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Abstract

Background: Noise, nonlinear interactions, positive and negative feedbacks within signaling pathways, time delays,
protein oligomerization, and crosstalk between different pathways are main characters in the regulatory of gene
expression. However, only a single noise source or only delay time in the deterministic model is considered in the
gene transcriptional regulatory system in previous researches. The combined effects of correlated noise and time
delays on the gene regulatory model still remain not to be fully understood.

Results: The roles of time delay on gene switch and stochastic resonance are systematically explored based on a
famous gene transcriptional regulatory model subject to correlated noise. Two cases, including linear time delay
appearing in the degradation process (case I) and nonlinear time delay appearing in the synthesis process (case II)
are considered, respectively. For case I: Our theoretical results show that time delay can induce gene switch, i.e.,
the TF-A monomer concentration shifts from the high concentration state to the low concentration state
("on”®“off”). With increasing the time delay, the transition from “on” to “off” state can be further accelerated.
Moreover, it is found that the stochastic resonance can be enhanced by both the time delay and correlated noise
intensity. However, the additive noise original from the synthesis rate restrains the stochastic resonance. It is also
very interesting that a resonance bi-peaks structure appears under large additive noise intensity. The theoretical
results by using small-delay time-approximation approach are consistent well with our numerical simulation. For
case II: Our numerical simulation results show that time delay can also induce the gene switch, however different
with case I, the TF-A monomer concentration shifts from the low concentration state to the high concentration
state ("off”®“on”). With increasing time delay, the transition from “on” to “off” state can be further enhanced.
Moreover, it is found that the stochastic resonance can be weaken by the time delay.

Conclusions: The stochastic delay dynamic approach can identify key physiological control parameters to which
the behavior of special genetic regulatory systems is particularly sensitive. Such parameters might provide targets
for pharmacological intervention. Thus, it would be highly interesting to investigate if similar experimental
techniques could be used to bring out the delay-induced switch and stochastic resonance in the stochastic gene
transcriptional regulatory process.
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Background
In recent years, a plenty of researches show that noises
play a positive role in many fields. Many novel phenom-
ena are found, such as noise induced transition [1-3],
reentrance phenomena [4,5], stochastic resonance [6,7],
noise enhanced stability [8,9], current reveal [10-12],
noise enhanced coherence resonance [13,14], and so on.
On the other hand, in many cases, the delay reflects
transmission times related to the transport of matter,
energy, and information through the system. Under-
standing the behavior of time-delayed dynamical systems
is a first step in improving the knowledge of memory in
general, whose analysis is especially important in medi-
cine, biology and control theory. Recently, the combined
effects of noises and time delays have been the subject
of increased interest. In the field of pure statistical phy-
sics, the bistable systems with noise and time delay
simultaneous have been investigated in detail [15-17].
Brownian motor with time-delayed feedback is studied
by Wu [18]. The effect of time delay on feedback con-
trol of a flashing ratchet has been also investigated [19].
The integration of noise and time delay completely sup-
presses the population explosion in a mutualism [20].
Effects of time delays and noises in competitive systems
have been investigated [21]. These results implicated
that the combination of noise and time delay could pro-
vide an efficient tool for understanding real systems.
Regulation of gene expression by signals outside and

inside the cell plays important roles in many biological
processes. As the basic principles of genetic regulation
have been characterized, it has become increasingly evi-
dent that nonlinear interactions, positive and negative
feedback within signaling pathways, time delays, protein
oligomerization, and crosstalk between different path-
ways need to be considered for understanding genetic
regulation [22-28]. Smolen et al. have introduced a sim-
ple genetic regulatory model that incorporates known
features of genetic regulatory using an explicitly mathe-
matical dynamic systems approach [22,23]. The simplest
model manifested multiple stable steady states, and brief
perturbations could switch the model between these
states. Moreover, the effects of macromolecular trans-
port and stochastic fluctuations on dynamics of genetic
regulatory systems are investigated. Liu et al. [25] have
studied the effects of the correlation between the noise
of the decomposed rate kd and the noise of the synthesis
rate Rbas. They found that a successive switch process (i.
e., “on”®“off”®“on”, which we call the reentrance tran-
sition or twice switch) occurs with increasing the noise
intensities, and a critical noise intensity exists at which
the mean first passage time of the switch process is the
largest. The effect of the color cross-correlated on the
switch is investigated [26]. Wang [27]et al. also have

investigated the effects of delay time, which is the time
required for movement of TF-A protein to the nucleus.
Their results showed that the delay time restrains the
transition from the low concentration state to the high
concentration state. However, these studies only con-
sider single noise source, in particular, the delay-induced
switch-like behaviors has not been explored yet. In addi-
tion, in this case the delay time appears in both determi-
nistic and fluctuating forces simultaneously, hence it is
very difficult to study from a view of theoretical analysis.
Stochastic resonance (SR), which was originally dis-

covered by Benzi and Nicolis [29,30] in the context of
modeling the switch of the Earth’s climate between ice
ages and periods of relative warmth, is an important
aspect in many scientific fields, which has been investi-
gated extensively due to its potential applications from
both the theoretical and experimental points of view. SR
is a common case and generic enough to be observable
in a large variety of nonlinear dynamical systems,
including the occurrence of SR in physical systems, bio-
logical system, ecological system, laser system, etc. In
the biophysics field, the study of SR phenomenon has
turned into a forward subject. The SR phenomenon and
its applications were extensively found. Such as, noise
enhancement of information transfer in crayfish
mechanoreceptors by SR [7]. SR can be used as a mea-
suring tool to quantify the ability of the human brain to
interpret noise contaminated visual patterns [31] and
appears in an anti-tumor system modulated by a seaso-
nal external field [32]. Oscillation and noise determine
signal transduction in shark multimodal sensory cells
[33]. The gene expression can be regulated by signals
from outside and within the cell. Thereby, in the gene
transcriptional regulatory process, the external environ-
mental factors, such as the electromagnetic field on the
earth, the solar terms and seasonal variation, are the
common features. This means that the transcriptional
regulatory of gene should have a periodic form. In this
case, the bistability, noise and the signal exist simulta-
neously, so the combined effects of noises and delay
time on the SR should be investigated.
We would like to emphasize that the combined effects

of correlated noise and time delay on dynamical beha-
viors of gene regulatory network are rarely investigated.
In this article, the statistical properties of gene switch
and stochastic resonance induced by time delay in two
different cases (i.e., linear time delay case and nonlinear
time delay case) are explored. Our investigation is a sig-
nificant try forward understanding the basic mechanisms
of the delay induced gene switch and stochastic reso-
nance in realistic yet complex organisms from a view of
theory, and will motivate the further experimental
research for gene network.
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Model
Deterministic gene transcriptional regulatory model
To examine the capability of genetic regulatory systems
for complex dynamic activity, Smolen et al. [22] have
developed simple kinetic models that incorporate known
features of these systems. These features include autore-
gulation and stimulus-dependent phosphorylation of
transcription factors (TFs), dimerization of TFs, cross-
talk, and feedback. The simplest kinetic model of
genetic regulation can be described by Figure 1. A single
TF-A is considered as part of a pathway mediating a cel-
lular response to a stimulus. The TF forms a homodi-
mer that can bind to responsive elements (TF-REs). The
TF-A gene incorporates a TF-RE, and when homodi-
mers bind to this element, TF-A transcription is
increased. Binding to the TF-REs is independent of
dimer phosphorylation. Only phosphorylated dimers can
activate transcription. The fraction of dimers phosphory-
lated is dependent on the activity of kinases and phos-
phatases whose activity can be regulated by external
signals. Thus, this model incorporates both signal-acti-
vated transcription and positive feedback on the rate of
TF synthesis. It is assumed that the transcription rate
saturates with TF-A dimer concentration to maximal
rate kf, which is proportional to TF-A phosphorylation.
At negligible dimmer concentration, the synthesis rate is
Rbas. TF-A is eliminated with a rate constant kd, binding
processes are considered comparatively rapid, so the
concentration of dimmer is proportional to the square
of TF-A monomer concentration x. These simplifica-
tions give a model with a single ordinary differential
equation for the concentration of the TF-A:

dx(t)
dt

=
kf x2(t)

x2(t) + Kd
− kdx(t) + Rbas, (1)

where Kd is the dissociation concentration of the TF-
A dimer from TF-REs. Under the following condition of

parameters:

[−(
kf + Rbas

3kd
)3 +

Kd(kf + Rbas)

6kd
− KdRbas

2kd
]2 + [

Kd

3
− (

kf + Rbas

3kd
)2]3 < 0. (2)

The potential function corresponding to Eq.(1) is

U0(x) = kf
√
Kd arctan(

x√
Kd

) +
kd
2
x2 − (Rbas + kf )x. (3)

Two stable steady states are presented as
x+ = 2

√
−p/3cos(θ) + (Rbas + kf )/(3kd) and

x− = 2
√

−p/3cos(θ + 2π/3) + (Rbas + kf )/(3kd) , respec-
tively. One unstable steady state is
xu = 2

√
−p/3cos(θ + 4π/3) + (Rbas + kf )/(3kd) , where p

= Kd - [(Rbas + kf)/kd]
2 /3, q = Kd(kf - 2Rbas)/(3kd) - 2

[(Rbas + kf)/(3kd)]
3 and θ = arccos(−q/(2

√−p3/27)/3
An interesting aspect of the model is that, based on

the different initial conditions, the concentration of TF-
A can be one of the two stable steady states. It is a bis-
table system for certain values of kf (i.e., 5.45 < kf <6.68)
(see Figure 2). Bistability is a kind of important dynami-
cal feature in biological systems, especially for the fate
decision in some biological processes. In this article, our
works are employed in the bistable region. When the
parameter values are kf = 6, Kd = 10, kd = 1 and Rbas =
0.4, the stable steady states are x_ ≈0.62685 and x+
≈4.28343, and the unstable steady state is xu ≈1.48971
as shown in Figure 3[25].

Stochastic model with correlated noise and time delay
Cells are intrinsically noisy biochemical reactors: low
reactant numbers can lead to significant statistical fluc-
tuations in molecule numbers and reaction rates [34]. It
has been found that the stability against fluctuations is
essential for the gene regulatory cascade controlling cell
differentiation in a developing embryo [35]. Moreover,
these fluctuations are intrinsic: they are determined by
structure, reaction rates, and species concentrations of

Figure 1 Model of genetic regulation with a positive autoregulatory feedback loop. The transcription factor activator (TF-A) activates
transcription with a maximal rate kf when phosphorylated (P) and binds as a dimer to specific responsive-element DNA sequences (TF-REs). TF-A
is degraded with rate kd and synthesized with rate Rbas.
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Figure 2 Bifurcation plot for the steady state of TF-A on the control parameter of transcription rate kf. The system in the region (i.e.,
5.45 < kf <6.68) exhibits bistability. The other parameters are fixed as dissociation constant of TF-A dimer from TF-REs Kd = 10, the degradation
constant kd = 1, and the basal rate of TF-A synthesis Rbas = 0.4.

Figure 3 The bistable potential of Eq.(3). The parameter values are kf = 6, Kd = 10, kd = 1, and Rbas = 0.4.
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the underlying biochemical networks. So we should not
only consider the deterministic model. Recently, some
experiments also showed that Rbas and kd are affected
by the biochemical reactions, mutations and the concen-
trations of other proteins also fluctuate [36]. Therefore,
it is reasonable to study the fluctuation effects on the
gene transcriptional regulatory model. We consider the
fluctuations both on the synthesis rate Rbas and the rate
constant kd. Namely Rbas ® Rbas + h(t) and kd ® kd +
ξ(t). The two independent noise ξ(t) and h(t) may have
a common source, thereby the correlation between
them should be taken into our model. The stochastic
differential equation (Langevin equation) corresponding
to this bistable gene model is given:

dx(t)
dt

=
kf x2(t)

x2(t) + Kd
− (kd + ξ(t))x(t) + Rbas + η(t), (4)

where ξ(t) and h(t) are the Gaussian white noise with
the following statistical properties:

〈ξ(t)〉 = 〈η(t)〉 = 0, (5)

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t
′
), (6)

〈η(t)η(t′)〉 = 2αδ(t − t
′
), (7)

〈ξ(t)η(t′)〉 = 〈η(t)ξ(t′)〉 = 2λ
√

αDδ(t − t
′
). (8)

Where D and a denote the multiplicative and additive
noise intensities, respectively, and l represents the cou-
pling strength between the two noise terms (i.e., corre-
lated intensity).
In order to more exactly predict the dynamics of the

genetic regulation model, it is necessary to consider
macromolecular transport in these biochemical reac-
tions. Transport can be diffusive or active, and in some
cases a time delay may suffice to model active transport.
Smolen et al. [22,23] have considered that the binding
processes of gene transcriptional regulatory are com-
paratively rapid, and would probably not be reasonable
for overall cellular nuclear concentration of TF-A,
because the equilibration time would be on the order of
the degradation time for TF-A protein. However, a
short time scale for equilibration is more likely for
nuclear concentration of TF-A. This is because the rate
constants kf and kd include implicitly entrance and exit
of TF-A protein from the relatively small nuclear
volume and are thus larger than those governing the
dynamics of overall cellular concentration of TF-A.
Therefore, the time delay should be considered in this
model. This delay time appears between any change in
the level of nuclear TF-A and the appearance in the

nucleus of TF-A synthesized and degrading process in
response to that change.

Case I: Linear time delay appearing in the degradation
process
First, we consider the local time delay due to the degra-
dation of TF-A in the nucleus. The simplest kinetic
model of genetic regulation with the local time delay is
described by Case I in Figure 4. The time delay τ1
appearing in the TF-A degradation process can affect
the TF-A monomer concentration x(t). Therefore, (kd +
ξ(t))x(t) can be written as (kd + ξ(t))x(t - τ1), and Eq. (4)
is further rewritten:

dx(t)
dt

=
kf x2(t)

x2(t) + Kd
− kdx(t − τ1) + Rbas − x(t − τ1)ξ(t) + η(t). (9)

where the τ1 (time delay) previous to the time when
dx/dt is computed. Because kdx(t - τ) is dependent line-
arly on the TF-A monomer concentration, for simplicity,
we call this form of time delay as linear time delay. In
addition, only small time delay is investigated in Case I
since the theoretical approximation methods below are
applicable for the small delay time.

Case II: Nonlinear time delay appearing in the synthesis
process
Second, the rate constant kf includes implicitly entrance
and exit of TF-A protein from the relatively small
nuclear volume, thus larger than those governing the
dynamics of overall cellular [TF-A]. We may consider
the local time delay appearing in the synthesis process.
The model incorporates a time delay τ2 = τ’ + τ″, where
τ’ is the time taken for the transcription of tf-a mRNA
and its movement to translation, and τ″ is the time
required for movement of TF-A protein to the nucleus.
Namely, the local time delay is introduced into the Hill
function. The simplest kinetic model of genetic regula-
tion with time delay appearing in Hill function is pre-
sented by Case II in Figure 4.
Then,

kf x2(t)

x2(t) + Kd
→ kf x2(t − τ2)

x2(t − τ2) + τKd
, and Eq. (4) can be

rewritten:

dx(t)
dt

=
kf x2(t − τ2)

x2(t − τ2) + Kd
− kdx(t) + Rbas − x(t)ξ(t) + η(t). (10)

where the first term on the right side is evaluated at a
time τ2 (delay time) previous to the time when dx/dt is
computed, and is nonlinear time-delayed, and the delay
time does not appear in the stochastic force. Because
kf x2(t − τ2)

x2(t − τ2) + Kd
is dependent nonlinearly on the TF-A

monomer concentration, for simplicity, we regard this
case as nonlinear time delay case.
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Below, the statistics properties of our theoretical
model subjected to correlated noise and time delay are
explored in the two different cases (i.e., linear time
delay case and nonlinear time delay case). Considering
the difficulties in theoretical analysis, we will investi-
gate the two different time delays in the gene model,
respectively.

Methods and results
Results for case I
Steady-state probability distribution
The small time delay approximation of the probability
density approach is employed [37,38]. Substituting xτ1

for x(t - τ1) in Eq.(9), we obtain

dx(t)
dt

= heff (x(t)) + geff (x(t))ξ(t) + η(t), (11)

where

heff (x) =
∫ +∞

−∞
(

kf x2

x2 + Kd
− kdxτ1 + Rbas)Pd(xτ1 , t − τ1; x, t)dxτ1

= (1 + τ1)(
kf x2

x2 + Kd
− kdx + Rbas).

(12)

geff (x) =
∫ +∞

−∞
(−xτ1 )Ps(xτ1 , t − τ1; x, t)dxτ1 = −(1 + τ1)x. (13)

In Eq.(11)-(12), Pd(xτ1 , t − τ1; x, t) and
Ps(xτ1 , t − τ1; x, t) denote the conditional distributions
of x(t) in the deterministic part and stochastic part,
respectively, which are given by [39]

Pd(xτ1 , t − τ1; x, t) =

√
1

2πG2(x, x)τ1
exp(− [xτ1 − (x + h(x, x)τ1)]

2

2G2(x, x)τ1
), (14)

Ps(xτ1 , t − τ1; x, t) =

√
1

2πG2(x, x)τ1
exp(− [xτ1 − (x + g(x, x)τ1)]

2

2G2(x, x)τ1
), (15)

where h(x, x) =
kf x2

x2(t) + Kd
− kdx + Rbas, g(x, x) = −x,G2(x, x) = Dx2 − 2λ

√
Dαx + α .

Thus, the stochastic delayed differential equation can be
approximately reduced to the ordinary stochastic equa-
tion. The non-Markovian process induced by the time
delay can be converted into Markovian process. Mean-
while, Eq.(11) is equivalently transformed into a stochas-
tic differential equation [2]

dx(t)
dt

= heff (x(t)) + Geff (x)ε(t), (16)

with

〈ε(t)ε(t′)〉 = 2δ(t − t
′
), (17)

Geff (x) =
√
Dgeff (x)

2 − 2λ
√
Dαgeff (x) + α

=
√
D(1 + τ1)

2x2 − 2λ
√
Dα(1 + τ1)x + α.

(18)

In the steady-state regime (given by Eq.(2)) and under
the constraint x > 0 (the TF-A monomer concentration
x(t) is all higher than zero), the approximate delay Fok-
ker-Planck equation corresponding to Eq.(16) is derived
as

∂

∂t
P(x, t) = − ∂

∂x
A(x)P(x, t) +

∂2

∂x2
B(x)P(x, t). (19)

where

A(x) = heff (x) + Geff
dGeff (x)

dx
, (20)

Figure 4 Model of genetic regulation with a positive autoregulatory feedback loop and time delays. Case I: time delay τ1 in the
degradation process of TF-A; Case II: time delay τ2 = τ’ + τ″, with τ’ the time taken for the transcription of tf-a mRNA and its movement to
translation and τ″ the time required for movement of TF-A protein to the nucleus.
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B (x) = G2
eff (x). (21)

The stationary probability distribution (SPD) corre-
sponding to Eq. (19) is obtained

Pst(x) =
N

Geff
exp

∫ x

0

heff (x
′
)

B(x′)
dx

′
,

=
N√

D(1 + τ1)
2x2 − 2λ

√
Dα(1 + τ1)x + α

exp[�(x)],
(22)

where N is a normalization constant, and F(x) is the
generalized potential function following

�(x) =
1
γ0

[γ1 ln(x2 + kd) + γ2 arctan(
x√
kd
) + γ3 ln(Dn2x2 − 2mnx + α)

+
γ4√

Dαn2 − m2n2
arctan(

Dn2x − mn
Dαn2 − m2n2

)],
(23)

where

n = 1 + τ1,

m = λ
√
Dα,

γ0 = 4m2Kdn2 − 2αDn2Kd + K2
dD

2n4 + α2,

γ1 = −Kdkf n
2m,

γ2 = K3/2
d kfDn3 − n

√
Kdkf ,

γ3 = n2mKdkf − kdα2

2Dn
− 2nm2Kdkd

D3
+ nαkdKd − Dn3K2

d kd
2

,

γ4 = −αKdDn3kf + nα2kf + 4n3m2Rbaskd

−2Dn3RbasKdα +D2n5RbasK
2
d + nRbasα

2

+2n3m2Kdkf − mkdα2 − 4n2m3Kdkd

+2n2mαkdKd − n4mDK2
d kd.

(24)

In the bistable region, the time course of TF-A mono-
mer concentration x(t) and the probability distribution
are plotted for different delay time, as shown in Figure
5, respectively. These results are obtained by directly
simulating the stochastic differential equation (9) and by
using the theoretical formula (22), respectively. From
Figure 5, it is clear that the TF-A monomer concentra-
tion x shifts from the high concentration state to the
low concentration state with increasing the delay time
τ1. If we regard the low concentration state as the “off”
state and the high concentration state as the “on” state,
the above result indicates that a switch process can be
induced by the delay time. Figure 5 shows that the TF-
A monomer concentration x concentrates on the high
concentration state when the delay time is small, that is,
we begin the switch in the “on” position by tuning the
delay time to a very low value. However, increasing the
delay time causes the low concentration state to become
populated. It means that the concentration of TF-A
monomer decreases, and a flipping of the switch to the
“off” position occurs. Therefore, the delay time can be
used as a control parameter for the switch process in

the genetic regulatory system. The agreement between
our theoretical and numerical results indicates that the
approximation method seems to work quite well for the
small delay time.
Mean value
In order to quantitatively investigate the stationary
properties of the system, we introduce the moments of
the variable x as

〈xn〉st =
∫ +∞

0
xnPst(x)dx. (25)

The mean of the state variable x is

〈x〉st =
∫ +∞

0
xPst(x)dx. (26)

The theoretical and the numerical simulation results
of 〈x〉st as a function of τ1 is plotted in Figure 6(a).
Figure 6(a) shows that the 〈x〉st is decreased with
increasing τ1. When τ1 is small, the TF-A monomer con-
centrates on the high concentration state. When τ1 is
increased, the TF-A monomer concentrates on the low
concentration state. Namely, for large τ1, it is more easy
to be at the “off” state (the low concentration state).
The effect is similar to the effect of τ1 on SPD shown in
Figure 5. It also implicates that the time delay induces
the gene transition from the “on” state to the “off” state.
Mean first passage time
For the delay time-induced switch, we will quantify the
effects of delay time on the switch between the two
stable steady states. When the system is stochastically
bistable, a quantity of interest is the time from one state
to the other state, which is often referred to as the first
passage time. We consider the mean first passage time
(MFPT). Here the MFPT of the process x(t) to reach
the low concentration state x_(t) with initial condition x
(t = 0)=x+ (the high concentration state) is provided by
[40],

T(x+ → x−) =
∫ x−

x+

dx
B(x)Pst(x)

∫ x

0
Pst(y)dy. (27)

When the intensities of noises terms D are small
enough compared with the energy barrier height ΔF(x)
= F(x+) - F(xu), we can apply the steepest-descent
approximation to Eq.(27). Hence T is simplified as fol-
lowing [41]

T(x+ → xu) ≈ 2π√∣∣U′′
0(x+)U′′

0(xu)
∣∣ exp[

�(xu) − �(x+)
D

]. (28)

Here, the potential U0(x) is given by Eq.(3) and F(x) is
given by Eq.(23).
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By virtue of Eq.(28), the effects of τ1 on the MFPT can
be analyzed. MFPT as a function of τ1 is plotted in Fig-
ure 6(b). It shows that MFPT decreases monotonously
as τ1 increases. From the view point of physics, it means
that the delay time can speed up the transition between
the two steady states (low concentration state and high
concentration state). Namely, the delay time can acceler-
ate the transition of gene switch from “on” state to “off”
state.
Effects of time delay on stochastic resonance
In the gene transcriptional regulatory process, the exter-
nal environmental factors, such as the electromagnetic
field on the earth, the solar terms and seasonal variation,
are the common features. This means that the transcript
of gene should have a periodic form. For simplicity, a
cosinoidal form Acos(Ωt) is adopted to model. The
model is shown in Figure 7. If integrating the correlated

noises, the delay time and the weak periodic signal, we
can rewrite Eq.(9) as following

dx(t)
dt

=
kf x2(t)

x2(t) + Kd
− kdx(t − τ1) + Rbas − x(t − τ1)ξ(t) + η(t) + Acos(�t), (29)

where ξ(t) and h(t) are the Gaussian white noise, and
their statistical properties are given by Eqs.(5)-(8). A is
the amplitude of input periodic signal, Ω is the fre-
quency, and τ1 is the delay time.
Signal to noise ratio
Making use of the small delay time approximation of
the probability density approach and the stochastic
equivalence method, the approximated delay Fokker-
Planck equation of this model is given by

∂P(x, t)
∂t

= − ∂

∂x
[((1 + τ1)(

kf x2

x2 + Kd
− kdx + Rbas + Acos(�t)) +D(1 + τ1)2x − λ

√
Dα(1 + τ1))P(x, t)]

+
∂2

∂x2
[(D(1 + τ1)2x2 − 2λ

√
Dα(1 + τ1)x + α)P(x, t)].

(30)

Figure 5 Sample paths and probability distribution of x(t) for different delay time τ1. From top to bottom τ1 = 0.1, 0.3, and 0.5. a = 0.01,
D = 0.15 and l = 0.3. The green curve on the right side is the SPD by using of Eq. (22). The other parameter values are the same as those in
Figure 2.
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Under the constraint x > 0 (the TF-A monomer con-
centration x(t) is always higher than zero in the bistable
region satisfying Eq.(2), the quasi-steady-state distribu-
tion function Pqst(x, t) can be derived from Eq.(30) in
the adiabatic limit:

Pqst(x, t) =
N

(D(1 + τ1)
2x2 − 2λ

√
Dα(1 + τ1)x + α)

1/2
exp[−φn(x, t)

D
], (31)

where N is a normalization constant, �n(x, t) is the
generalized potential function with the form as below

φn(x, t) =
D

γ0
[γ1 ln(x2 + Kd) + γ2 arctan(

x√
Kd

) + γ3 ln(Dn2x2 − 2mnx + α)

+
γ4√

Dαn2 − m2n2
arctan(

Dn2x − mn√
Dαn2 − m2n2

)

+
γ5√

Dαn2 − m2n2
arctan(

Dn2x − mn√
Dαn2 − m2n2

)Acos(�t)],

(32)

where n, m, g0,g1,g2,g3 and g4 are given by Eq.(24). And

γ5 = −2αKdDn3 + nα2 + 4Kdn
3m2 + Kdn

5D2. (33)

Since the frequency Ω is very small, there is enough
time for the system to reach the local equilibrium dur-
ing the period of 1/Ω. On the other hand, assuming
that the amplitude of input periodic signal is small
enough (A <<1), it can not make the particles transit
from a well to another well. Using the definition of
MFPT and steepest descent method, one can obtain the
expressions of transition rates W± out of x+, x-,

W+ =

√∣∣U′′
0(x+)U′′

0(xu)
∣∣

2π
exp[

φn(x+, t) − φn(xu, t)
D

]. (34)

W− =

√∣∣U′′
0(x−)U′′

0(xu)
∣∣

2π
exp[

φn(x−, t) − φn(xu, t)
D

]. (35)

in which U(x), x+, x-, xu and �n(x, t) are defined by Eq.
(3) and Eq.(31), respectively.
For the general asymmetric nonlinear dynamical sys-

tem, the SR phenomenon has been found, and the
related theory has been developed [42]. Here, we only
simply list this method for calculating signal to noise
ratio (SNR).
The system is subjected to a time dependent signal

Acos(Ωt), up to first order on its amplitude (assumed to
be small), the transition rates can be expanded as fol-
lows by two-state model theory:

W+ = μ1 − β1Acos(�t),

W− = μ2 + β2Acos(�t).
(36)

where the constants μ1, 2 and b1, 2 depend on the
detailed structure of the system under study. For the
asymmetric case, μ1 ≠ μ2 and b1 = b2.
For the general asymmetric case we defined RS N R,

the SNR, as the ratio of the strength of the output signal
to the broadband noise output evaluated at the signal
frequency. Finally, the expression of SNR is given by
[42]

RSNR =
A2π(μ1β2 + μ2β1)

2

4μ1μ2(μ1 + μ2)
, (37)

Figure 6 < x >st and MFPT are plotted as a function of delay time τ1 with a = 0.01, D = 0.015 and l = 0.3. The other parameter values
are the same as those in Figure 2. The red sold line represents the theoretical results, and the blue dot line represents the numerical simulation
results. (a)< x >st; (b) MFPT.
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where

μ1 = W+|Acos(�t)=0,

μ2 = W−|Acos(�t)=0,

β1 =
dW+

d(Acos(ωt))

∣∣∣∣
Acos(�t)=0

,

β2 =
dW−

d(Acos(ωt))

∣∣∣∣
Acos(�t)=0

,

(38)

According to the expression of SNR in Eq.(37), the
effects of the additive noise intensity a, the correlated
noise intensity l and the delay time τ1 on the SNR are
analyzed. These results are plotted in Figures 8. In Fig-
ure 8, there exist one or two peaks which is the identify-
ing characteristic of the SR phenomenon. It implicates
that the noise-induced SR happens in this genetic regu-
latory system.
The SNR as a function of multiplicative noise intensity

D with different delay time τ1 = 0.1, 0.3, 0.4 is plotted in
Figure 8(a) according to the theoretical results (Eq.(31))
(the other parameters are fixed). It is found that there is
a single peak in RSNR vs. D. The height of the peak is
increased as the delay time τ1 increases, and the position
of the peak shifts from the large D to small D. It impli-
cates that the RSNR is enhanced with the increasement
of delay time τ1. It must be pointed out that the
observed SR is obvious when the additive noise intensity
a is very weak.
The SNR as a function of the multiplicative noise

intensity D with different additive noise intensity a =
0.01, 0.03, 0.05 is plotted in Figure 8(c) according to the
theoretical results (Eq.(31)) (the other parameters are
fixed). Comparing the curve of SNR for a = 0.01 to the
curve of SNR for a = 0.02, the height of the peak is
decreased greatly, and the position shifts slightly from
the small value of D to the large value of D. Specially,
when a = 0.05, the resonance bi-peaks structure is
found in the curve of SNR. It means that the curve of

SNR is changed from one peak to two peaks as a
increases. It must be emphasized that the height of the
first peak of SNR is more lower than the one of the sec-
ond peak, and the position of the first peak is located in
the very small value of the multiplicative noise intensity
D. Namely, the additive noise intensity a can restrain
the SR and induce the multiple SR.
The SNR as a function of the multiplicative noise

intensity D with different correlated noise intensity l =
0.1, 0.3, 0.5 is shown in Figure 8(e) according to the the-
oretical results (Eq.(31)) (the other parameters are
fixed). It is seen that the height of the peak is enhanced
greatly as the l increases, the positions of the peaks are
almost not distinct. It means that the correlated noise
intensity l can improve the SR.
Why these different control parameters exhibit various

regulatory properties on the SR? One possible reason is
that the potential function of the bistable gene model is
adjusted differently. The symmetry of potential wells
and the height of potential barrier have different depen-
dences on these parameters. The quantitative analysis
about the underlying mechanisms of time delay
-enhance SR is our next task.
In order to check the valid of our theoretical approxi-

mate method, the numerical simulation is performed by
directly integrating the Eq.(28) with Eqs.(5)-(8). Using
the Euler method, the numerical data of time series are
calculated using a fast Fourier transform. To reduce the
variance of the result, the 1024 ensembles of power
spectra are averaged. The output signal-to-noise ratio is
defined as R = 10log10(Sp(Ωs)/Sn(Ωs)), where Sp(Ωs) is
the height of the peak in the power spectrum at the
input frequency Ωs and Sn(Ωs) is the height of the noisy
background in the power spectrum around Ωs. The
parameters are chosen as the same value in the theoreti-
cal analysis. The results are plotted in Figure 8(b), Fig-
ure 8(d) and Figure 8(f). Compared its to the theoretical
results (Figure 8(a), Figure 8(c) and Figure 8(e)), respec-
tively, it is clear that the trends of the approximate

Figure 7 Model of genetic regulation with a positive autoregulatory feedback loop, delay time and an additive signal Acos(Ω t).
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theoretical results in the SNR are consistent with the
numerical simulation, which implies that the approxi-
mate method is credible.

Results for case II
When the time delay appears in the Hill function, Eq.
(10) becomes a nonlinear time delay stochastic equation.

Figure 8 RS N R is plotted as a function of multiplicative noise intensity D with A = 0.08 and Ω = 0.001, the other parameter values are
the same as those in Figure 2. The sold line on the left column represents the theoretical results (Eq.(31)), while the dot line on the right
column is for the numerical results. From top to bottom, the results for different delay time with a = 0.01, l = 0.5 in (a) and (b), for different
additive noise intensity with τ1 = 0.1, l = 0.5 in (c) and (d), for different correlated noise intensity with τ1 = 0.1, a = 0.015 in (e) and (f), are
provided.
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It is difficult to deal with the small time delay approxi-
mate method from the aspect of the theory. Hence the
following results are given by direct simulation for the
stochastic delay differential equation, i.e., Eq.(10), which
can be formally integrated by using a simple forward
Eular algorithm with a small time step for time delay.
The forward Euler algorithm with a small time step Δt

can be formally integrated as

x(t + �t) = x(t) + (
kf x2(τ2)

x2(τ2) + Kd
− kdx(t) + Rbas)�t

−x(t)
√
D�tN(t) + λ

√
α�tN(t) +

√
α(1 − λ2)M(t).

(39)

Where

N(t) = [−4 ln a]

1
2 cos(2πb), M(t) = [−4 ln c]

1
2 cos(2πd)

and a, b, c, d are all independent random numbers. The
Box-Mueller algorithm is used to generate Gaussian
white noise. Using Euler procedure, the time-discrete
numerical data are calculated with the integration step
of Δt = 0.001. An ensemble of N = 106 realizations of x
is obtained from Eq.(10) by numerical calculations. For
each realization of x the cycle is repeated for 1000
times. Accordingly, the stationary probability distribu-
tion Pst(x) and the mean value (x)st can be obtained and
shown in Figures 9-10. On the other hand, it must be
pointed out that the range of time delay τ2 is unlimited.
But in the case I the time delay τ1 is very small since
the theoretical approximate method is only valid for
small time delay τ1.

Steady-state probability distribution
Figure 9 shows the SPD as a function of the TF-A
monomer concentration x for different delay time (the
other parameters are fixed). The peak height of TF-A
monomer concentration distribution near the low con-
centration state is higher than that near the high con-
centration state when the delay time is small. It implies
that the gene switch is mainly in the “off” position by
tuning the delay time to a very low value. However, if
increasing the delay time, the peak height of TF-A
monomer concentration distribution near the high con-
centration state becomes more pronounced. It means
that the concentration of TF-A monomer increases, and
a jump of the switch to the “on” position occurs. There-
fore, delay time τ2 can be also used as a control para-
meter for the switch process in the genetic regulatory
system. However, compared with case I, the time delay
τ1 induces the transition of gene switch from “on” to
“off”.
Mean value
The numerical results of the mean value of x(t) for this
system as a function of τ2 are plotted in Figure 10(a).
The result presents the mean value of x(t) increases
with τ2 increasing. In summary, when the model incor-
porated a nonlinear time delay τ

′
= τ ’

1 + τ ’
2 , this delay

time induces the switch from the “off” state to the “on”
state. It is noticed that the time delays τ2 and τ1 play the
opposite roles in our genetic regulatory process.
Mean first passage time
Similar, making use of the MFPT of the process x(t) to
reach the high concentration state x+(t) with initial

Figure 9 The numerical simulations of the probability distribution Pst(x) are plotted with the different delay time τ2 with a = 0.005, D
= 0.15 and l = 0.3. From left to right τ2 = 0.1, 0.5,1.0 and 2.0. The other parameter values are the same as those in Figure 2.
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condition x(t = 0) = x-, we can investigate the transition
time from “on” state to “off” state. According to the
definition of MFPT given by Hu [43], the MFPT as a
function of τ2 is shown in Figure 10(b). It shows that
MFPT decreases monotonously as τ2 increases. Physi-
cally, it means that the delay time τ2 can speed up the
transition between the two steady states (low concentra-
tion state and high concentration state). Namely, the
delay time can accelerate the transition of gene switch
from “on” state to “off” state. The roles of τ1 and τ2 here
are similar.
Stochastic resonance
Similar, we consider the gene transcriptional regulatory
process subjected to a periodic signal Acos(Ωt), and the
correlated noise and the time delay τ2 = τ’ + τ″. The
model is shown in Figure 11. Eq.(10) can be rewritten
as,

dx(t)
dt

=
kf x2(t − τ2)

x2(t − τ2) + Kd
− kdx(t) + Rbas − x(t)ξ(t) + η(t) + Acos(�t), (40)

where ξ(t) and h(t) are the Gaussian white noise, and
their statistical properties are given by Eqs.(5)-(8). A is
the amplitude of input periodic signal, Ω is the fre-
quency, and τ2 is the delay time.
Applying the numerical simulation method of calculat-

ing signal to noise ratio given by Ref. [6], we investigate
the effects of the time delay τ2 on the SR. The SNR is
defined as the ratio of the peak height of the power
spectral intensity to the height of the noisy background
at the same frequency. Figure 12 displays the SNR as a

function of multiplicative noise intensity D with differ-
ent delay time τ2 = 0.1, 0.3, 0.5, when the other para-
meters are fixed. It is found that there is a single peak
in RSNR vs. D. The height of the peak is decreased as the
delay time τ2 increases, and the position of the peak
shifts from the small D to large D. It implicates that the
RSNR is weaken with the increasement of delay time τ2.
It should be noted that τ2 can restrain the SR to occur.
Comparing Figure 12 with Figure 8(a), we found that
the effects of τ1 and τ2 on the SR is different. τ1 can
enhance the SR, but τ2 can weaken the SR.

Conclusions
In this article, the regulatory properties of time delay on
gene switch and stochastic resonance are systematically
studied based on a bistable gene transcriptional regula-
tory model. This gene model is driven by the correlated
noise and time delay simultaneously. Two cases, includ-
ing linear time delay appearing in the degradation pro-
cess (case I) and nonlinear time delay appearing in the
synthesis process (case II) are considered, respectively.
We mainly focus our research on two aspects, i.e., the
dynamical switch characters (including the steady prob-
ability distribution, the mean value and the mean first
passage time) and the stochastic resonance
phenomenon.
For case I: Our theoretical results show that (i) the

delay time τ1 resulting from the degradation process can
induce the gene switch process, i.e., the TF-A monomer
concentration x shifts from the high concentration state

Figure 10 The numerical simulations of (a) < x >st and (b) MFPT are plotted as a function of delay time τ2. a = 0.005, D = 0.03 and l
= 0.3. The other parameter values are the same as those in Figure 2.
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to the low concentration state ("on"® “off”). Increase-
ment of delay time τ1 can further speed up the transi-
tion from “on” to “off” state. (ii) The stochastic
resonance can be enhanced by the time delay τ1 and the
correlated noise intensity l. However, the additive noise
original from the synthesis rate Rbas suppresses the sto-
chastic resonance. It is very novel that the bi-peaks
structure is found when a = 0.05. Through our stochas-
tic delay dynamic approach, the critical physiological
control parameters to which the behavior of special
genetic regulatory systems is particularly sensitive are
identified. Our theoretical results based on small-delay
time-approximation approach are consistent with the

numerical simulation, which implies that the approxi-
mate method is reliable.
For case II: Our numerical simulation results show

that time delay τ2 can also induce the gene switch, while
different from case I, the TF-A monomer concentration
shifts from the low concentration state to the high con-
centration state ("off"® “on”). The time delays in two
cases play the opposite roles. With increasing the time
delay τ2, the transition from “on” to “off” state can be
further accelerated, which is similar to case I. Moreover,
it is found that the stochastic resonance can be weaken
by the time delay τ2. These insights on the combined
effects of noises and time delay would be beneficial to

Figure 11 Model of genetic regulation with a positive autoregulatory feedback loop, an additive signal Acos(Ωt), and time delay τ2 =
τ’ + τ″.

Figure 12 Numerical simulation results of RS N R are plotted as the function of multiplicative noise intensity D for different delay time
τ2 = 0.1, 0.3 and 0.5 with a = 0.015, l = 0.3, A = 0.08 and Ω = 0.001, the other parameter values are the same as those in Figure 2.
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understanding the basic mechanism of how living sys-
tems optimally facilitate to function under real
environments.
The main result of our works is the time delays in

both case I and case II induce gene switch, and the
switch process can be further accelerated with increas-
ing time delay. In order to demonstrate this theoretical
result, an example is provided by using a biological
system, i.e., the inducible lac genetic switch for Escher-
ichia coli cells [44]. In Ref. [44], the switching of the
lac operon from one phenotype to the other incorpo-
rates parameters, obtained from recently published in
vivo single-molecule fluorescence experiments, has
been investigated. It is found that anomalous sub-diffu-
sion for macromolecules, as measured experimentally
[44], can affect greatly the switch behavior. The
authors predict an increase in the rebinding rate of
transcription factor due to anomalous sub-diffusion.
The underlying mechanism can be illustrated as below:
the anomalous sub-diffusion behavior of the transcrip-
tion factor causes it to spend more time (i.e., larger
time delay) near the operator following unbinding than
would be expected for purely Brownian diffusion, lead-
ing to more encounters with the operator and a poten-
tially greater probability of rebinding. Hence this
means that the time delay due to sub-diffusion in cel-
lular crowding environment can increase the switch
process of lac genetic system for Escherichia coli easily.
It is consistent with our theoretical finding. Though a
detailed modeling for sub-diffusion is not included in
our work, the effect of complex sub-diffusion is
replaced by introducing directly time delay. A full
computational study of gene transcriptional system
under macromolecule crowding using spatially resolved
models is our next task.
To test our predictions quantitatively, one would ide-

ally like to perform an experiment on this gene tran-
scriptional regulatory model with tunable time delay
and noise intensity, in which all the parameters concen-
trations of components and rate constants are the same
as our theoretical model. To our knowledge, this clearly
seems a very difficult experiment to perform, what we
do is to give a primary picture of the integrated effects
of time delay and noise. Recently, with the development
of synthetic biology, some artificial gene networks are
designed by genetic engineer. Moreover, it is increas-
ingly being recognized that some biological parameters,
including time delay and feedback strength, can be con-
trolled by using micro-fluidic devices in gene regulatory
network. So we wish that the time delay-accelerated
transition of gene switch and time delay-enhanced or
suppressed stochastic resonance could be examined in
future.
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