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Abstract

Background: Gene expression profiles have been frequently integrated with the human protein interactome to
uncover functional modules under specific conditions like disease state. Beyond traditional differential expression
analysis, differential co-expression analysis has emerged as a robust approach to reveal condition-specific network
modules, with successful applications in a few human disease studies. Hepatocellular carcinoma (HCC), which is
often interrelated with the Hepatitis C virus, typically develops through multiple stages. A comprehensive
investigation of HCC progression-specific differential co-expression modules may advance our understanding of
HCC’s pathophysiological mechanisms.

Results: Compared with differentially expressed genes, differentially co-expressed genes were found more likely
enriched with Hepatitis C virus binding proteins and cancer-mutated genes, and they were clustered more densely
in the human reference protein interaction network. These observations indicated that a differential co-expression
approach could outperform the standard differential expression network analysis in searching for disease-related
modules. We then proposed a differential co-expression network approach to uncover network modules involved
in HCC development. Specifically, we discovered subnetworks that enriched differentially co-expressed gene pairs
in each HCC transition stage, and further resolved modules with coherent co-expression change patterns over all
HCC developmental stages. Our identified network modules were enriched with HCC-related genes and implicated
in cancer-related biological functions. In particular, APC and YWHAZ were highlighted as two most remarkable
genes in the network modules, and their dynamic interaction partnership was resolved in HCC development.

Conclusions: We demonstrated that integration of differential co-expression with the protein interactome could
outperform the traditional differential expression approach in discovering network modules of human diseases. In
our application of this approach to HCC’s gene expression data, we successfully identified subnetworks with
marked differential co-expression in individual HCC stage transitions and network modules with coherent co-
expression change patterns over all HCC developmental stages. Our results shed light on subtle HCC mechanisms,
including temporal activation and dismissal of pivotal functions and dynamic interaction partnerships of key genes.

Background
With great improvement in both the quantity and qual-
ity of human protein-protein interaction data, a compre-
hensive human protein interaction network was created
and serves as the backbone of many human disease
studies [1-4]. However, the reference protein interaction

network masks the in vivo spatial and temporal contexts
and unrealistically integrates all in vitro molecular inter-
actions together. Therefore, it is imperative to identify
condition-specific protein interaction network modules
that have more spatiotemporal biological relevance to
disease studies. Recently, in response to the call for
dynamic interactomes [5,6], many efforts have been
made to extract active subnetworks by integrating stage-
wise or time series gene expression data into protein
interaction network [7-20].
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As the most intuitive and straightforward expression
feature, differential expression statistics are often overlaid
onto protein interaction network, and subnetworks
enriched for differential expression genes are fetched
[7-11]. However, since protein interaction network is
essentially a model of relations among biological mole-
cules, a more precise characterization of dynamic protein
interaction network would result from addressing the
relation changes than the entity changes. The differential
co-expression analysis, which investigates the changes of
expression correlations between genes, has arisen as a
promising alternative to traditional differential expression
analysis [21]. While differential co-expression is related
to co-expression, the gene-gene co-expression in a com-
parative condition should not be a prerequisite [22,23].
In relation to protein interaction network studies, how-
ever, co-expression analyses were more frequently per-
formed than differential co-expression analyses [12-16].
Recently, the use of differential co-expression analyses to
uncover dynamic protein interaction network modules
specific to human diseases has begun [17-20]. These stu-
dies have made important discoveries in heart failure
[18], glioma prognosis [17], HIV infection [19], and other
diseases. However, some of these studies were predis-
posed to co-expression analysis, which may have limited
the potential of their approaches.
Hepatocellular carcinoma (HCC) is the most common

type of liver cancer, and it is often interrelated with the
Hepatitis C virus (HCV). A typical HCC progression may
go through the following successive stages: Normal (N),
Cirrhosis (C), Dysplasia (D), Early HCC (E), and Advanced
HCC (A). As a gradually-developed carcinoma with
marked pre-neoplastic stages and neoplastic stages, HCC
calls for a better understanding at the genomic level of
the origin and transitions of its carcinogenesis. A well-
designed, multi-stage HCC expression dataset has been
analyzed by different groups from the perspective of differ-
ential expression with [24] or without network context
[25], but the dataset has not been explored for differential
co-expression yet. Like the successful attempt in a multi-
state human colorectal cancer study [20], a differential
co-expression analysis of protein interaction network
modules may advance our understanding of HCC’s patho-
physiological mechanisms.
In this study, we first comparatively evaluated Differ-

entially Expressed Genes (DEGs) and Differentially
Co-expressed gene Pairs (DCPs) for their qualification for
subnetwork seeds, and as a result proved the improved
validity of searching for protein interaction subnetworks
from seeds of DCPs than DEGs. We then proposed a dif-
ferential co-expression network approach to uncover gene
modules involved in HCC development. Specifically,
we identified subnetworks that enriched DCPs in each
HCC transition stage, and further resolved modules with

coherent co-expression change patterns over all HCC
developmental stages (Figure 1). Our identified network
modules were found to be enriched with HCC-related
genes and implicated in cancer-related biological func-
tions. The results shed light on subtle HCC mechanisms,
including temporal activation and dismissal of pivotal
functions and dynamic interaction partnerships of key
genes.

Results
Differential co-expression protein interactions as seeds in
subnetwork searches
The stage-wise Pearson correlation coefficient (r) values
of gene expression profiles were calculated for all possi-
ble pairs formed by the genes in the reference protein
interaction network. For each HCC stage, we compared
all pairs’ Pearson correlation coefficients (absolute
values) with those of the protein interaction pairs’ subset
(absolute values) using the two-sample Kolmogorov-
Smirnov test. We found that at all stages the protein
interaction pairs’ absolute Pearson correlation coeffi-
cients were larger than the total control at a significant
level (p < 0.001 for N, C, and D) or marginally signifi-
cant level (p < 0.1, for E and A).
Then, we derived the differential correlation values

(dC) for each protein interaction pair and each stage
transition. In this manner, each protein interaction pair
was described with a vector of four dC values. A size-
able portion of distant protein interaction pairs charac-
terized with noticeably larger dC values were discovered
in an outlier analysis of the dC data matrix (Additional
file 1).
Most approaches to extracting protein interaction sub-

networks, including our previous one [24], were seeded
from a set of DEGs. In this work, we intended to use
DCPs as alternative seeds; therefore, we initially set out
to investigate if DCPs were a better option for seeds.
Successively inclusive sets of top-DEGs (based on abso-
lute log fold changes of mean expression) or top-DCPs
(based on absolute dC values) were chosen at three
increasing levels: 0.1%, 0.5%, or 1%. For comparability,
we derived corresponding sets of “Differentially Co-
expressed Genes” (DCGs) as the genes involved in DCPs
and compared the derived DCGs with the DEGs at the
same levels.
First, an ideal seed gene set should be related to the

studied subject, which in our case was the HCV-induced
HCC progression. For this criterion, we evaluated top-
DEGs and top-DCGs in terms of their enrichment of
HCV-protein-binding (HCB) proteins, cancer-mutated
genes from Cancer Gene Consensus (CGC), or HCC-
responsive genes (HCR). As clearly shown in Table 1
HCV-binding proteins were more enriched in top-DCGs
than in top-DEGs: except for one case, all top-DCG sets
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were significantly enriched with HCV-binding proteins,
whereas none of top-DEG sets were enriched with HCV-
binding proteins. In terms of HCC-responsive genes and
cancer-mutated genes, advantages were still existent
using DCGs compared to DEGs (Additional file 1).
Additionally, as many subnetwork-searching algo-

rithms (e.g. Steiner minimum tree [26]) implicitly
assume, a set of seed genes should ideally cluster den-
sely in the whole network so that they can be connected
into a subnetwork via a limited number of mediators. It

therefore follows that a set of seed genes should have an
average pairwise distance shorter than that between ran-
dom pairs. As a baseline, the shortest paths in the
whole protein interaction network were 3.81 ± 0.86 (any
disconnected protein pairs that were unable to be con-
nected via any path were excluded in this calculation).
We found that the shortest paths among DCG seeds
were generally one-step shorter than random pairs,
while those among DEG seeds were generally very close
to random pairs (Table 2). In fact, the advantage of

Figure 1 Differential co-expression analysis of protein interaction network for human hepatocellular carcinoma (HCC) progression.
Four arrows in this figure indicate major analysis flow. Arrow 1: for each protein interaction pair (edge), an expression correlation value was
calculated for each of five HCC stages, and a differential correlation value (dC) was calculated for each of four stage transitions. Edges with the
highest dC values were used as seeds in a search of a differential co-expression subnetwork. Four subnetworks were retrieved from the PIN for
the four HCC stage transitions, respectively. Arrow 2: the four transition-wise subnetworks were combined into a union set, in which each edge
was associated with four dC values. Arrow 3: the edges in the union subnetwork were clustered based on similarity in those four-dC data
vectors. Arrow 4: six clusters of differential co-expression protein-interaction modules were determined, each characterized with a distinct,
coherent co-expression change pattern over the whole HCC process.
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DCG seeds over DEG seeds was underestimated here, as
disconnected pairs were found in DEG sets but not in
DCG sets (footnotes of Table 2). In conclusion, the seed
DCGs were clustered more densely in protein interaction
network than the seed DEGs, implying a more likely for-
mation of compact, expression-coherent subnetworks
when using seed DCPs than seed DEGs.
Therefore, the relative advantage of DCPs as seeds in

protein interaction subnetwork searches was demonstrated
against traditional DEGs, which justified our subsequent
edge-wise subnetwork searches from these top-ranked
seed DCPs.

Differential co-expression subnetwork in each HCC
stage-transition
In order to avoid oversized subnetworks, we used the top
0.1% DCPs (65 DCPs) as seeds in the subnetwork searches
(see Materials and methods). These top 65 DCPs involved
123, 124, 118, and 123 seed genes in the four stage transi-
tions, respectively (Additional file 2).
One subnetwork was retrieved for each transition

between consecutive HCC stages, and the four subnet-
works are termed “transition-wise” subnetworks hereafter.
The properties of these transition-wise subnetworks are
summarized in Table 3 and Additional file 1, and full sub-
networks can be reviewed in Additional files 3 and 4.
While the overall edge-to-node ratio in protein interaction

network is about 5.9 (64,865 to 10,953), the same statistics
in the subnetworks is about 1, reflecting a selective recruit-
ment of edges into the subnetworks. The r values and dC
values associated with links in the subnetworks are more
conspicuous than the background level in protein interac-
tion network (Additional file 1), indicating an effective
condensation of differential co-expression relations.
The coverage of HCC-related genes in the transition-

wise subnetworks was studied to evaluate the relevance
of our subnetworks in relation to HCC development.
Three types of HCC-related genes, HCB, CGC, and HCR,
were examined separately. Almost all four transition-wise
subnetworks were enriched with these HCC-related
genes (Table 3). Then, following the example of our pre-
vious work [24], we defined proteins with more than six
connections as hubs and obtained a total of 25 hubs in
the four subnetworks (Table 3). Among the 18 Gene
Ontology (GO) [27] biological processes terms enriched
within these hub genes (Additional file 1), some are evi-
dently related to HCC pathogenesis, such as “interspecies
interaction between organisms”, “immune response-acti-
vating signal transduction” [28], and “platelet activation”
[29]. In summary, nine hubs are targeted by HCV pro-
teins, and five are mutated in cancer. Of the only five
liver-cancer-associated genes from CGC, APC [30]
appeared as a recurrent hub in multiple subnetworks.
These observations suggested that our transition-wise

Table 1 Proportion of Hepatitis C virus-binding proteins in top ranked gene seeds

Top levela Gene set HCC transitionb

N-C C-D D-E E-A

0.1% DEG 0/11 1/11 0/11 1/11

DCG 7/63* 9/65*** 10/60*** 4/63

0.5% DEG 3/55 2/55 2/55 4/55

DCG 25/290*** 36/279*** 27/287*** 27/288***

1.0% DEG 6/110 3/110 5/110 6/110

DCG 47/524*** 51/538*** 36/523*** 41/559***

In each cell, the proportion is shown as ″x/y″, with y for top-ranked genes and × for genes of interest. Enrichment p-value < 0.01 (*) or < 0.0001 (***) are marked.
aTop-level is the fraction of the top-ranked genes/pairs in the total network nodes/edges. For differential expression genes (DEG), we used the node-wise
fraction; for differential co-expression genes (DCGs) deriving from pairs, we used the edge-wise fraction. A same fraction of pairs involve a greater number of
genes.
bTransition names: Normal to Cirrhosis (N-C), Cirrhosis to Dysplasia (C-D), Dysplasia to Early HCC (D-E), and Early HCC to Advanced HCC (E-A).

Table 2 Average shortest length among top ranked genes

Top level Gene set HCC transition

N-C C-D D-E E-A

0.1% DEG 3.61 ± 0.59 3.25 ± 0.86 3.40 ± 0.91 4.25 ± 0.86

DCG 2.96 ± 0.71 2.94 ± 0.74 2.72 ± 0.75 2.98 ± 0.75

0.5% DEG 3.70 ± 0.78 a 3.62 ± 0.85 3.76 ± 0.82 3.62 ± 0.85 b

DCG 2.89 ± 0.71 2.81 ± 0.68 2.82 ± 0.73 2.89 ± 0.70

1.0% DEG 3.60 ± 0.81 c 3.63 ± 0.84 3.67 ± 0.81 d 3.60 ± 0.87 e

DCG 2.87 ± 0.69 2.85 ± 0.76 2.86 ± 0.70 2.90 ± 0.71

There were 3.6% a, 10.7% b, 1.8%c, or 5.4%d,e disconnected DEG pairs and they were excluded from the average shortest length calculation.
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subnetworks are highly relevant to the development of
HCC.
Then, we investigated the overlapping genes and edges

between transition-wise subnetworks. There was a moder-
ate overlap in subnetwork nodes (as high as 28.4%) but a
minor overlap in subnetwork edges (as high as 13.6%).
Altogether, we observed 16 differentially co-expressed pro-
tein interaction pairs recurrent in multiple subnetworks,
two of which involved N-C and E-A transitions, and
the other 14 of which involved consecutive N-C and C-D
transitions (Additional file 1). For all 14 N-C-D continu-
ous-changing protein interaction pairs, the expression cor-
relation values reached a significantly high level in cirrhosis
but not in normal or dysplasia stages (FDR threshold of
0.25, equivalent to |r| > 0.76 in cirrhosis). Remarkably,
seven of these 14 protein interaction pairs were connected
into a APC-centered module (Figure 2), in which four pro-
teins, APC, CYTH2, ARRB2, and CTNNA1, were involved
in the “Signaling events mediated by Hepatocyte Growth
Factor Receptor (c-Met)” [31]. Aside from the important

core protein APC, another protein CTNNA1 may
be worth special attention as well, as it takes part in the
E-cadherin/catenin complex whose abrogation was impli-
cated in the carcinogenesis of several malignancies [32].
The aggregation of differential co-expression relations
around the HCC-mutated gene APC and the involvement
of quite a few HCC-related genes suggest that the APC-
centered protein interaction module (Figure 2) may encode
pivotal HCC-pathogenesis mechanisms for which further
investigation is warranted.

Differential co-expression modules in HCC progression
process
While the transition-wise analysis reveals differential co-
expression subnetworks that are remarkable in single stage
transitions, a process-wise analysis may catalogue protein
interaction network modules based on their co-expression
change patterns over all HCC development stages. There-
fore, we obtained the union of the four transition-wise
subnetworks and dissected them into clusters of modules

Table 3 Transition-wise differential co-expression protein interaction subnetworks

Transition #
nodes

#
edges

HCC-related
genes a

Hub genes b

HCB CGC HCR

N-C 307 310 28*** 29*** 154* ARRB1, APC, CDKN2A, CSNK2A1, CSNK2A2, EP300, ESR1, GRB2, HCK, MCC, PIK3R1, PPP1CC, SRRM2,
SUMO2, TSC22D1, YWHAG, YWHAZ

C-D 102 103 13*** 10* 44 APC, GFI1B, NEDD4, UBE2D3

D-E 104 103 10* 13*** 58* IKBKE, PIK3R1, YWHAZ

E-A 103 102 9* 11* 60* EGFR, FYN, IKBKG, PRMT1,YWHAG
aSee Materials and methods for explanation of the three HCC-related gene sets. Significance levels of HCC-related gene enrichment are labeled by *(p < 0.01)
and ***(p < 0.0001).
bHubs are genes with six or more connected neighbors. Hepatitis C virus -binding genes (italicized) and cancer-mutated genes (bold) are marked.

Figure 2 APC-centered protein interaction module characteristic for dynamic co-expression patterns over hepatocellular carcinoma
precancerous stages. Edge widths are proportional to the expression correlation values (edge weights). Red edge: positive expression
correlation; green edge: negative expression correlation. Light gray node: non-differential expression; dark gray node: up-regulation (t-test, p <
0.05); white node: down-regulation (t-test, p < 0.05).
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by clustering the vectors of dC values associated with each
protein interaction pair (Euclidean distance measure; com-
plete linkage clustering). This approach resulted in six
clusters of protein interaction pairs with mutually distinct
correlation change patterns (Figure 3), where each cluster
was comprised of multiple disconnected network modules
(Table 4 and Additional files 5 and 6). Further investiga-
tion revealed the dynamic correlation change patterns of
each cluster (Figure 3). Clusters I, II, and III were more
dynamic in early, precancerous phases (N-C-D), while
clusters IV, V, and VI were more dynamic in later, cancer-
ous phases (D-E-A).
A functional enrichment analysis was performed to

uncover the biological themes of each cluster (see Materials
and methods), and the results are summarized in Table 5.
In coherence with HCV-associated HCC progression,
some relevant biological processes were discovered, such as
“viral reproduction” (cluster I), “interspecies interaction
between organisms” (cluster III and cluster IV), and
“wound healing” (cluster V) [33].
Among the early-active clusters, cluster I and cluster III

are representatives of two opposite trends: when the dis-
ease progresses from the normal stage through cirrhosis
to dysplasia, Pearson correlation coefficient values in
cluster III go upward and then downward, while those in

cluster I show a trend that is exactly reversed. Interest-
ingly, some enriched functions of these two clusters hap-
pen to be contrary to each other (Table 5). For instance,
“negative regulation of apoptotic process” is enriched in
cluster I, while “negative regulation of cell proliferation”
is enriched in cluster III. It seems that, at the precancer-
ous stages of HCC, the cells are coordinating some prolif-
eration-inhibiting genes while simultaneously dismissing
some apoptosis-inhibiting genes. These functions are
possibly spontaneous calibration mechanisms taking
place in precancerous stages to “halt” the potential carci-
nogenesis. As another probable calibration action,
expression coordination is enhanced in “positive regula-
tion of apoptotic process” (cluster II) at a later precancer-
ous stage, dysplasia.
Of the three later-activated clusters, cluster V, where

protein interaction pairs undergo consistent correlation
enhancements from early HCC to advanced HCC
(Figure 3), is enriched with the greatest number of func-
tional terms (Table 5). Seven genes in cluster V are
involved in “negative regulation of apoptotic process”,
and their enhanced correlations in the advanced HCC
samples likely indicate an ultimate breakdown of the apop-
tosis program. Other potentially relevant terms tagged to
cluster V include “wound healing” and “MAPK cascade,”

Figure 3 Expression correlation change patterns of six clusters of differential co-expression protein interaction modules. Abscissa
includes five Hepatocellular carcinoma (HCC) stages: Normal (N), Cirrhosis (C), Dysplasia (D), E (Early HCC), and A (Advanced HCC).

Table 4 Six clusters of process-wise differential co-expression protein interaction modules

Cluster ID # node # edge # components
(size ≥5)

Size of largest component # HCV-binding genes

I 96 87 10 13 6

II 40 36 4 20 9***

III 122 112 10 21 14***

IV 60 56 4 19 8 *

V 21 18 3 7 3 *

VI 20 18 2 13 2

Hepatitis C virus (HCV)-binding protein enrichment significance levels: * for p < 0.01 and *** for p < 0.0001.
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Table 5 Gene Ontology (GO) Biological Processes enriched in clusters of differential co-expression protein interaction
modules

Cluster GOID Term # expec-ted genes # genes Adjusted p-value *

I GO:0071842 cellular component organization at cellular level 23.3 44 0.0002

I GO:0007346 regulation of mitotic cell cycle 2.6 12 0.0004

I GO:2000241 regulation of reproductive process 1.2 8 0.0006

I GO:0009968 negative regulation of signal transduction 4.3 15 0.0006

I GO:0043066 negative regulation of apoptotic process 4.9 16 0.0006

I GO:0031577 spindle checkpoint 0.4 5 0.0007

I GO:0032088 negative regulation of NF-kappaB transcription factor activity 0.4 5 0.0007

I GO:0000086 G2/M transition of mitotic cell cycle 1.3 8 0.0007

I GO:0048522 positive regulation of cellular process 23.2 41 0.0007

I GO:0006366 transcription from RNA polymerase II promoter 10.2 24 0.0007

I GO:0042221 response to chemical stimulus 20.2 37 0.0008

I GO:0031623 receptor internalization 0.4 5 0.0008

I GO:0048468 cell development 10.5 24 0.0008

I GO:0050658 RNA transport 1.0 7 0.0008

I GO:0016032 viral reproduction 3.7 13 0.0009

II GO:0043065 positive regulation of apoptotic process 2.0 11 0.0003

II GO:0006366 transcription from RNA polymerase II promoter 4.3 15 0.0005

III GO:0016567 protein ubiquitination 4.5 17 0.0001

III GO:0000075 cell cycle checkpoint 2.7 13 0.0001

III GO:0042981 regulation of apoptotic process 12.9 30 0.0001

III GO:0000165 MAPK cascade 4.4 16 0.0001

III GO:0032268 regulation of cellular protein metabolic process 12.6 29 0.0001

III GO:0010627 regulation of intracellular protein kinase cascade 5.7 18 0.0002

III GO:0050863 regulation of T cell activation 2.4 11 0.0002

III GO:0007346 regulation of mitotic cell cycle 3.3 13 0.0002

III GO:0044419 interspecies interaction between organisms 4.4 15 0.0003

III GO:0006511 ubiquitin-dependent protein catabolic process 4.0 14 0.0003

III GO:0045892 negative regulation of transcription, DNA-dependent 7.7 20 0.0005

III GO:0007265 Ras protein signal transduction 2.8 11 0.0006

III GO:0007173 epidermal growth factor receptor signaling pathway 1.9 9 0.0007

III GO:0051090 regulation of sequence-specific DNA binding transcription factor activity 3.3 12 0.0007

III GO:0009967 positive regulation of signal transduction 6.7 18 0.0007

III GO:0016310 phosphorylation 13.6 28 0.0008

III GO:0045732 positive regulation of protein catabolic process 0.8 6 0.0008

III GO:0030518 intracellular steroid hormone receptor signaling pathway 1.1 7 0.0008

III GO:0042770 signal transduction in response to DNA damage 1.5 8 0.0009

III GO:0080134 regulation of response to stress 6.9 18 0.0009

III GO:0008285 negative regulation of cell proliferation 5.1 15 0.0009

IV* GO:0044419 * interspecies interaction between organisms 2.1 11 0.0020

IV* GO:0000904 * cell morphogenesis involved in differentiation 3.3 12 0.0099

IV* GO:0007165 * signal transduction 18.8 33 0.0099

V GO:0065008 regulation of biological quality 4.1 13 0.0008

V GO:0001775 cell activation 1.4 8 0.0009

V GO:0018193 peptidyl-amino acid modification 1.0 7 0.0009

V GO:0048011 nerve growth factor receptor signaling pathway 0.5 5 0.0009

V GO:0043066 negative regulation of apoptotic process 1.1 7 0.0009

V GO:0000165 MAPK cascade 0.8 6 0.0009

V GO:0042060 wound healing 1.2 7 0.0009

V GO:0045860 positive regulation of protein kinase activity 0.8 6 0.0009

V GO:0071375 cellular response to peptide hormone stimulus 0.5 5 0.0009

*Threshold value for adjusted p-value is 0.01 (Cluster IV) or 0.001 (clusters I, II, III, and V). No GO term was found to be enriched for cluster VI with either
threshold value.
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which are functions frequently implicated in carcinogen-
esis or cancer metastasis [33,34]. Cluster IV, a group of
protein interaction pairs with collapsed correlations in
advanced HCC, is enriched with “interspecies interaction
between organisms.”
Interestingly, 27 interfacing proteins were found inter-

acting with partners from different dynamic co-expression
clusters, which contain both highly-connected proteins
and lowly connected proteins. Ten proteins (YWHAZ,
TSC22D1, APC, YWHAG, IKBKG, ARRB1, ESR1, FYN,
GRB2, and NEDD4, ordered by their connection degrees
decreasingly) are specifically noteworthy because they are
the top 10 strongest-connected proteins in the process-
wise subnetwork (the union of the six clusters of protein
interaction modules) and include the top 3 proteins with
the highest betweenness as well (APC, YWHAZ, and
IKBKG). Lowly-connected interfacing proteins are no less
interesting, as they include the HCV-binding protein
SMURF2 and the cancer-mutated gene TPR, both of
which have a connectivity of three. In all, many of these
interfacing proteins are potentially related to HCC, as 17
are covered in the HCC-responsive gene sets and five are
targeted by HCV proteins (Additional file 1).
Of all 27 interfacing proteins, YWHAZ is the only one

that interfaces with all six clusters of protein interaction
modules (Figure 4). YWHAZ is a HCV-binding protein
and is covered in two HCC-responsive gene sets (Addi-
tional file 1). Additionally, it has been implicated in HCC
in terms of copy number alteration [35] and drug-

responsive differential expression [36,37]. We extracted all
protein interaction pairs (edges) connected to YWHAZ in
the process-wise subnetwork and separated them into
the six characteristic clusters (Figure 4). This YWHAZ-
centeredmodule contains four cancer-mutated genes,
three HCV-binding proteins, and numerous HCC-
responsive differential expression genes (Figure 4).
Interestingly, three cancer-mutated genes had a similar
differential co-expression pattern with YWHAZ, and all
have a sharp correlation collapse in cirrhosis (Figure 4,
cluster I). Although further investigation is warranted,
the dynamic dissection of YWHAZ’s interaction part-
ners in this work provide unique clues to subtle
mechanisms of HCC pathophysiology.

Verification of the approach in an independent
hepatocellular carcinoma dataset
An independent gene expression dataset, GSE14323, was
used to verify the N-C subnetwork. We observed that over-
all there was no correlation between the dC values of the
56,142 overlapping protein interaction pairs in GSE6467
and GSE14323 (r < 0.01). Notably, the dC values of the top
0.1% DCPs in GSE6467 (seed DCPs) are significantly posi-
tively correlated with those in GSE14323 (r = 0.23, p =
0.04). A similar significant positive correlation was
observed for the 286 N-C subnetwork protein interaction
pairs between GSE6467 and GSE14323 (r = 0.10, p = 0.04).
We then performed an analogous subnetwork search

using GSE14323. Starting from top 1% DCPs, we obtained

Figure 4 Thirty-three interactions of YWHAZ were categorized into six clusters based on their dynamic co-transcription profiles.
Hepatitis C virus protein-binding genes (in red), hepatocellular carcinoma-responsive genes (in pink), and cancer-mutated genes (*) were marked.
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a subnetwork with 255 links formed by 280 unique genes.
There are 34 genes shared by the two N-C subnetworks,
including one common hub - APC. FYN, a hub discovered
in GSE14323 N-C subnetwork, is also a hub in E-A sub-
network of GSE6467. The GSE14323 subnetwork harbors
an additional hub, CTNNB1, which is a confirmed HCC-
mutated gene [30]. Here, the recurrence of HCC-related
hub genes from independent datasets indicates the validity
of our differential co-expression network approach.

Discussion
In this work, we integrated differential co-expression ana-
lysis with protein interaction network and applied a net-
work-based approach to uncover HCC-specific dynamic
protein interaction modules. Our framework has gener-
ated a valuable set of plausibly HCC-implicated genes and
protein interaction pairs for follow-up investigations.
Currently, the number of assured HCC-implicated genes
remains very small. In Cancer Gene Census [38], there are
only five genes explicitly associated with liver cancer.
Among these five genes, APC appears as a recurrent hub
in our subnetworks (N-C and C-D), and it was also veri-
fied as a hub in the N-C subnetwork using another inde-
pendent dataset. In addition, some plausibly implicated
genes stand out in our modules. These genes include
those mutated in other cancer types and bound with HCV
proteins (e.g. PIK3R1 and EP300), genes interfacing with
alternative partner groups (e.g. YWHAZ), and genes mani-
festing both differential co-expression and differential
expression (e.g. ESR1). Some genes meet multiple prioriti-
zation criteria; for instance, EEF1D is a DEG involved in a
DCP and it interfaces with alternative partner groups. In
summary, genes highlighted in our dynamic modules may
serve as a set of practically plausible candidate targets for
follow-up HCC studies.
Moreover, our framework provides a way to reveal pro-

tein interaction rewiring during HCC progression. For
instance, alternative interaction partners were activated
for the proteins shared in the N-C and C-D subnetworks.
In our focused APC-centered module (Figure 2), two dis-
tinct groups of APC partners were distinguished by
discriminating their correlation relationships with APC
in the N-C-D progression: one group, consisting of
CTNNA1 and NUPL1, demonstrated a NS-HN-NS (NS:
non-significance; HN: High-Negative) correlation pattern
with APC, while the other group, consisting of ZFP106,
CYTH2, and HNRNPF, displayed an opposite NS-HP-NS
(HP: High-Positive) pattern. Such alternative partnerships
in company with condition changes could be actual
instances of the “date hubs” conceptualized several years
ago [39].
Comparing our differential co-expression subnetworks

with previous differential expression subnetworks [24],
we observed a significant number (21, hyper-geometric

test, p < 0.001) of common genes if ignoring transition-
to-transition mapping. This result indicates that a signif-
icant number of genes were remarkable in both differen-
tial co-expression and also differential expression, yet
the two types of expression changes may not happen
simultaneously. Interestingly, most of these shared genes
manifested an earlier differential co-expression and then
a later differential expression (Additional file 1). A similar
trend was seen with the three genes overlapping the ori-
ginal differential expression study [25] (Additional file 1).
This observation suggested that differential co-expression
is a more upstream event than differential expression in
biological systems. Along the central dogma, a causal
mutation at the genetic level is unambiguously the most
upstream event. Such a causal mutation is transduced
through a conceptual biological information flow and
ultimately results in consequences at the molecular, cel-
lular, and bodily level. Closely succeeding the initial
mutation event is transcription dysregulation, which
sometimes manifests itself as “altered relationships”
between regulators and targets or among targets. Differ-
ential expression, as the molecular-level output of the
information flow, can occur with the causal regulator’s
direct targets as well as indirect targets. While a certain
time-lag was necessary for a microRNA’s regulatory
effects to propagate fully to the secondary targets [40], it
is likely that, at a higher-level and a larger scale, genes’
differential expression phenomena may lag behind their
differential co-expression circumstances by a time-phase
that corresponds to one or more disease stages. This
putative precedence of differential co-expression over dif-
ferential expression deserves a systematic investigation in
extended progressive disease datasets.
With the stage-wise HCC expression data, the pro-

posed differential co-expression network approach
resolved modules with coherent co-expression change
patterns over all HCC developmental stages and even
deciphered the temporal activation/dismissal of involved
functions. In our results, negative regulation of the apop-
totic process was found to be dismissed at early precan-
cerous phases but was recruited in established HCC;
positive regulation of the apoptotic process was to be
coordinated in precancerous phase dysplasia. These
mutually consistent functional dynamics may suggest
broad, coordinated anti-cancer calibration mechanisms
taking place in precancerous stages. Relating to the puta-
tive precedence of differential co-expression over differ-
ential expression, these functional dynamics may
underpin pivotal HCC stage transitions for which more
elaborate studies are warranted towards a potential early
phase HCC intervention.
From a methodological point of view, our approach

has some similarity to a few previous studies [18,20,41].
Like us, all of these studies have integrated protein
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interaction network with expression data, and their out-
puts have included sort of protein interaction subnet-
works/modules. The most striking difference between
our approach and the cited ones is that we first quanti-
fied differential co-expression of each protein interaction
pair (edge) and then set out to search for the organiza-
tion of those differentially co-expressed edges. Lin et al.
[18] and Chuang et al. [20] were similar to each other
in that they first constructed a co-expression protein
interaction network for each disease state and then
compared the two obtained network in terms of topolo-
gical features or functional annotations; Gu et al. [41]
devised a unique clustering framework which has taken
into account both protein interaction network topology
and gene expression correlation. As was lately proposed
[42], differential co-expression network in which edges
were weighted or dichotomized by direct differential co-
expression measures (such as dC in the present study)
have distinctive topological features compared to tradi-
tional co-expression networks, so co-expression
network-based strategies could not directly transfer to
differential co-expression network studies. The ad hoc
clustering algorithm by Gu et al. [41] could possibly be
adapted for exploration of differential co-expression net-
work, and it is of interest to see continuous improve-
ment of these algorithms and hopefully a comparative
evaluation of these related approaches will come out
soon.

Conclusions
In this study, by integrating the protein interaction data
and gene differential co-expression information, we
sought to identify dynamic protein interaction modules
from a hepatocellular carcinoma stage-wise expression
dataset. We established the validity of searching for sub-
networks from seeds of differential co-expressed gene
pairs in contrast to traditional differential expression
genes. Moreover, by examining the differential co-
expression patterns associated with single stage-transi-
tions or whole progression process, we revealed dynamic
rewiring of protein interaction pairs and temporal acti-
vation/dismissal of pivotal functions in human hepato-
cellular carcinoma progression. Our framework has
generated a valuable set of plausibly implicated genes
and protein interaction pairs for follow-up human hepa-
tocellular carcinoma investigations.

Materials and methods
Gene expression profiles and protein interaction network
The HCC gene expression dataset GSE6764 [25] was
obtained from Gene Expression Omnibus (GEO) [43]. It
contains 20,068 genes and 75 samples. Three samples
from cirrhotic liver tissue of non-HCC patients were
excluded; the remaining 72 samples were classified into

five stages of HCC development: Normal (N), Cirrhosis (C),
Dysplasia (D), Early HCC (E), and Advanced HCC (A). The
numbers of samples included in these stages were 10, 10,
17, 18, and 17, respectively.
Protein interaction pairs were downloaded on September

14, 2012 from the Protein Interaction Network Analysis
(PINA) [44], which collected 70,297 protein interaction
pairs between 12,373 proteins. After matching them with
dataset GSE6764, we had a protein interaction network of
64,865 pairs between 10,953 proteins.
Another independent HCC gene expression dataset

(GSE14323) [45] was used to verify the N-C transition
results produced from the primary dataset GSE6764.
Nineteen normal and 41 cirrhotic tissue samples of this
dataset were used.

HCC-related gene sets
We compiled three sets of HCC-related genes as gold
standards to evaluate the relevance of our results. The
HCV-protein-binding (HCB) proteins were downloaded
from the Hepatitis C Virus Protein Interaction Database
[46] on October 17, 2012. The Cancer Gene Consensus
(CGC) set included the cancer-mutated genes last
updated on March 15, 2012 [47]. The HCC-responsive
set (HCR) was a compendium of DEGs reported in
HCC studies, compiled by querying the gene set data-
base MSigDB [48] with the keywords “hepatocellular
AND carcinoma.” Mapping to our protein interaction
network, we were left with 393 HCB, 385 CGC, and
4,791 HCR genes, respectively.

Discovery of differential co-expression subnetworks in
HCC
We calculated the Pearson correlation coefficient (r) for
each gene pair under each HCC stage. Then, the Pear-
son correlation coefficients were transformed using Fish-
er’s transformation [49]. Fisher’s transformation could
achieve a soft thresholding of the original r values so
that the larger r values were emphasized while the smal-
ler ones were downplayed. The transformed correlation
value (Rk ) was calculated as in equation 1:

Rk = 0.5 ∗ ln
(1 + rk)
(1 − rk)

(1)

where rk was untransformed Pearson correlation coeffi-
cient values with k being 1, 2, 3, 4, or 5 (corresponding to
the five HCC stages). After the Fisher’s transformation,
the transformed correlation value of each subsequent
stage was subtracted from the counterpart values in the
preceding stage, and a differential correlation value (dC)
was obtained as calculated by equation 2. Consequently,
four dC values corresponding to the four stage transi-
tions were assigned to each gene pair.
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dC(k) = Rk+1 − Rk (2)

As in the initial work [8] and our previous work [24],
we searched for dense modules in protein interaction
network from a beginning set of seeds. The procedure
started from each of several initial network modules
formed by top ranked DCPs (seeds) and ended with a
combination of the iteratively expanded modules. At
each iterative step, the module was growing outwardly by
absorbing a directly-connecting edge with the maximum
absolute dC value, and it was assessed for its module
score - the average absolute dC value. Most often, the
module score would decrease with the subnetwork
expansion. The iteration continued if and only if the
decreasing rate of the module score was not greater than
delta and ended as the iteration exceeded 100 times. The
strategy of the decreasing module score rate was applied
to this approach, as we observed that the module scores
often decreased in the first few steps during the expan-
sion procedure. By applying the decreasing rate of mod-
ule score, the chances of getting stuck at the early
iteration stages were diminished; fragmented, small sized
modules comprising most of the starting seeds could
most likely be avoided. The upper-limit of iteration cycles
was set at 100 to control the size of the resulting network
modules. This subnetwork-searching algorithm was
named the “edgewise dense module searching” (eDMS).
An R script for eDMS is available upon request.
As stated in the previous work [8], delta is decisive in

determining the final modules in network search. We fol-
lowed the procedure from our previous work [24] to ana-
lyze a spectrum of delta (from 0 to 0.1 with an increase
interval of 0.01). We then selected the optimal delta based
on the overall module score - the average module score of
disconnected components after eDMS ends. As in the pre-
vious work, we removed the disconnected components
with less than five comprising genes before we reported
the final subnetwork.

Functional annotation for a set of genes
GO [27] term enrichment analyses (in the “Biological Pro-
cess” aspect) were performed using the hyper-geometric
test provided in the R package GOstats [50], with the
genes in the global protein interaction network taken as
the universal background. For each GO term, the numbers
of annotated genes from the background gene set and the
foreground set (e.g. from a subnetwork or a set of hubs)
were each identified. Then, a p-value indicative of the
enrichment level of the GO term in question was calcu-
lated. After removing GO terms with four or less genes
annotated from the foreground set, we adjusted the
remaining GO terms’ p-values using the Benjamini-Hoch-
berg method [51]. GO terms with adjusted p-value larger
than 0.001 (Clusters I, II, III, and V) or 0.01 (Cluster IV)

were removed and only the most specific terms (leaf
terms) of the remaining term set were reported.

Additional material

Additional File 1: Supplementary results. This file contains all
supplementary results that are not covered in the other additional files.
Explanatory text, small tables, and small figures are included in this file.

Additional file 2: Seeds for subnetwork searches. This file documents
the seed DCPs used for the four HCC-transition subnetwork searches.

Additional file 3: Transition-wise differential co-expression protein
subnetworks. This file includes the visual display of all four transition-
wise differential co-expression subnetworks.

Additional file 4: Edge statistics of transition-wise differential co-
expression protein subnetworks. This file includes the statistics
associated with all edges of the transition-wise differential co-expression
subnetworks.

Additional file 5: Process-wise clusters of dynamic protein
interaction modules. This file includes the visual display of the six
clusters of process-wise differential co-expression protein interaction
modules.

Additional file 6: Edge statistics of process-wise differential co-
expression protein modules. This file includes the expression
correlation values (r) and differential co-expression values (dC) associated
with edges from the six clusters of process-wise protein modules.
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