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Abstract

Background: Probabilistic Boolean Network (PBN) is a popular model for studying genetic regulatory networks. An
important and practical problem is to find the optimal control policy for a PBN so as to avoid the network from
entering into undesirable states. A number of research works have been done by using dynamic programming-
based (DP) method. However, due to the high computational complexity of PBNs, DP method is computationally
inefficient for a large size network. Therefore it is natural to seek for approximation methods.

Results: Inspired by the state reduction strategies, we consider using dynamic programming in conjunction with
state reduction approach to reduce the computational cost of the DP method. Numerical examples are given to
demonstrate both the effectiveness and the efficiency of our proposed method.

Conclusions: Finding the optimal control policy for PBNs is meaningful. The proposed problem has been shown

to be
∑p

2
- hard . By taking state reduction approach into consideration, the proposed method can speed up the

computational time in applying dynamic programming-based algorithm. In particular, the proposed method is
effective for larger size networks.

Background
An important goal for studying genetic regulatory net-
work is to understand the gene behavior and to develop
optimal control policy for potential applications to med-
ical therapy. While many models have been proposed
for modeling gene regulatory networks, Boolean Net-
works (BNs) [1-3] and thier extension Probabilistic Boo-
lean Networks (PBNs) [4] have received much attention.
Because they form a class of models which can capture
the logical interactions of genes and they are also effec-
tive in modeling pathways for drug discovery [5].
Recently applications in medical treatment for Parkin-
son’s disease can also be found in [6]. In fact, a PBN
can be considered as a collection of BNs driven by a
Markov chain and therefore its dynamics and behavior
can be studied by using Markov chain theory. For

reviews on BNs and PBNs, we refer interested readers
to [7-9] and the references therein.
Many methods in control theory are available for the

intervention of PBNs. A gene control model has been
proposed in [10]. The control model is formulated as a
mixed integer programming problem and it aims at
driving the PBN from the undesirable states to the
desirable ones. A class of PBN control problems with
hard constraints has been proposed in [11,12]. The
motivation of the control model is to reduce the side-
effects of medical treatment. In [11], hard constraints
are included in the optimal control problem and an
approximation method is then proposed in [12] to
obtain the optimal controls efficiently.
Datta et al. [13] proposed an external intervention

method based on optimal control theory. In their work,
genes are classified as internal nodes and external nodes
(control nodes). One can intervene the values of internal
nodes in some desirable manner by controlling the
values of certain external nodes. By defining the control
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cost for each control input and terminal cost for each
state, the problem is to find a sequence of control
inputs that leads the network into desirable states at the
terminal step with minimum average cost. The classical
technique of dynamic programming is then employed to
solve the optimal control problem.
Chen et al. [14] then consider an external intervention

problem based on optimal control theory and dynamic
programming. Given the terminal cost of each state, the
objective is to drive the network into the state with the
maximum cost being minimized by applying external
controls. The problem is important in the view of medi-
cal therapy because patients/organisms would like to
minimize the damage even for the worst case. They
proved that both minimizing the maximum cost and

minimizing the average cost are
∑p

2
- hard . A dynamic

programming-based algorithm is then proposed for find-
ing a control sequence that minimizes the maximum
cost in control of PBN. The above dynamic program-
ming-based methods still have high computational com-
plexity. The size of the underlying transition probability
matrix increases exponentially with the number of
nodes in the PBN. To tackle this problem a possible
remedy is to consider network reduction approach.
Several reduction methods have been proposed

recently. In [15], a CoD-based reduction algorithm is
introduced. Coefficient of Determination (CoD) helps to
evaluate the influence of a candidate node for deletion
on the target node and find the optimal candidate node
for deletion. The proposed algorithm can well preserve
the attractor structure and long-run dynamics of the
original network.
Qian et al. [16] proposed a state reduction method by

considering deleting states directly. Instead of deleting
the nodes in a network, they delete the out-most states
having less influence to the network. Here we consider
a transition probability-based reduction strategy. This
strategy is easy to implement as we do not need to com-
pute the stationary distribution of the PBN beforehand.
We consider the problem of minimizing the maximum

cost in control of PBN and we employ transition prob-
ability-based reduction strategy to reduce the network
complexity of a PBN. We show that under some condi-
tion and in many of our numerical examples, the opti-
mal control sequence obtained from the reduced
network is the same as the one in the original network.
Then we apply the dynamic programming-based algo-
rithm to the reduced network. The computational com-
plexity of dynamic programming-based algorithm when
applied to the original network is O(2n) (depending on
the number of network states) when the number of con-
trol nodes m and the number of steps M are fixed.
When our state reduction method is applied, the

computational complexity is reduced to O(|R|), where R
is the set of states after reduction.
The remainder of the paper is structured ae follows.

We first give a brief review on PBNs and the dynamic
programming method. We then introduce our state
reduction approach together with some theoretical
results to support our proposed approach. Numerical
examples are given to demonstrate both the effective-
ness and the efficiency of our proposed method. Finally
some discussion will be given to conclude the paper.

A brief review on BNs and PBNs
A BN consists of a set of n nodes (genes) as follows: {v1,
v2,..., vn}, viÎ {0,1} and a set of Boolean functions
denoted by {f1, f2,..., fn}. Each vi(t) is defined as the state
of node i at time t. The rules of regulatory interactions
among nodes are then represented by the Boolean func-
tions: vi(t + 1) = fi(vi1, vi2,..., vik) where {vi1,vi2,...,vik} are
input nodes of fi, and they are called parent nodes of
node vi. We define IN(vi) = {vi1, vi2,..., vik}. The number
of parent nodes to viis called the in-degree of vi. The lar-
gest in-degree of {v1, v2,..., vn} is called the maximum in-
degree of BN and is denoted by K.
Since BN is a deterministic model, a stochastic model

is more preferable due to the measurement noise in
inferring a gene regulatory network. A stochastic version
of BN, PBN [4,9] is then introduced to cope with the
weakness. A PBN can be regarded as an extension of
BN to a probabilistic setting. In a PBN, each node vihas
a set of Boolean functions:

{
f (i)1 , f (i)2 , . . . , f (i)l(i)

}
. (1)

The state of viat time t + 1 is predicted by one of the
Boolean functions in (1) with selection probabilities c(i)j .
Here

l(i)∑
j=1

c(i)j = 1, c(i)j ≥ 0 for j = 1, 2, . . . , l(i).

A PBN can be regarded as a finite collection of BNs
over a fixed set of nodes, where each BN has a fixed set

of Boolean functions fj =
{
f (1)j1

, f (2)j2
, . . . , f (n)jn

}
. The BN

having Boolean function set fj(j = 1,2,...,N) is called the
jth BN. At each time step t, the selection process of
Boolean functions is assumed to be independent, and
the selection probability is given by

qj = c(1)j1
c(2)j2

. . . c(n)jn
, j = 1, 2, . . . ,N and the states of {v1(t

+ 1),v2(t + 1),...,vn(t + 1)} is predicted by the Boolean
function set fj. Then we introduce the decimal represen-
tation of states. Suppose the current state is {v1(t), v2
(t),..., vn(t)}, we define
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w(t) = 1 +
n∑
i=1

2n−ivi(t).

Since vi(t) Î {0,1}, w(t) can take any integral value in
[1, 2n].
The dynamics of a PBN can be studied by using Mar-

kov chain theory, see for instance [17]. The one-step
transition probability can be represented by using the
transition probability matrix A where each entry Aij is
given by

Aij =
∑
k∈I

qk, i, j = 1, 2, . . . , 2n. (2)

Here i = w(t + 1) and j = w(t) and I is set of BNs that
the network can enter state i from state j. We remark
that A is a column stochastic matrix, i.e.,

∑2n

j=1
Aij = 1 .

A review on dynamic programming
In this section, we first introduce several definitions to
facilitate the discussion. We then introduce the dynamic
programming-based algorithm. Suppose a PBN has a set
of internal nodes {v1,v2,...,vn} which is the same as the
node set defined in the previous Section, and a set of
external nodes (control nodes) {vn+1,vn+2,...,vn+m}. At
time t+ 1, the states of vi, i = 1,2,..., n are predicted by
υi(t + 1) = f (i)j (υi1,υi2, . . . ,υik) where vikcan be either an
internal node or an external node. This provides a possi-
ble way for intervening the states of internal nodes by
controlling the values of external nodes. To facilitate
our discussion, we adopt the following state representa-
tion of the network and define

zt = 1 +
n∑
i=1

2n−iυi(t) (3)

to be the state of network. Then we define control
input as

υt = 1 +
m∑
i=1

2m−iυn+i(t). (4)

Here we are interested in the following problem:
Minimizing the maximum cost in control of PBN.
Given the terminal cost C(zM) for each state zMÎ

{1,2,...,2n} at terminal time step M, find a sequence of
control input u0,u1,...,uMsuch that starting from the
given initial state the network will enter into the state
with minimized maximum cost at time step M. In [14],
a dynamic programming-based method is proposed for
the above problem:
Step 0: Set t = M;
J(zM, hM) = C(zM) for all hM = {0,..., M}.
Step 1: t : = t -1.

Step 2: For any ztÎ {1,..., 2n} and htÎ {0,..., M}, com-
pute

J(zt,ht) = min
υt∈{1,...,2m}

⎧⎪⎨
⎪⎩

min
zt+1∈F(zt ,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

min
zt+1∈F(zt ,ut)

J(zt+1, ht − 1), otherwise.

and

u(zt, ht) = arg min
ut∈{1,...,2m}

⎧⎪⎨
⎪⎩

max
zt+1∈F(zt,ut)

J(zt+1, ht), if ut = u(zt+1, ht),

max
zt+1∈F(zt,ut)

J(zt+1, ht − 1), otherwise.

Step 3: If t >0, go back to Step 1; Otherwise, stop.

The state reduction approach
In this section we propose our state reduction method.

Transition probability-based state reduction strategy
Due to the high network complexity of a PBN, one has
to deal with matrices of huge size which increases expo-
nentially with the number of internal nodes. Network
reduction is therefore an important issue to be
addressed in this situation. In [16], a transition probabil-
ity-based state reduction strategy is proposed. In a PBN,
we consider all attractor states and initial state as critical
states, and they are preserved during state reduction. A
state i can be deleted if the following equation is satis-
fied:

2n∑
j=1

Aij < ξ (5)

where ξ >0 is a parameter to be predetermined. The
value of ξ depends on perturbation probability and it is
usually not large. When we consider PBNs without per-
turbation, Equation (5) can be rewritten as

2n∑
j=1

Aij = 0. (6)

Which means that the network will never enter state i
from other states. Hence, deleting state i will not influ-
ence the steady-state distribution of the network.

The dynamic programming-based algorithm on the
reduced network
Since the computational complexity of the dynamic pro-
gramming is O(2n) when the number of control nodes
m and the number of steps M are fixed, using state
reduction may reduce the computation complexity to O
(|R|), where R is the set of states after reduction. It is
straightforward to see that we have the following
proposition.
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Proposition 1 The result of dynamic programming-
based algorithm on the reduced network will be the
same as the one on the original network.
It is straightforward to see that, starting from the

initial state, the network will never enter into transient
states to be deleted. Therefore the network will never
stop at those states at the terminal time step. This
means that the deleted states will not be included in the
optimal route, and the cost of deleted states will not be
counted. Hence deleting these transient states will not
influence the result obtained from the DP method when
applied to the reduced network.
Based on transition probability-based strategy, one can

iteratively delete those transient states until all the
remaining states are critical states. In each step, we need
to update the transition matrix for the reduced network
by deleting the corresponding row and column from the
transition matrix. After making the reduction, one can
get a reduced network with a set of states R and a |R|-
by-|R| transition probability matrix B. Then we can
apply dynamic programming-based algorithm on the
reduced network. In the following, we give a theoretical
result on the reduction method when the indegree of
the network is one.

An analysis of the reduction method when indegree K =
1
In a PBN of n genes, there are totally 2n states in the
network. When K = 1, it means that each gene is con-
trolled by only a single gene. Table 1 gives an example
when the number of genes is two. It is straightforward
to compute the number of all the possible BNs which is
actually 4×4 = 16.
In general, we can also compute the number of all the

possible BNs for n genes: (2n)n. For example, from
Table 1, one can calculate there are totally (2 × 2)2 = 16
networks with 22 × 22 sizes. When every row contains
1, it means the number of nonzero rows is 22. To satisfy
this condition, we have to choose 2 genes as parent
genes and consider every gene has two possible states.
Thus, we can deduce that the number of such networks
is A2

2 × 2 × 2 = 8 where An
r = n!/r! . But when the num-

ber of nonzero rows is 21, we just select only one gene
as the parent gene and the corresponding selected possi-
bilities are C2

1 where Cn
r = n!/(r!(n − r)!). Since for

each gene, there exist two states to be selected. There-
fore, the total number of such networks is
C2
1 × 2 × 2 = 8 . In determination of the linear combina-

tion of BNs for construction of PBN, the intrinsic struc-
ture of BNs plays an utmost role. Here we study the
distribution of nonzero rows in BNs and we give the fol-
lowing distribution theory.
Proposition 2 When the indegree of a BN is one, the

distribution of zero row is given in Table 2. Moreover,
the probability of getting a BN having no zero row
decreases to zero at a fast rate of

n!
nn

as the number of
genes n increases to infinite.
In Table 2, when the number of zero rows is 0, it

means that there is no zero row, there are n!2n such
kind of BNs. This means that after transition, all the
states will still be visited. In calculating the number of
BNs satisfying this particular condition, we should
ensure that the n genes have n parent nodes. Therefore
it is easy to deduce that we can have n!2n BNs having
no zero row. As a matter of fact, if we define a function
Fdisfor mapping the number of non-zero rows in BNs to
the number of the parent nodes for a n-gene set, we can
have

Fdis(2(n−k)) = (n − k), k = 1, 2, . . . ,n − 1.

Therefore to compute the number of BNs when the
number of non-zero rows is 2n-k, one should select n-k
out of n genes as parent nodes. And that is the reason
why we have Cn−k

n . Since the n-k parent nodes will fill
in n positions, we should take all possible selection pat-
tern into account. Then we have the double summation
part for calculating the number of BNs when the num-
ber of nonzero rows is 2n-k, k = 1,2,..., (n - 1).
Furthermore, since there are 2n states for n genes, the

number of rows in BNs is 2n. One can observe that with
the increase of n, the ratio of the number of BNs with
full number of rows to the whole number of (2n)n BNs
is decreasing fast because

lim
n→∞

2nn!
(2n)n

= lim
n→∞

n!
nn

= 0.

Hence this guarantees the efficiency of state reduction.

State reduction for PBN with random perturbation
In this section we discuss the state reduction strategy
for PBNs with random perturbation. Let p be the per-
turbation probability of single gene (flipping the value of
single gene from 1 to 0 or 0 to 1). Suppose the current
state is v(t), then state at the next time step is deter-
mined by the transition matrix without perturbation A
with probability (1-p)n, or by randomly perturbation
with probability 1-(1-p)n. Therefore the transition matrix
with perturbation is given by

Table 1 All the possible BNs for 2 genes when K = 1

States f1 f2

f11 f12 f13 f14 f21 f22 f23 f24

00 0 1 0 1 0 1 0 1

01 0 1 1 0 0 1 1 0

10 1 0 0 1 1 0 0 1

11 1 0 1 0 1 0 1 0
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Ã = (1 − p)nA + P. (7)

where P is the perturbation matrix [18]:

P = Q ⊗ Q ⊗ · · · ⊗ Q︸ ︷︷ ︸
n terms

−(1 − p)nI2n (8)

where

Q =
(
1 − p p
p 1 − p

)
(9)

To carry out the state reduction strategy, we need to
delete all the states which can only be entered by ran-
dom perturbation. Here we set the threshold for ξ as
the row sum of P: ξ = 1 - (1 - p)n. If for some state i,
the following inequality

2n∑
j=1

Āij ≤ ξ (10)

is satisfied, then we can delete the state.
Table 3 gives the reduction rates (percentage of states

deleted after network reduction) for PBNs with random
perturbation. In the experiment, each PBN has 4 BNs,
and the maximum in-degree is K = 2. We consider the
cases p = 0.001, 0.002, 0.005, 0.01 and n = 6, 8,10,12.
For each case, we perform the simulation for 10 times
and report the average results. From Table 3, one can
see that the PBNs can delete more rows when the value
of perturbation probability p increases.

Results and discussions
In this section, we give some numerical examples to
compare the result of dynamic programming-based
algorithm on the reduced network with the one on the
original network.

A 6-gene example
We first consider a 6-node example. We consider the
cases of m = 1,2, N = 2,4,8 and K = 2, 3. The Boolean
function set of PBN are randomly generated. We let M

Table 2 Distribution of number of nonzero rows in BNs when K = 1

Number of nonzero rows in BN Number of BNs in all the (2n)nBNs

2n n!2n

2(n-k)k = 1,2,...,(n - 1)
n!Cn−k

n 2n
∑k

j=1
Cj
n−k

∑
∑j

i=1 Ai=k+j
Ai>2, i=1,2,··· ,j

1
A1! · · ·Ai!

Table 3 Reduction Rates for PBN with Gene Perturbations

n = 6 n = 8 n = 10 n = 12

p = 0.001 12.5% 37.5% 36.0% 35.4%

p = 0.002 42.2% 60.5% 42.8% 48.4%

p = 0.005 77.5% 67.8% 63.1% 63.8%

p = 0.010 84.9% 73.1% 77.0% 72.4%

Table 4 A 6-Node Example for PBN Without Perturbation

Size Cost CPU Time (sec.)

Original Reduced Original Reduced Original Reduced

m= 1

N = 2 32 24 17 17 0.1276 0.0943

K = 2

m= 1

N = 2 32 26 5 5 0.1255 0.0997

K = 3

m = 1

N = 4 32 26 21 21 0.1286 0.1062

K = 2

m = 1

N = 4 32 27 19 19 0.1291 0.1085

K = 3

m = 1

N = 8 32 30 25 25 0.1355 0.1274

K = 2

m = 1

N = 8 32 32 29 29 0.1355 0.1355

K = 2

m = 2

N = 2 16 11 9 9 0.1061 0.0692

K = 2

m = 2

N = 2 16 10 3 3 0.0996 0.0585

K = 3

m = 2

N = 4 16 14 9 9 0.1051 0.0996

K = 2

m = 2

N = 4 16 16 6 6 0.1040 0.0997

K = 3

m = 2

N = 8 16 16 14 14 0.1063 0.1050

K = 2

m = 2

N = 8 16 16 12 12 0.1049 0.1053

K = 3
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= 20 and C(zM) = zM. When m = 1, there are 5 internal
nodes and 1 control node. The original network size is
25. When m = 2, there are 4 internal nodes and 2 con-
trol nodes. The original network size is 24. Table 4 gives
the numerical results for PBNs without perturbation.
Table 5 gives the numerical results for PBNs with ran-
dom perturbation. The second column gives the net-
work size before and after reduction. The third column
gives minimized maximum cost obtained by using the
dynamic programming-based algorithm on the original
and reduced network. The last column records the CPU

time of running the program for dynamic program-
ming-based algorithm before and after reduction.

A 12-gene example
We then consider a 12-node example. We consider the
cases of m = 1,2, N = 2,4,8 and K = 2,3. Again the Boo-
lean function set of PBN are randomly generated. We
let M = 40,C(zM) = zM. When m = 1, there are 11 inter-
nal nodes and 1 control node. The original network size
is 211. When m = 2, there are 10 internal nodes and 2
control nodes. The original network size is 210. Table 6

Table 5 A 6-Node Example for PBN With Random
Perturbation

Size Cost CPU Time (sec.)

Original Reduced Original Reduced Original Reduced

m = 1

N = 2 32 12 31 31 0.0402 0.0162

K = 2

m= 1

N = 2 32 23 10 10 0.0375 0.0257

K = 3

m = 1

N = 4 32 28 24 24 0.0396 0.0329

K = 2

m = 1

N = 4 32 30 26 26 0.0386 0.0363

K = 3

m = 1

N = 8 32 32 30 30 0.0402 0.0399

K = 2

m = 1

N = 8 32 32 30 30 0.0419 0.0418

K = 3

m = 2

N = 2 16 12 13 13 0.0315 0.0213

K = 2

m = 2

N = 2 16 15 9 9 0.0277 0.0262

K = 3

m = 2

N = 4 16 14 9 9 0.0300 0.0250

K = 2

m = 2

N = 4 16 16 7 7 0.0293 0.0292

K = 3

m = 2

N = 8 16 16 15 15 0.0316 0.0314

K = 2

m = 2

N = 8 16 16 13 13 0.0316 0.0307

K = 3

Table 6 A 12-Node Example for PBN Without
Perturbation

Size Cost CPU Time (sec.)

Original Reduced Original Reduced Original Reduced

m = 1

N = 2 2048 426 757 757 63.84 4.07

K = 2

m = 1

N = 2 2048 700 1258 1258 256.68 36.89

K = 3

m = 1

N = 4 2048 502 1830 1830 272.27 23.27

K = 2

m = 1

N = 4 2048 1462 1591 1591 264.39 143.48

K = 3

m = 1

N = 8 2048 1103 2036 2036 279.58 88.80

K = 2

m = 1

N = 8 2048 1801 1987 1987 272.35 243.79

K = 3

m = 2

N = 2 1024 350 607 607 153.85 24.35

K = 2

m = 2

N = 2 1024 444 179 179 148.80 36.10

K = 3

m = 2

N = 4 1024 415 342 342 140.62 29.49

K = 2

m = 2

N = 4 1024 801 328 328 150.21 107.27

K = 3

m = 2

N = 8 1024 759 736 736 146.98 87.76

K = 2

m = 2

N = 8 1024 937 756 756 172.93 146.29

K = 3
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gives the numerical results for PBNs without perturba-
tion. Table 7 gives the numerical results for PBNs with
random perturbation. We see that our proposed reduc-
tion method is both efficient and effective.

Conclusions
From the experiment results, one can see that applying
dynamic programming-based algorithm on the reduced
network can reduce the computational complexity.

The performance of the algorithm on the reduced net-
work depends on the parameters of n, m, N and K. For
n = 6, from Table 3 and Table 4, one can see that in
general, there are some improvements in computa-
tional time when reduction method is applied. How-
ever, for n = 12, Table 6 and Table 7 indicate that
when the number of nodes is large and K = 2, the
algorithm on the reduced network performs much bet-
ter than the one on the original network. Therefore,
our proposed method is effective for larger size net-
works. Future research issues will pay attention to sta-
tistical analysis of the distribution of zero rows in
transition matrix in terms of n. Moreover, we will keep
exploring ways of reducing computational complexity
of intervention strategies.
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