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Abstract

Background: Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese
Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment.
However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies
acupoints, remains largely unknown, which hinders its widespread use.

Results: In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to
understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for
acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of
acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize
the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from
high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the
prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error
of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive
feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS
method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly
serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment
are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five
meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are
compared for their similarity and difference, which provide evidence for the specificity of acupoints.

Conclusions: Our result demonstrates that metabolic profiling might be a promising method to investigate the
molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to
select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-
dimensional data analysis, for example cancer genomics.
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Background
Acupuncture, an important therapeutic method in Tra-
ditional Chinese Medicine (TCM), has been used to
treat various diseases for thousand years in China.
Recently it has been gradually accepted in western coun-
tries as an alternative or complementary treatment.
However, how the acupuncture works remains an open
question though acupuncture exists as one of the oldest
continuous systems of medicine dating back 4,000 years.
Extensive studies have been conducted on the mechan-
ism of acupuncture to explain the effects of acupuncture
on various systems and symptoms [1-3]. Compared to
the relatively widespread use of acupuncture, systems
biology is a new term to describe the recent trends in
biology research. It emphasizes the high-throughput
measurement of biological systems and focuses on the
complex interactions in biological systems [4,5]. We
highly expect that systems biology, a biology-based
inter-disciplinary study field, will provide tremendous
opportunities for revealing acupuncture mechanism at
the molecular level.
In this paper, we use systems biology method to study

the acupuncture treatment effect by identifying a subset
of important molecules from high-throughput metabolic
data. Specifically, we separate the acupuncture from
moxibustion and only study the effect of acupuncture
on normal people by investigating the difference
between acupuncture at particular acupoint and without
acupuncture. Towards this aim, we utilize 1H nuclear
magnetic resonance (1H NMR) to investigate the effects
of acupuncture at several meridian points on plasma
metabolites. Then metabolite profiles (vectors) are gen-
erated from a collection of case samples(with acupunc-
ture at meridian point) and control samples (without
acupuncture). These high-dimensional profile data is
very similar to SNP (sequence data), gene expression
(transcriptome), mass spectrum (proteome), and small
molecules (metabolome) data in different levels. Then
the straightforward task is to identify differentially
expressed molecules and further classify and predict the
diagonostic category of a sample, based on its metabolite
profile [6].
Generally speaking, there are two difficulties in analyz-

ing these high-dimensional profile data. First, a large
number of features (metabolites in our case) are avail-
able to predict classes for a relatively small number of
samples. The presence of a significant number of irrele-
vant features that are unrelated to the case status makes
such analysis prone to the curse of dimensionality. Sec-
ond, predictive accuracy is not the only goal and further
biological validation and mechanism understanding call
for explanatory power other than black box predictive
results. Thus it is especially important to know which

molecules largely contribute towards the classification.
Ideally we can improve the generalization performance
of classifier by identifying only the molecules that are
significantly contribute to the classifier. This effect is
attributable to the overcoming of the curse of dimen-
sionality. For example, if it is possible to identify a small
set of metabolites that is indeed capable of providing
complete discriminatory information, inexpensive diag-
nostic assays for only a few metabolites might be devel-
oped and be widely deployed in clinical settings.
Knowledge of a small set of diagnostically relevant
metabolites may provide important insights into the
mechanisms responsible for acupuncture treatment
itself. Those molecules are usually termed as biomar-
kers. The procedure to reveal them is referred as feature
selection, biomarker identification, or feature ranking.
Feature selection is known to be NP-hard [7] and the

search becomes quickly computationally intractable.
Suppose we treat the feature selection task in a brute
force way. Given n features, we need to select m fea-
tures which can get the best classification accuracy (m
<<n) regarding to a predefined cost function. Usually in
classification or prediction problem, the cost function is
selected as the accuracy of the prediction. The exhaus-
tive search method goes through all the possible combi-
nations, with the computation complexity O(nm). Thus,
this method is not practical for realistic applications.
Existing feature selection strategies can be roughly

categorized into three types [8]. Considering the partial
ordering properties of the subset space, we can either
start with an empty set and successively add features, or
start with the set of all features and successively filter
them. The former type is referred to as forward selec-
tion while the latter is referred to as backward elimina-
tion. The third type is the combination of the two
approaches. However, all the above methods relies on
the greedy strategy. As an example of forward feature
selection, we might first look for the single most discri-
minative feature using any classifier. Then we could
search the single additional feature that gives the best
class discrimination when considered along with the
first feature. Keeping augmenting the feature set itera-
tively in this greedy fashion, we stop until cross-valida-
tion error estimates are minimized. As a result, the
global optimal solution usually cannot be guaranteed.
In this paper, we proposed a novel linear program-

ming (LP) model to address this important problem.
Feature selection problem is cast into an optimization
problem with two objectives, one is to minimize the
number of chosen features and the other is to maximize
the predictive accuracy based on the centroid classifica-
tion framework. In other words, our feature selection
method simultaneously improves classification accuracy
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and selects features. Comparing with several state-of-
the-art feature selection methods, our Linear Program-
ming based Feature Selection (LPFS) method can select
a small set of features by applying strong regularization
while keeping high accuracy. We then apply our method
to analyze the metabolite profile data generated for acu-
puncture treatment. We identify important molecules
(biomarkers) related to the acupuncture treatment for
several meridian points. Further characterization of the
biomarkers and the common and difference among sev-
eral meridian points provide biological insights for acu-
puncture mechanisms at molecular level. Preliminary
results in this paper were presented in our conference
paper [9]. In this extended paper, we further provide the
detailed derivation of the method and comparison with
existing works. In addition, we performed more analysis
and descriptions for the biological insights of the acu-
puncture biomarkers.

Method
Analytic workflow
In this paper, the acupuncture treatment effect is inves-
tigated in the framework of systems biology. The basic
analytic workflow is shown in Figure 1. As the first step,
metabolite profiles are originally generated by 1H NMR
from control samples and the samples with acupuncture
treatment in meridian points. Then we develop a linear
programming based feature selection method to com-
pare the two groups of metabolite profiles. Finally, a
small set of metabolites are selected as biomarkers for
acupuncture treatment effect.

Overview of the linear programming based feature
selection
To investigate the high-dimensional data for acupunc-
ture treatment effect, we develop a novel method, LPFS,
to select a small set of metabolites to characterize acu-
puncture treatment effect. The schematic illustration of
LPFS is shown in Figure 2. LPFS performs feature selec-
tion based on the nearest centroid classifier. On one
hand, we want to attain the best classification accuracy
by minimizing the loss function. On the other hand, fea-
ture selection algorithms should be robust to noise and
outliers in the data by applying strong regularization.
Here we use the parsimony principle (also known as
Occam’s razor) by minimizing the number of selected
features. Then the feature selection problem is formu-
lated as a multi-objective programming. The next step is
to convert this multi-objective programming into a sin-
gle-objective linear programming by applying the ε
method. After solving the linear programming model in
an efficient way, the optimal features can be selected.
Centroid classification prototype
A fast and simple algorithm for classification is the cen-
troid method [6,10]. This algorithm assumes that the
target classes correspond to individual (single) clusters
and uses the cluster means (or centroids) to determine
the class of a new sample point (see Figure 2). A proto-
type pattern for class Cj is defined as the arithmetic
mean:

μCj =
1∣∣Cj

∣∣
∑
si∈Cj

xi (1)

Figure 1 Our analytic workflow to identify biomarkers for acupuncture treatment effect. Metabolite profiles are originally generated by 1H
NMR from control samples and the samples with acupuncture treatment. Then we develop a linear programming based feature selection
method to compare the two groups of metabolite profiles. Finally a small set of metabolites are selected as biomarkers for acupuncture effect.
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where si is the i-th training sample labeled as class
Cj. Recall that the training sample is a metabolite spec-
tra represented as a multi-dimensional vector (denoted
in bold). In a similar fashion, we can obtain a prototy-
pical vector for all the other classes. During classifica-
tion, the class label of an unknown sample s is
determined as:

C(s) = argmin
Cj

dis(μCj
, s) (2)

where dis(x, y) is a distance function or:

C(s) = argmax
Cj

sim(μCj
, s) (3)

where sim(x, y) is a similarity metric. This simple clas-
sifier will form the basis of our LPFS method. The
advantages is that it works with any number of features.
And its run-time complexity is proportional to the num-
ber of features and the complexity of the distance or
similarity metric used. According to the experiments in
[11], we select L1 distance metric, which is robust to
outliers and most appropriate for the centroid classifica-
tion algorithm. It is defined by:

L1(s,μ) = ‖s − μ‖1 (4)

with ║y║1 = ∑i |y(i)|, and y(i) being the i-th element of
vector y. The value L1(s, μ) has a linear cost in the num-
ber of features. In this study, data sets contain two
classes and hence the number of calls to the distance
metric is also two. Therefore, the centroid classifier, at
run-time, is linear in the number of features. During
training, two prototypes are computed and the cost of
computing each prototype is O(mN), where N is the
number of features and m is the number of training
samples which belong to a given class. Note that m only
varies between data sets and not during training or fea-
ture selection processes. Thus, we can view m as a con-
stant and the centroid classifier has O(N) cost in the
training phase.
Multi-objective optimization model
Suppose we have two groups in the training dataset, the
case group and the control group as the gold-standard
data to classify new samples. We denote them set T and
F respectively. Supposing |T| = m1, |F| = m2, and the
computed centroids are μT and μF respectively. A simple
classification scheme is as follows. Given a new sample

Figure 2 The schematic illustration of LPFS. Under the nearest centroid framework, LPFS requires to minimize the classification error and the
number of selected features, which leads to a multi-objective programming. To ensure the computational efficiency, a linear programming is
solved to identify biomarkers.
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s, we want to decide which group it belongs to. The L1
discrepancy between the sample s and the groups T and
F can be calculated as ║s - μT║1 and ║s - μT║1. Thus a
simple rule is

s ∈ T if ‖s − μT‖1 < ‖s − μF‖1 (5)

s ∈ F if ‖s − μT‖1 > ‖s − μF‖1 (6)

Let the feature number be n. We introduce the vari-
ables for feature selection as x = (x1, x2, ..., xn), where xi
= 0,1. When xi = 1, it means feature i is selected in the
biomarker set. Otherwise it is not selected.
Suppose the test dataset is U. And it is composed by

the case group UT and control group UF. U = UT ∪ UF,
and |UT| = l1, |UF| = l2. Given a case sample sl = (sl1,
sl2, ..., sln), l Î {1, 2 ..., l1}, if it is classified correctly, we
should have

n∑
i=1

∣∣∣∣∣∣sli −
m1∑
j=1

tji/m1

∣∣∣∣∣∣ xi <

n∑
i=1

∣∣∣∣∣∣sli −
m2∑
j=1

fji/m2

∣∣∣∣∣∣ xi (7)

Where tk = (tk1, tk2, ..., tkn) Î T, k = 1, 2, ..., m1 and fk
= (fk1, fk2, ..., fkn) Î F, k = 1, 2, ..., m2.
Similarly given a control sample sl = (sl1, sl2, ..., sln), l

Î {l1 + 1, l1 + 2 ..., l1 + l2}, if it is classified correctly, we
should have

n∑
i=1

∣∣∣∣∣∣sli −
m1∑
j=1

tji/m1

∣∣∣∣∣∣ xi >

n∑
i=1

∣∣∣∣∣∣sli −
m2∑
j=1

fji/m2

∣∣∣∣∣∣ xi (8)

With the above constraints for variable x = (x1, x2, ...,
xn), the objective function is to choose as few as fea-
tures, i. e.,

min
x1,x2,··· ,xn

n∑
i=1

xi (9)

Thus the feature selection problem is formulated as an
integer linear programming problem in Equation (10).

min
x1,x2,··· ,xn

∑n

i=1
xi

s.t.
∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi <
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi,
pl = (pl1, sl2, · · · , pln) ∈ UT , l ∈ {1, 2, · · · , l1},∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi >
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi
pl = (pl1, sl2, · · · , pln) ∈ UF, l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · ,n}

(10)

When we consider the noise in the measured data, not
all the test samples can be classified exactly. We intro-
duce the tolerable error y = {y1, y2, ..., yl1+l2} for every
sample in UT ∪ UF. And yi ≥ 0, i ε {1,2, ..., l1 + l2}.
When yi is not equal to zero, it means sample i is

wrongly classified. Otherwise this sample should be cor-
rectly classified.
Given a case sample sl = (sl1, sl2, ..., sln), l Î {1, 2 ...,

l1}, we should have the following constraint considering
the tolerable error

n∑
i=1

∣∣∣∣∣∣sli −
m1∑
j=1

tji/m1

∣∣∣∣∣∣ xi − yl <

n∑
i=1

∣∣∣∣∣∣sli −
m2∑
j=1

fji/m2

∣∣∣∣∣∣ xi (11)

Similarly given a control sample sl = (sl1, sl2, ..., sln), l
Î {l1 + 1, l1 + 2 ..., l1 + l2}, we should have the following
constraint considering the tolerable error

n∑
i=1

∣∣∣∣∣∣sli −
m1∑
j=1

tji/m1

∣∣∣∣∣∣ xi + yl >

n∑
i=1

∣∣∣∣∣∣sli −
m2∑
j=1

fji/m2

∣∣∣∣∣∣ xi(12)

Thus the objective function composes two parts, i. e.,

we want to choose as few as features minx1,x2,··· ,xn
n∑
i=1

xi

and at the same time we want to reduce the classifica-

tion error (loss function) min
y1,y2,··· ,yl1+l2

∑l1+l2

i=1
yi . In general,

there is a trade-off relationship between the classifica-
tion error and the number of features. Hence, the fea-
ture selection problem can be formulated as a multi-
objective optimization problem with discrete variables x
= (x1, x2, ..., xn) and continuous variables
y = (y1, y2, · · · , yl1+l2) as shown in Equation (13).

vector - minimize(x,y)

{∑n

i=1
xi,

∑l1+l2

i=1
yi

}
,

subject to (11)(12) with xi ∈ {0, 1}, i ∈ {1, 2, · · · ,n},
yi ≥ 0, i ∈ {1, 2, · · · , l1 + l2}

(13)

The first term of objective function in Equation (13) is
to minimize the number of chosen features, and the sec-
ond one is to minimize the total classification error.
Mixed integer linear programming
The optimal solutions of the two-objective optimization
problem consist of a Pareto set, which can be solved by
transforming the two objectives of (13) into a single
objective. One typical technique is the �-method, which
alternates a positive scalar parameter l to obtain the
Pareto set, with the formulation in Equation (14).

min
x,y

∑n

i=1
xi + λ

∑l1+l2

i=1
yi

s.t.
∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi − yl <
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi
pl = (pl1, sl2, · · · , pln) ∈ UT , l ∈ {1, 2, · · · , l1},∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi + yl >
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi
pl = (pl1, sl2, · · · , pln) ∈ UF, l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · ,n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

(14)
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(14) is a mixed integer programming (ILP). The objec-

tive function in (14) is
∑n

i=1
xi + λ

∑l1+l2

i=1
yi . Theoreti-

cally, we can obtain all optimal solutions belonging to
the Pareto set by changing the parameter l for the sin-
gle-objective optimization problem (14). Clearly, l trans-
forms the number of chosen features into equivalent
classification error in (14), and controls the balance
between them.
By solving the proposed mixed integer linear program-

ming model (14), we can get solutions for the feature
selection variables xi, i Î {1, 2, · · ·, n}, and classification
error variables yj, j Î {1, 2, ..., l1 + l 2}. Checking if xi is
equal to 1, we can know if the corresponding feature
should be selected in the classifier. Meanwhile checking
the values of all the yj, we can estimate the classification
accuracy. For example, suppose the number of all j such
that yj = 0 is N1 and the number of all j such that yj > 0
is N2. We can simply calculate the classification accu-
racy by N1/l1+l2 and N2/l1+l2.
Leave-one-out cross validation
The above model (14) is based on the general idea of
cross validation, thus it depends on the choice of T and
F. We noticed that there are different ways to do cross
validation in feature selection [12]. One way is that the
feature selection is done with all the samples and the
cross-validation is only done for the classification proce-
dure. This kind of cross validation may severely bias the
evaluation in favor of the studied method due to “infor-
mation leak” in the feature selection step. Another way
is to include the feature selection procedure in the cross
validation, i.e., to leave the test sample(s) out from the
training set before undergoing any feature selection.
Our feature selection model allows the freedom to
choose the suitable cross validation procedure according
to the practical need. If more information is preferred to
select biomarkers due to the scarcity of samples, we can
use all the samples to estimate the cross validation error
in the following resubstitution validation in Equation
(15).

min
x,y

∑n

i=1
xi + λ

∑l1+l2

i=1
yi

s.t.
∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi − yl <
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi
pl = (pl1, sl2, · · · , pln) ∈ T, l ∈ {1, 2, · · · ,m1},∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣xi + yl >
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣xi
pl = (pl1, sl2, · · · , pln) ∈ F, l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · ,n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

(15)

Resubstitution error rate indicates only how good are
our biomarkers on the training data. However, this model
has “information leak” and will underestimate the classifi-
cation error. In our implement, we choose the model for
leave-one-out cross validation in Equation (16).

min
x,y

∑n

i=1
xi + λ

∑l1+l2

i=1
yi

s.t.
∑n

i=1

∣∣∣∣pli −
∑m1−1

j=1
tji/(m1 − 1)

∣∣∣∣ xi − yl <
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣ xi
pl = (pl1, sl2, · · · , pln) ∈ T, l ∈ {1, 2, · · · , l1}, tk = (tk1, tk2, · · · , tkn) ∈ T\{pl}, k ∈ {1, 2, · · · ,m1}\{l}∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣ xi + yl >
∑n

i=1

∣∣∣∣pli −
∑m2−1

j=1
fji/(m2 − 1)

∣∣∣∣ xi
pl = (pl1, sl2, · · · , pln) ∈ F, l ∈ {1, 2, · · · , l2}, fk = (fk1, fk2, · · · , fkn) ∈ F\{pl}, k ∈ {1, 2, · · · ,m2}\{l}

xi = 0, 1, i ∈ {1, 2, · · · ,n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

(16)

We adopt leave-one-out experiment since this particu-
lar form of cross validation is an unbiased estimator of
the generalization performance of classifier. It makes the
best use of the available data and involves no random
subsampling. Every time we pick out one sample (l1 = 1
or l2 = 1) from the training data and try to classify it
correctly. And by doing m1 + m2 times test we add m1

+ m2 constraints.
Linear programming approximation
In general, mixed integer linear programming is difficult
to solve. To ensure the computational efficiency, mixed
ILP in Equation (16) can be relaxed to the correspond-
ing linear programming (LP). Linear programming is the
simplest type of mathematical programming and has
been widely used in systems biology study [5,13,14].
Therefore, sophisticated algorithm can be adopted to
efficiently solve this LP. In terms of computational com-
plexity, the proposed approach makes the computation
of biomarker tractable. Finally we construct the LPFS
model in Equation (17).

min
x,y

∑n

i=1
xi + λ

∑l1+l2

i=1
yi

s.t.
∑n

i=1

∣∣∣∣pli −
∑m1−1

j=1
tji/(m1 − 1)

∣∣∣∣ xi − yl <
∑n

i=1

∣∣∣∣pli −
∑m2

j=1
fji/m2

∣∣∣∣ xi
pl = (pl1, sl2, · · · , pln) ∈ T, l ∈ {1, 2, · · · , l1}, tk = (tk1, tk2, · · · , tkn) ∈ T\{pl}, k ∈ {1, 2, · · · ,m1}\{l}∑n

i=1

∣∣∣∣pli −
∑m1

j=1
tji/m1

∣∣∣∣ xi + yl >
∑n

i=1

∣∣∣∣pli −
∑m2−1

j=1
fji/(m2 − 1)

∣∣∣∣ xi
pl = (pl1, sl2, · · · , pln) ∈ F, l ∈ {1, 2, · · · , l2}, fk = (fk1, fk2, · · · , fkn) ∈ F\{pl}, k ∈ {1, 2, · · · ,m2}\{l}

xi ≥ 0, i ∈ {1, 2, · · · ,n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

(17)

After relaxing to continuous value, the value of the
optimal solution of xi (LPFS score) indicates the impor-
tance of feature i in the nearest centroid classifier. It
should be noted that we can use other distance defini-
tions instead of L1 in our model to achieve the non-
linear classification effect. The parameter l can be
determined by checking the output leave-one-out pre-
dictive accuracy. We also notice that LPFS model can
be extended to multi-classification task and n-fold cross
validation.

Metabonomics profiling by 1H NMR spectra
Venous blood (3ml) was collected into a heparin sodium
tube and the plasma was collected by centrifugation at
1000× g at 4°C for 10 minutes. An aliquot of 300 μl
plasma was mixed with 250 μl D2O and 50 μl TSP (3-
trimethylsilyl-2H4-propionic acid) in D2O (1 mg/ml) in 5
mm NMR tube. The D2O provided a field-frequency
lock solvent for the NMR spectrometer and the TSP
served as an internal reference of chemical shift. 1H
NMR spectra of the plasma samples were acquired on a
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Varian INOVA 600 MHz NMR spectrometer at 27°C by
using Carr-Purcell-Meiboom-Gill (CPMG) spin-echo
pulse sequence. with a total spin-spin relaxation delay
(2nτ) of 320 ms. The free induction decays (FIDs) were
collected into 32K data points with a spectral width of
8000 Hz and 64 scans. The FIDs were zero-filled to
double size and multiplied by an exponential line-broad-
ening factor of 0.5 Hz prior to Fourier transformation
(FT). In addition, diffusion-edited experiments were also
carried out with BPP-LED (bipolar pulse pair longitudi-
nal eddy current delay) pulse sequence [15,16]. The gra-
dient amplitude was set at 35.0 G cm-1, with a diffusion
delay of 100 ms. A total of 128 transients and 16k data
points were collected with a spectral width of 8000 Hz.
A line-broadening factor of 1 Hz was applied to FIDs
before Fourier transformation.
All plasma 1H NMR spectra were manually phased

and baseline corrected using VNMR 6.1C software (Var-
ian, Inc.). For CPMG spectra, each spectrum over the
range of 0.4 to 4.4 was data-reduced into integrated
regions of equal width (0.01 ppm). For BPP-LED data,
each spectrum over the range of 0.1 to 6.0 was segmen-
ted into regions of equal width (0.01 ppm). The regions
containing the resonance from residual water (4.6-5.1)
were excluded. The integral values of each spectrum
was normalized to constant sum of all integrals in a
spectrum in order to reduce any significant concentra-
tion differences between samples [17,18]. Identification
of metabolites in spectra was accomplished based on lit-
eratures and the Chenomx NMR Suite 5.0 (Chenomx,
Calgary, Canada).

Results
Metabonomics data generation
To investigate the acupuncture treatment effects, we ori-
ginally obtained metabonomics data of plasma metabo-
lites in healthy males at five meridian points using
Proton NMR. Proton NMR (also named as Hydrogen-1
NMR, or 1H NMR) applies nuclear magnetic resonance
in NMR spectroscopy with respect to hydrogen-1 nuclei
within the molecules of a substance, in order to deter-
mine the structure of the molecules [19].
As a result, most organic compounds are character-

ized by chemical shift values, which are usually
expressed in parts per million (ppm) by frequency and
are in the range +14 to -4 ppm. Chemical shift values
are not precise, but typically they are regarded mainly as
orientational. The exact value of chemical shift depends
on molecular structure and the solvent in which the
spectrum is being recorded. These chemical shift values
can be mapped to eight metabolic subsets (amino acids,
carbohydrates, energy, glycans, lipids, nucleotides, sec-
ondary metabolites/xenobiotics, vitamins, and cofactors).
In our experiment, 400 chemical shift values are

measured for their concentration in plasma, and mathe-
matically every sample is represented by a vector in 400
dimensional space.
Fifty healthy young males were randomly allocated to

Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yangling-
quan (GB34), and Weizhong (BL40) groups (The loca-
tions of the meridian points are shown in Figure 3a.
Among the five points, Zusanli, Liangmen, and Juliao are
on the same meridian.). Each group contains 10 persons.
Inside each group the corresponding meridian points
were separately acupunctured for 5 consecutive days. In
addition, twenty healthy young males are recruited as the
blank control groups. All the twenty people are measured
before the start of 5 consecutive days and additionally ten
of them are measured after 5 consecutive days. Fasting
venous blood was taken in all the subjects. Plasma meta-
bolites were measured by 1H NMR to derive metabolic
profiles (see details in Method Section). Furthermore to
exclude possible noises, all the seventy males are strictly
trained to make sure their metabolic profiles are mea-
sured in very similar conditions. The detailed experimen-
tal method can be found in [20]. In summary, we have 80
samples grouped into Zusanli (10 samples, acupuncture
point ST36), Liangmen (10 samples, acupuncture point
ST21), Juliao (10 samples, acupuncture point ST3), Yan-
glinquan(10 samples, acupuncture point GB34), Weiz-
hong (10 samples, acupuncture point BL40), Control I
(10 samples, normal people measured after the consecu-
tive 5 days), and Control II (20 samples, normal people
measured before the consecutive 5 days).

Classification experiments design
With the data, we design experiments to identify bio-
markers for the acupuncture treatment of each meridian
point. The overall design of biomarker identification
experiments is shown in Figure 3b. We categorize eighty
samples into 8 groups shown as the circles in Figure 3b.
ST36, ST21, ST3, GB34, and BL40 each has 10 samples.
The 20 samples in Control II are naturally decomposed
into two groups with equal size, Pre1 (10 samples with
follow-up measurement after 5 days) and Pre2 (10 sam-
ples without follow-up measurement). Treating the Pre1
as the common control set, we have seven classification
tasks (Exp1 to Exp7) shown as the lines in Figure 3b.
For example, task Exp1 tries to identify a subset of
metabolites to classify Pre1 as the control and ST36 as
the case. In this way, Exp1 to Exp5 aim to identify the
biomarkers for acupuncture treatment on ST36, ST21,
ST3, GB34, and BL40 respectively. While Exp6 tries to
capture the metabolite change by 5 consecutive days
without acupuncture. And Exp7 tries to test if there are
significant metabolite change for the people under simi-
lar condition. Exp6 and Exp7 serve as the control stu-
dies to guarantee the significance of our result.
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Global characterization of the data
We first perform hierarchical clustering on the 80 meta-
bolic profiles. The results are shown in Figure 4a. If the
samples can be clearly discriminated by global pattern, the

80 samples should be clustered by with or without acu-
puncture treatment and then by their meridian points.
However, all the sample labels are mixed in the clustering
result (Figure 4a) and we cannot see clearly boundaries.

Figure 3 Overall design of the biomarker identification experiments. a) Metabolite profiles are originally generated by 1H NMR from five
acupuncture points (Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40)). b) The metabolite profiles are
grouped into 7 sets and the biomarker identification problem is designed as 7 binary classification experiments.

Wang et al. BMC Systems Biology 2012, 6(Suppl 1):S15
http://www.biomedcentral.com/1752-0509/6/S1/S15

Page 8 of 16



Furthermore, we calculate the centroids for the seven
groups of samples in Figure 4b by averaging the 10 sam-
ples for their metabolite expression values. These cen-
troids are plotted side by side in Figure 4b, which shows
that these centroids are very similar and it’s very diffi-
cult to detect the global difference.
The above results together demonstrate that global

pattern in metabolic profiles cannot discriminate the
Zusanli, Yanglingquan, Liangmen, Juliao, Weizhong,
Pre1, Pre2, and Control I groups. Thus it is necessary to
find the local pattern in the profile data. Our strategy is
to find a subset of metabolites as biomarkers to achieve
clear discrimination.

Comparison with other approaches
Before we conduct the acupuncture biomarker identifi-
cations, we benchmark our LPFS method by comparing
with several existing state-of-the-art methods. There are
many existing feature selection methods and they can
be roughly categorized into three types, filter, wrapper,
and embedded methods. To make the comparison sim-
ple and comprehensive, we pick out some representative
methods in each type to compare in the same dataset.
Filter methods select features as a preprocessing step

and feature selection part is independent of a machine
learning algorithm (classifier). This is computationally
efficient. Fold change and t-test are the simplest and
popular methods to identify biomarker. They are usually
the representative methods for filter methods.
Let xij and yij denote the log expression values of

metabolite i in sample j in the case and control,

respectively. We define the ordinary two-sample t-statis-
tic [21] as

Ti
x̄i − ȳi

si
(18)

Where x̄i, ȳi , and si are the mean of case, mean of
control, and the standard deviation of the samples for
metabolite i. From t-statistic Ti we can easily calculate a
p-value. Usually a feature is selected if its corresponding
p-value is smaller than a predefined threshold 0.05.
The standard definition of the fold-change [21] for

metabolite i is

FCi =
′x
i

′y
i

(19)

Where x́ij and ýij are the raw expression values of
metabolite i in sample j in the case and control, respec-
tively. In our implementation, we computes the differ-
ence of means (i.e. the fold-change for log-transformed
data) and then rank the metabolites by their absolute
values. We choose a cutoff 2 to select the significant
ones.
On the other hand, wrapper method ranks features

based on their effects on classification accuracy. It takes
dependencies of the feature subset on the learning algo-
rithm into account and is computationally more
demanding. Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) is one of the most successful
wrapper method based algorithm in the feature selection
[22]. SVM-RFE conducts feature selection in a

Figure 4 Global characterization of the metabolite profiles. a) Hierarchical clustering of the metabolic profiles of the 80 samples. b)
Centroids for the seven datasets. The horizontal units are expression values for the metabolites. The metabolites are sorted by their chemical
shift values.
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sequential backward elimination manner, which starts
with all the features and discards one feature at a time
by checking the SVM accuracy. It has been widely used
and extended in high-dimensional data analysis [23]. We
compare our LPFS method with SVM-RFE in metabolite
data.
Since our LPFS method is an embedded method and

simultaneously optimize classification accuracy and the
number of selected features, we specifically choose to
compare with an existing method with similar strategy,
called sparse multinomial logistic regression approach
(SMLR). It was developed to jointly and simultaneously
identify the optimal nonlinear classifier, and select the
optimal set of features via the optimization of a single
posterior objective function (see [24] and [25]). SMLR
has been extensively applied in problems in systems
biology [26]. SMLR is freely available at http://www.cs.
duke.edu/~amink/software/smlr/ and we take the default
values for the parameters in our calculation.
Without loss of generality, we take Exp1 in Figure 3b as

an example to identify a subset of metabolites to discri-
minate ST36 and Pre1. We select biomarkers from the
metabolic profiles and compare the results in two ways.
Firstly, we compare different methods in Figure 5, by

assessing the quality of the selected biomarkers. We
simply plot all the metabolites by their standard

derivation versus the difference of mean expression
value. This is a scatter-plot used in [27], which plots sig-
nificance versus fold-change on the y- and x-axes,
respectively. Conceptually, it is very similar to the vol-
cano plot in statistics [28]. Plotting points in this way
results in two regions of interest in the plot: those
points that are found towards the bottom of the plot
and far to either the left- or the right-hand side. These
represent values that display large magnitude fold
changes as well as high statistical significance with small
standard derivation.
The t-test based method identifies 172 metabolites if

we choose a cutoff 1.73 (corresponding p-value 0.05). A
strict threshold will still select 84 metabolites with cutoff
2.84 (corresponding p-value 0.005). We list the top 10 in
Table 1 and plot them in Figure 5a. We find that the
ordinary t-statistic selects metabolites with low standard
deviations.
The fold change based method identifies 159 metabo-

lites if we choose a commonly used cutoff 2 [28]. And
there are still 97 metabolites by choosing a cutoff 4.
Again the top 10 are listed in Table 2 and plotted in
Figure 5b. It’s clear that the fold-changes select metabo-
lites with large shifts between control and treatment.
While SMLR selects 37 features to achieve the 100%

leave-one-out predictive accuracy. These 37 metabolites

Figure 5 Methods comparison via volcano like plots. Comparison of our LPFS method with existing methods regarding to the identified
biomarkers. All the 400 metabolites are plotted into a two dimensional plane. The selected biomarkers are highlighted in red. The x-axis denotes
the difference of means and the y-axis denotes the standard derivation. Good biomakers should locate either in the left bottom corner or in the
right bottom corner. a) volcano like plot of t-test method. The top 10 features are in red. b) volcano like plot of fold change method. The top 10
features are in red. c) volcano like plot of SMLR method. d) volcano like plot of SVM-RFE method. e) volcano like plot of our LPFS method.
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are plotted in Figure 5c and 10 of them (ranked by ID)
are listed in Table 1. Figure 5c demonstrates that SMLR
is quite efficient to cover almost all the metabolites with
large fold change and small standard derivation. How-
ever, 37 metabolites is too much from the viewpoint of
practical usage of biomarkers.
SVM-RFE selects 15 metabolites in total to achieve the

100% leave-one-out predictive accuracy. These metabo-
lites are illustrated in Figure 5d and the top ten are
listed in Table 1. Figure 5d shows that SVM-RFE favors
the metabolites with small standard derivation.
Our LPFS method finally selects 4 features as the bio-

markers to discriminate ST36 and Pre1. By using only 4
features we can achieve 100% leave-one-out predictive
accuracy. To show these four important biomarkers are
not dependent on the nearest centroid classifier, we use
SVM to do five-fold cross validation, the predictive accu-
racy is still 100%. This demonstrates that we can select a
small set of important features really matters by applying
strong regularization. The selected 4 metabolites are
listed in Table 1 and scatter plotted in Figure 5e. Figure
5e also shows that our LPFS method tends to reveal the
metabolites with small standard deviation and large
shifts, which exactly serves our requirement for good

biomarker. The four metabolites are with ppm 3.55, 3.54,
3.49, and 1.33. ppm 3.54 and 1.33 are annotated as a-glu-
cose/glycine and lactate respectively. The expression level
of ppm 3.54, 3.49, and 1.33 goes down after acupuncture
treatment while the expression level of ppm 3.55 goes up.
Secondly, we compare the results of these five meth-

ods in a venn diagram in Figure 6. Figure 6a shows the
overlap among the results from fold change, SVM-RFE,
SMLR, and LPFS. The 4 metabolites selected by our
LPFS, metabolites with ppm 3.55, 3.54, 3.49, and 1.33,
also correctly selected by fold change, SVM-RFE, and
SMLR. Interestingly, all the results obtained by SVM-
RFE, SMLR, and LPFS are included in the results by
fold change. Figure 6b shows the overlap among the
results from t-test, SVM-RFE, SMLR, and LPFS. Again,
metabolites with ppm 3.55, 3.54, 3.49 are consistently
supported by SVM-RFE, SMLR, and t-test. Metabolite
with ppm 1.33 is not included in the t-test result but
supported by SVM-RFE and SMLR. SVM-RFE and
SMLR also select some metabolites which are not
included by t-test results. The venn diagram demon-
strates that fold change method is more consistent with
current feature selection methods when the sample
number is not so large.

Table 1 The top ten identified biomarkers by different methods on the ST36 meridian point.

Student t-test Fold change SMLR SVM-RFE Our LPFS method

ID ppm t-score ID ppm FC-score ID ppm ID ppm ID ppm LPFS score Metabolite name

86 3.55 15.29 86 3.55 73.48 45 4 86 3.55 86 3.55 0.015

195 2.46 11.91 87 3.54 68.52 50 3.95 68 3.73 92 3.49 0.008

251 1.9 11.07 308 1.33 46.58 52 3.93 87 3.54 87 3.54 0.006 a-glucose/glycine

45 3.96 10.96 310 1.31 41.61 58 3.87 69 3.72 308 1.33 0.002 lactate

229 2.12 10.86 70 3.71 40.75 60 3.85 102 3.39

81 3.6 10.80 92 3.49 38.61 67 3.78 70 3.71

18 4.23 10.03 293 1.48 37.45 68 3.77 295 1.46

127 3.14 9.75 295 1.46 33.26 69 3.76 116 3.25

17 4.24 9.71 71 3.7 28.55 70 3.75 229 2.12

232 2.09 9.35 69 3.72 26.30 71 3.74 88 3.53

Table 2 Identified biomarkers from different meridian points by our LPFS method.

Zusanli ST36 Liangmen ST21 Juliao ST3 Yanglingquan GB34 Weizhong BL40

Metabolite ppm ID Metabolite ppm ID Metabolite ppm ID Metabolite ppm ID Metabolite ppm ID

3.55 86 2.11 230 3.55 86 3.55 86 3.78 63

a-glucose/
glycine

3.54 87 0.88 353 a-glucose/
glycine

3.54 87 a-glucose/
glycine

3.54 87 3.99 42

3.49 92 histidine/taurine 3.25 116 threonine 1.32 309 3.88 53

lactate 1.33 308 3.55 86 lipid 1.3 311

lactate 1.33 308 lysine/
arginine

1.91 250

a-glucose/
glycine

3.54 87 3.92 49

3.2 121 3.49 92

3.2 121
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In addition to the overall venn diagram, the top ten
biomarkers obtained by the t-test, fold change, SVM-
RFE methods are summarized in Table 1. When com-
paring the overlap with top 10 list, LPFS still gets con-
sistent results with other methods. Metabolite with ppm
3.55 has a t-test score 15.29 and fold change score
75.38. It is ranked the first by all the three methods
with rank information. Metabolites with ppm 3.54 and
3.49 rank high in fold change, SVM-RFE. ppm 1.33
ranks high in the result obtained by fold change.

Biological insights for the identified biomarkers
We then applied the proposed LPFS method to identify
the biomarkers from the designed seven experiments.
As a result, we identified 4, 7, 2, 3, and 8 biomarkers for
the acupuncture treatment effects of ST36, ST21, ST3,
GB34, and BL40 respectively. These selected biomarkers
can achieve 100%,100%,100%,100%, and 95% leave-one-
out cross validation accuracy. The results are summar-
ized in Table 2. As expected, Exp7 fails to find any bio-
markers. Exp6 finds several metabolites due to the fact
that the expression values of these metabolites vary after
consecutive 5 days. So we carefully check the obtained
metabolites list by Exp6 and exclude these metabolites
in our final results. Some biomarkers identified in Table
2 are annotated as glucose and lipid. Most of them need
further investigation on their chemical structures and
biological functions.
From Table 2, we can see that acupuncture at Yangm-

ing meridian points (including acupuncture points at
ST36, ST21, and ST3) influence mainly plasma micro-
molecular metabolites and was closely related to energy
metabolism pathway. Acupuncture at Yanglingquan
influences mainly plasma macromolecular metabolites
and is closely related to lipid metabolism and transport.
Acupuncture at Weizhong doesn’t largely influence
plasma metabolites. This study suggests that Yangming

meridian points have certain characteristics, which are
different from those of both Yanglingquan and Weiz-
hong. Metabonomics techniques based on 1H NMR and
biomarker identification method provide experimental
evidence for distinguishing between Yangming meridian
points and other meridian points from the metabolic
aspect. This fact may become a new useful information
source to study the specificities of meridian points.
To reveal the similarity and difference of the identified

biomarkers regarding to meridian points, we calculate
the overlaps of these biomarkers and present them in
Figure 7. We found that Weizhong is slightly different
from other meridian points. There is no overlapped
metabolites for Weizhong and other meridian points.
Compared to that, Zusanli, Yanglingquan, Juliao, and
Liangmen are close to each other by sharing two com-
mon metabolites: ppm 3.54 and 3.55 (Juliao is not

Figure 6 Venn diagram for the results obtained by different methods. a) Comparing t-test, SMLR, SVM-RFE, and LPFS methods by checking
the overlaps of their selected biomarkers. b) Comparing fold change, SMLR, SVM-RFE, and LPFS methods.

Figure 7 Venn diagram for identified biomarkers from different
acupuncture points. The similarity and difference of those
identified biomarkers from Zusanli, Liangmen, Yanglingquan, and
Weizhong are shown in a venn diagram. The overlapped biomarkers
are indicated by their ppm and known annotation.
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shown in Figure 7. The two biomarkers from Juliao are
ppm 3.55 and 3.54 and totally included by Zusanli, Yan-
glingquan, and Liangmen). In them 3.54 is annotated as
a-glucose/glycine. Among the five points, Zusanli, Liang-
men, and Juliao are on the same meridian. From the
venn diagram in Figure 7, we can clearly see this trend.
Yanglingquan has a unique biomarker with ppm 1.32.
Our biomarker analysis indicates that acupuncture has
some common molecules in metabolic level. At the
same time, acupuncture at different meridian points has
different molecular response. Our result is consistent
with the theory on specificities of meridian points.
Our results show that metabolite with chemical shift

value 3.55 is clearly a common biomarker for ST36,
ST21, ST3, and GB34. In Figure 8, we visualize the
metabolic profiles as a two-dimensional graph and high-
light this important molecule. The two dimensional
graph, called the GEDI-"mosaics”, provide a unique,
one-glance visual engram that gives each high-dimen-
sional sample a face. A characteristic of GEDI’s analysis

is that it does not prejudicate any particular structure in
the data (such as clusters or hierarchical organization).
Thus, it allows the researcher to use human pattern
recognition to perform a global first-level analysis of the
data [29] (GEDI is downloaded from http://www.chil-
drenshospital.org/research/ingber/GEDI/gedihome.htm).
It is clear that the highlighted metabolite has distinct
expression value in case and control group (ST36 and
Pre1 in Figure 8). This demonstrates the effectiveness of
our biomaker identification method.
Importantly, our LPFS method reveals the metabolite

with ppm 1.33 as a biomarker for meridian points ST36
and ST21. This molecule is annotated as lactate. Lactate
has been extensively studied over years for many impor-
tant functions. For example, the lactate has always been
regarded as the central nervous system metabolic waste
and a sign of hypoxia [30]. Also in recent years, evi-
dences show that the role of lactate in brain energy
metabolism should be re-recognized. Firstly, investiga-
tions find that lactate is not only a very important

Figure 8 Highlight the selected biomaker in 2D plot. Metabolic sample is visualized as a two dimensional image. Each grid denotes a group
of metabolites with similar profiles. Red color means the highly expressed metabolite group and blue color means the lowly expressed
metabolite group. In particular, metabolite with chemical shift value 3.55 is highlighted in white color and indicated by the star.
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energy resource for brain, but a sensor of brain energy
homeostasis [31]; secondly, lactate in adult brain mainly
comes from astrocytes, and it is a collaborative carrier
for neuron and astrocytes [32,33]; thirdly, lactate plays
an important role in coupling energy metabolism and
functional activity [34]; and lastly, lactate has neuropro-
tective effect in a number of pathological conditions. It’s
interesting to see lactate as a biomaker closely relating
to acupuncture in our result. Whether lactate plays a
substantial role in acupuncture effect at ST36 and ST21
needs follow-up biological experiments.

Discussions and conclusions
Biomaker identification or feature selection considers
the problem of constructing a prediction rule from only
a feature-subset and accurately classifying the context of
diagnosis and treatment observations (e.g. with vs. with-
out acupuncture treatment). Such problems have
become increasing important and quite general in geno-
mics (identifying differentially expressed genes in micro-
array data), proteomics (finding promising protein
marker from the mass spectrometry data), metabolics
(selecting metabolite markers from NMR, GC-MS data),
and other areas of computational biology. Due to the
number of features is much larger than the number of
observations, simple, highly regularized approaches are
in pressing need. Here, we proposed a novel linear pro-
gramming based feature selection (LPFS) model to
address this important problem. The feature selection
problem is cast into an optimization problem with two
objectives, one is to minimize the number of chosen fea-
tures and the other is to maximize the predictive accu-
racy. Mathematically the feature selection problem is
formulated as a mixed integer linear programming pro-
blem. Then the model is further relaxed to linear pro-
gramming to ensure the efficient identification of a
feature-subset. We can solve the in-essence combinator-
ial optimization problem in a computational reasonable
way. In summary, our LPFS method can select feature
and learn the classifier in a joint way and we can select
a small set of features by applying strong regularization.
Our methodology is general and can be easily applied to
other scenarios [35].
We extensively compared our LPFS method with

existing methods in the real datasets on acupuncture
treatment at different acupoints. We find that, 1). Our
method can select the fewest features while achieve
accurate predictions. 2). Our method is free of arbitrary
threshold choice. 3). Close check of the selected feature
shows that our method can identify those biological
meaningful features. 4). In addition, the cross-validation
results show that our method can achieve relatively high
accuracy in prediction.

Prior information allows further improvement of our
method. Currently the identified biomarkers are inde-
pendent to each other. We can move further step to
interpretation by considering a group of biologically
meaningful biomarkers. For example, we can incorpo-
rate the network information (interactions among fea-
tures) into the feature selection procedure. As a result, a
pathway or modules in the network will be finally
selected instead of single molecule as the biomarker, so
called network biomarker. We note that prior informa-
tion can be easily incorporated into our optimization
model either by adding some constraints or penalizing
in the objective function.
In this paper, the biomarker identification for each

acupuncture point is treated as a single binary classifica-
tion task. We then compare the revealed biomarkers for
their similarity and difference across different acupunc-
ture points. We note that a multi-classifier can be devel-
oped to systematically integrate all the profiles from
different points together. This topic is in progress as our
further direction.
Finally, the metabolic profile is known for its high var-

iance. We note that the main source of variance is from
NMR technology instead of acupuncture effect [36]. To
maximally reduce the variance from metabolic profile,
we carefully design our experiments. Firstly, we used the
relatively stable blood samples instead of urine sample.
Secondly, we specifically use the Pareto scaling and
orthogonal signal correction (OSC) method [37-39] to
normalize the raw data, which will reduce the variance
of samples inside each group and enhance the differ-
ences among groups. Even with all these efforts, the
remaining high variance may due to the change of
environments and conditions and will eventually prevent
the high accuracy for identification of biological mean-
ingful biomarkers. In addition to variance, the limited
number of sample in our study may also bring some
potential effects on the results. From this viewpoint,
these identified biomarkers should be carefully validated
for their biological functions. Also, additional control
study should be carefully designed to exclude other pos-
sible cofactors. Further integration of the data from
other levels, such as gene expression and proteomics
levels, will improve the robustness of the identified
biomarker.
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