original state and
C, was the initial value. Some states that were close to
Xp in the feasible space could be solved with the genetic
algorithm, a heuristic numerical approach that can alle-
viate computation difficulty in large variable space to
some extent.

We adopted the definition of essential metabolite and
flux-sum in Kim et al.’s work on E. coli metabolism [6].
The 12 essential metabolites occurred in central carbon
metabolism were shown in Figure 5. Here the flux-sum
of metabolite k was defined as

D)= Y A Ri(X, P) )

iEQk

where Q; was the index set of reactions producing
metabolite k.

After MOMA computation, we obtained one (or
more) set of parameters and system states. Using rate
equations, we simulated the fluxes and calculate flux-
sums according to Eqn (7).

Additional material

Additional file 1: The metabolite-centric and enzyme-centric views
of the E. coli central carbon metabolic network. The file is in the
format of *.png, with figures included showing the metabolite-centric
(Page 1) and enzyme-centric metabolic (Page 2) networks. In the
metabolite-centric view, enzymes/reactions are abbreviated as symbols
and denoted by rectangles; metabolites are also abbreviations; inhibitors/
activators are drawn as circles beside the reactions. Synth1 is a lumped
reaction for synthesizing chorismate and murine; Synth2 is lumped
reaction for synthesizing isoleucine, alanine, ketoisovalerate, and
diaminopimelate [5]. In the enzyme-centric view, enzymes are denoted
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by circles and arrows indicate interactions. For more detailed information,
see the "Methods” section and Additional file 6.

Additional file 2: Impacts on system states in the metabolite-centric
view. The file is in the format of *pdf, with each plot showing the
impacts of enzymes deletions on the metabolite kinetics. The metabolite
indexes, impact distances and state uation amplitudes form the 3
dimensions. Legends are the same as those in Figure 2.

Additional file 3: Impacts on system states in the enzyme-centric
view. The file is in the format of *pdf, with each plot showing the
impacts of enzymes deletions on the kinetic fluxes. The reaction/enzyme
indexes, impact distances and flux fluctuation amplitudes form the 3
dimensions. Legends are the same as those in Additional file 2.

Additional file 4: The catalogue of the results of dynamical stability
analysis. The file categorizes all enzymes that generate topologically
equivalent system orbit structures, when deleted. Enzymes in the same
category exert similar impacts on the qualitative dynamics of the system.
The file is in the format of MS Word electronic table (*.doc).

Additional file 5: The flux-sum validations of critical and uncritical
enzymes. The file is in the format of *pdf, with each plot showing the
flux-sums of the essential metabolites before and after the deletion of an
enzyme. Deletions of all presented enzymes are shown. The metabolite
symbols and flux-sum values form the lateral and vertical dimensions.
Legends are the same as those in Figure 5.

Additional file 6: Description of the modeling. The file is the
supplementary text of the modeling. It is in the format of *doc and
includes detailed descriptions of metabolites, enzymes, kinetic rate
equations and ODEs.

Additional file 7: High resolution images of Figure 6A and 6B. The
two files (in the format of *.png) are the high resolution versions of
Figure 6A and 6B, respectively.

Additional file 8: High resolution images of Figure 6A and 6B. The

two files (in the format of *.png) are the high resolution versions of
Figure 6A and 6B, respectively.
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