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Abstract

Background: Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and
understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are
still remaining challenges for accurate predictions.

Method: Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which
is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap
data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more
effective prediction of drug effects.

Result: BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial
treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the
first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second
case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for
drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased.

Conclusions: The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased
prediction power to cMap and thus will be useful for identification of new therapeutic candidates.
Website: The web based application is developed and can be access through the following link http://
compgenomics.utsa.edu/BRCAMoNet/

Background
The ultimate goal of personalized medicine is to design
treatments that optimize the therapeutic benefits and
minimize the potential risk of toxicity for individual
patient. Current pharmacogenomics research is striving to
guide compound development and drug selection for such
purpose. This growing need for personalized treatment

has pushed the development of high-through technologies
such as microarray and high throughput sequencing to the
research forefront, where compound selection methods
based on DNA or mRNA profiling have been developed to
achieve highest benefit from therapeutic intervention but
at the same time lowest risk of side effects [1-6]. In the
meantime, these high-throughput profiling technologies
could be applied to elucidate the mechanism of compound
treatment in inducing or inhibiting gene expression regu-
lation at different levels. In this study, the focus is on
using gene expression profiling for drug screen and effec-
tive treatment prediction.
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Besides genome-wide association studies, the current
gene expression based approaches are mainly based on the
“signature gene set” concept, which has been perfected
during the past 14 years of relentless efforts in gene expres-
sion profiles of cancer, cardiovascular disease, diabetes and
other disease researches. [7-10]. The key differences of this
“signature gene set” approach from traditional linkage-
based genetics study lie in two aspects. First, the “signature
gene set” approach can identify genomic variation, being it
in SNP, DNA copy number alteration, or miss-regulation
of gene expression. Second, it can predict the relevant bio-
logical pathways, protein-protein interaction networks, and
gene ontology functional groups, thus identifying novel
therapeutic targets/biomarkers for drug discovery, with the
hope that their variations from patient to patient could
explain large portion of dosage variation, resistance and
efficacy of the drug [11]. As such, one could also hypothe-
size that the activities (the relative abundance and interac-
tions) of these signature genes could be part of drug
targets, or mode-of-action (MoA), as these genes can be
used to explain tumor types and differences in chemother-
apeutic response of patients. In other words, activities of
signature genes could be used to predict the drug sensitiv-
ity. In addition, one may extend this hypothesis further
such that this prediction of pharmacological levels in cell
type could be extrapolated to other cell types. Applications
of these hypotheses have been developed in many studies
[12,13]. One of the most notable work is the connectivity
map (cMap) project [12], where 4 human cell lines
(MCF7/ssMCF7, HL60, PC3, and SKMEL5) were treated
by 1,309 chemical compounds at different dosages, and
their expression profiles were generated. A prediction algo-
rithm based on gene set enrichment analysis (GSEA) [14]
was also developed to rank compounds based on input sig-
nature genes obtained from tumor comparison. This pro-
ject has been widely adapted and developed in the drug
discovery area. Several treatment candidates have been dis-
covered for cancer cell lines in the cMap project by directly
applying the cMap approach [15-17]. With the idea of
searching for ‘inverse signature’ to the phonotype of inter-
est, this approach has been extended to predict treatment
potentials of compounds not included in the cMap project
[18-22]. In addition to the original cMap approach, multi-
ple other methods have been developed based on cMap
data for new drug repositioning approaches [23-28] or
improving the performance of exist cMap [29-31].
Although cMap has been widely applied, problems

remain to be resolved for reliable prediction. First, cMap
does not differentiate cell lines in its prediction. Often
times, the top ranked drugs were from cell lines different
from the query cell line. However, our investigation (see
Result) suggested that the drug effect is cell line dependent
and the higher ranks of the drugs from other cell lines
would be more of cell line effects as opposed to drug

effects. As a result, considering drug samples from other
cell lines introduces only noise to drug prediction. Second,
the quality of the data samples in cMap is inconsistent.
Some samples from the same drug treatment can behave
considerably different from the rest. These samples will
inevitably present erroneous predictions. Third, the query
signature gene set in cMap is chosen to include the top
up- and down- regulated genes. However, size of the gene
set is determined quite ad hoc. As a result, one might miss
the important signature genes by choosing a smaller gene
set, or on the contrary, bring in unrelated genes that
would only serve to degrade the prediction. As an exam-
ple, we used the expression data for estradiol (E2) treated
MCF7 cell line [32] as a query to cMap and genes corre-
sponding to the highest 100 and lowest 100 fold changes
were used as the query gene set. Naturally, we would
expect that E2 ranked high in the predicted list of drugs.
However, E2 was only ranked 828 among over 1,200
drugs. The reason for this low ranking is because the
result is a summary of the rankings of all cell lines of E2
samples, which are mixed (ssMCF7: rank 12, HL60: rank
31, MCF7: rank 3091, PC3: rank 3508; details in Addi-
tional file 1; see also BRCA-MoNet Application Case 1).
However, even if we focused on E2 for MCF7 cell line, its
ranking is still low (3091). Close look at the detailed
results revealed that, the ranking E2 treated MCF7 cell
line was a summary of the results from 19 individual E2
treated MCF7 cell line and their enrichment scores did
not agree with each other (Table 1), Among the 19 sam-
ples, only a few have high enrichment scores. It is very
likely that the rest of samples do not have high quality and
thus fail to catch the real E2 treatment effect. Another
potential cause for this poor result is the ineffective choice
of the signature genes. However, as a user, we do not have
a better way to choose an effective gene set to achieve
better prediction. These results underscore the need for
quality control and systematic selections of signature genes.
To address the above challenges, we proposed BRCA-
MoNet in this paper. BRCA-MoNet is advantageous in

Table 1 Detailed prediction result in MCF7 cell line for an
E2 treated query sample by the cMap project.

Rank batch Cmap name dose cell score up down

6 513 estradiol 10 nM MCF7 .901 .397 -.307

18 725 estradiol 100 nM MCF7 .800 .244 -.381

39 506 estradiol 100 nM MCF7 .742 .267 -.314

48 725 estradiol 10 nM MCF7 .717 .338 -.223

119 757 estradiol 100 nM MCF7 .629 .367 -.125

489 1010 estradiol 10 nM MCF7 .432 .179 -.159

731 656 estradiol 10 nM MCF7 0 .454 .187

738 767 estradiol 10 nM MCF7 0 .447 .217

741 506 estradiol 10 nM MCF7 0 .445 .195

745 765 estradiol 10 nM MCF7 0 .441 .144
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three aspects compared with cMap. First, it focuses only
on breast cancer cell line. Although doing so ignores other
cell line data in the cMap data, it nevertheless removes the
cell-line dependent interference from the true drug effect.
Second, a quality control procedure as well as new drug
signature gene set selection algorithm are developed to
remove the possible noise in cMap data and characterize
drug’s treatment effect in a more systematic manner.
Third, we define a Mode of Action (MoA) as a group of
compounds that share the similar differential gene expres-
sion signature. Since the drug expression signature is indi-
cative of the degree of its sensitivity to a cell, a MoA drug
group should possess similar therapeutic effect. The con-
struction of MoA introduces extra prediction power. This
is because drugs with similar treatment effect might be
ranked low due to high noise in data if we treat prediction
of each drug independently. In contrast, this high noise
sample could be ranked high because the query agrees
with its MoA. The MoA is also different from other exist-
ing defined compound groups such as those by their ana-
tomical therapeutic compound (ATC) classification since
MoA is defined by differential gene expression after treat-
ment, even though some overlapping between various
compound classifications might be expected. The relation-
ship of different MoAs in terms of their therapeutic effect
can be modeled and visualized by a BRCA-MoNet. BRCA-
MoNet presents a global view of drug effects at a genomic
level. This network augments and improves the current
understanding of compound MoA defined mainly from a
physiology perspective, and underscores the relationship
of different compounds. From a computational perspec-
tive, the MoAs and the quantified relationship between
drugs in BRCA-MoNet provide a system-level model cru-
cial for optimal drug screening: a new compound can be
easily assigned to a MoA in the BRCA-MoNet such that
compound’s therapeutic effectiveness can be extrapolated
or inferred accordingly.

Result
Analysis results showed drug treatment effect is cell line
dependent
In the cMap data, each drug treatment profile includes
several treated samples from different cell lines. Whether
the effects of the same drug treatments differ for different
cell lines need to be investigated before a drug MoA net-
work can be constructed. To this end, samples of cMap
data were first grouped based on compounds and the
compounds with more than 30 samples were retained.
Note that since the data have already been normalized and
fold changed over the control sample in the same cell line,
the cell line dependent bias should be eliminated; any dif-
ferences in expression levels within the samples of the
same compound are manifestation of differences in
chemo-effectiveness due to differences in cell line, drug

concentrations, or a combination of both. Hierarchical
clustering was performed to the samples in each com-
pound group to reveal potential differences in expression
patterns within the same compound. Correlating the
clustering results with cell line types and concentrations
(Figure 1A) revealed that chemo-effectiveness depends
mainly on cell lines and is independent of concentration
when it is effective. This finding is significant because it
suggested that network construction and drug predictions
should be performed by considering cell lines separately.
Knowing the effect of one drug for treating breast cancer
does not provide information on its effectiveness in lung
cancer; including samples from cells other than breast
cancer cells introduce only noise to drug treatment net-
work construction. As a result, removing samples from
other cells mitigates the interference and consequently
improves the accuracy and robustness of the prediction
result. Since MCF7 breast cancer cell line cohort contains
the largest number of samples (2911 compared with HL60
1229 and PC3 1741), and it contains more drug replicate
samples than other cell lines, we focused in this work on
developing a breast cancer specific MoA network.

Drug signature gene set selection
The goal of signature gene set selection is to identify a set
of genes that have significant differential expression after
the drug treatment. However, the use of the conventional
differential analysis methods such as t-test is hampered by
the lack of the biological replicates in the cMap data set.
This limitation becomes even severer after the quality con-
trol. For the MCF7 cell line, among all 1251 drugs in cMap,
only 32 drugs have more than 5 samples and 1055 drugs
have ≤ 2 samples. With such small sample size, any statisti-
cally based differential analysis becomes infeasible. To this
end, we proposed two criteria based on which the signature
gene set of drug was selected: first, the signature genes
should have high fold-change expression, and second, the
fold change levels of the signature genes should be consis-
tently high among the replicate samples. Based on these
two criteria, new signature gene set selection algorithm tai-
lored for small samples were developed (see METHOD for
details). For MCF7 cell line, among 1251 drugs, signature
gene sets of different size were identified for 1108 drugs.
No gene sets were produced for the rest 118 drugs because
no genes in their samples were consistently differential
expressed. There are also 25 drugs which have only 1 sam-
ple in MCF7 cell line. As the result, these 118 MCF7 cell
line inconsistent drugs as well as the 25 single-sample
drugs were removed. Figure 1.C shows the identified signa-
ture gene sets for three drugs: Estradiol, estrol and raloxi-
fene. Estradiol (E2) and Estrol are two forms of estrogen,
which plays an important role in human breast cancer. It
is therefore nature to see that the signature gene sets of
these two drugs share many genes that also have similar
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expression patterns. For instance, genes EGR3, MYBL1 and
C8orf33 are significantly up regulated and EFNA1 are
down regulated after treated by both drug. Furthermore,
these genes are highly relevant to breast cancer. EGR3
encodes a transcriptional regulator that belongs to EGR
family and has been shown to be involved in the estrogen
signaling pathway in breast cancer [33]. MYBL1 belongs to

a group of genes that encode the MYB proto-oncogene
protein; MYB has been shown to be highly expressed in ER
+ breast tumors and tumor cell lines and is essential for the
proliferation of ER+ breast cancer cells [34]. EFNA1
encodes a member of the ephrin (EPH) family. It is highly
compartmentalized in normal breast tissue and lost in inva-
sive cancers; it is plausible to observe its down regulation

Figure 1 Result of cell line investigation, signature selection, and quality control. A) The clustergram of expression samples from (HDAC)
families of enzymes. Hierarchical clustering of 175 expression samples treated by drug TRS A. Rows and columns represent genes and samples,
respectively. Columns were labeled with cell line (top) or concentrations (down). Clusters can be clearly observed and further examination of
samples in the same cluster reveal that they are all from the same cell line. However, no such correspondence presented for the drug
concentrations. This suggested that drug effectiveness is cell line dependent. B) Example of Quality Control. The heatmap and pair-wise two-
sample scatter-plot of 4 cMap samples from the same drug were shown. They revealed that only two samples showed similarly and the other
two did not. In this example, sample s2 and s4 were removed as noise. C) Example of Signature Gene Set Selection. Two-sample scatter-plots of
the selected gene signatures for three drugs were plotted. The red cross dots represented the selected genes and the black dots represented
the rest of gene. Tables contain the symbols and expression up- or down- regulation for the selected genes of the three drugs.
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after the E2 treatment. For the third drug, raloxifene, it is a
known estrogen receptor modulator aiming at inducing
the estrogen level. Our resulted signature includes both
EGR3 and MYBL1 genes being down regulated. This simi-
larity between the identified Estrol and Estradiol signature
gene sets suggest that they may share similar MoA. In
contrast, the reverse correlation between the raloxifene
and E2 gene signatures suggest that their MoA may be
opposite to each other. Later analysis indeed showed that
E2 and Estrol as well as other 15 drugs are detected to be
within the same MoA while roloxifene was predicted top
ranked in the reverse prediction list with an independent
E2 treatment sample (Details in BRCA-MoNet Application
Case 1). These results demonstrated that the signature
gene sets selected by our proposed algorithm are biologi-
cally meaningful.

Quality control
Quality control is applied on the drugs of cMap MCF7 cell
line drugs with more than 3 samples. The goal of quality
control is to remove the samples that are not consistently
expressed with the others. Our investigation of the cMap
data revealed that, there was a considerable amount of out-
lier samples, whose expression patterns differ significantly
from the rest in the same drug (Figure 1B). Including these
outliers would introduce only noise in defining the MoA
and it is therefore important to remove the outlier sam-
ples. Note that signature gene set selection could also
serve the purpose of quality control since some drugs
could end selected no gene set. For MCF7 cell line, as the

result of both gene signature selection and quality control,
1564 samples from 747 drugs are identified and removed
and 1347 samples from 504 drugs are passed to BRAC-
MoNet construction. These samples can be considered to
correctly capture the treatment effect on the MCF7 cell
line and were therefore used for subsequent investigation.

Mode-of-Action & BRCA-MoNet generation
A compound mode of Action (MoA) is defined as a group
of compounds that share similar gene signature expression
patterns. Drugs forming one MoA will therefore have sub-
stantially shared genes in their signature gene set, which
also have similar expression patterns. To obtain MoAs,
clustering is applied to group the drugs with similar signa-
ture gene expression patterns. Multiple clustering algo-
rithms exist and the simple yet effective Hierarchical
Clustering (HC) method is adopted in our work. There are
two major reasons to choose HC. First, the number of clus-
ters is not required for HC; second, it is reasonable to
expect that some drugs form distinct MoAs by itself and
HC can produce clusters with a single member. To per-
form HC, a distance matrix that measures pair-wise dis-
tances between drugs was obtained after quality control.
With this distance matrix, a total of 109 MoAs were
obtained at a threshold and a BRCA-MoNet (Figure 2) was
constructed (see Method for details). In this network, each
node represented one drug; a group of nodes share the
same color edges represent a BRCA-MoA obtained by HC.
For each MoA, the betweenness centrality of each drug
was calculated and the drug with the largest betweenness

Figure 2 BRCA-MoNet. Each node represents a drug. A group of nodes linked by edges of the same color represent a MoA. The black edge
linked two MoAs that show correlated effects.
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centrality was set to be the center of the MoA. Two MoAs
were linked with a black edge if the distance between them
was smaller than the threshold and this link indicated the
secondary level relationship between two MoAs.

BRCA-MoNet application
After the BRCA-MoNet being constructed, its prediction
power was tested. Three questions were investigated. First,
can BRCA-MoNet predict correct drug MoA? Second, to
what extent can BRCA-MoNet predict the drug MoA of
an unknown or new drug? Third, to what extend can
BRCA-MoNet recommend drugs for patients? To answer
these questions, independent microarray expression data-
sets were downloaded from Gene Expression Omnibus
(GEO) for the investigation. In order to avoid possible
platform and experimental bias, the following criteria were
followed when we select the data sets. First, the data must
be compound treated on the MCF7 cell line and contain
one or multiple control samples; this was consistent with
the condition of the cMap data. Second, we only choose
those datasets that were treated with drugs existed in the
cMap project or of known treatment effect in breast can-
cer. Third, to avoid possible across platform complication,
the data must be generated from the same platform as the
cMap data, or GPL96 (Affymetrix Human Genome
U133A Array). With the above considerations, the follow-
ing three case studies were carried out.

BRCA-MoNet application case 1: MoA prediction of E2
treated MCF7 cell line & comparison with cMap
We first chose the data set GSE 4025[35] as our query
dataset. GSE 4025 includes the MCF7 cell line samples
treated with 17beta-estrodiol (E2), a form of estrogen, for
24 hours. We pretended that we do not know the identity
of compound (E2) and the goal was to use this treatment
sample as a query to our BRCA-MoNet to predict its MoA.
Note that E2 is a compound tested in the cMap data and
also included in our BRCA-MoNet. Therefore, an accurate
prediction algorithm would be expected to rank E2 asso-
ciated MoA on the top of the predicted MoA list for similar
treatment effect and possibly rank MoAs associated with
estrogen receptor antagonist at the top of the reverse pre-
diction list. The top similar predictions are shown in
Table 2 (See Additional file 2 for the complete result). All
the drugs are ranked based on their MoA gene signatures
reversely related with E2. In the prediction result, the MoA
(BRCA_MoA64) that contains E2 was ranked the 2nd
among all the 109 MoAs and E2 is ranked the 4th among
the total 504 MCF7 effective drugs selected for BRCA-
MoNet. This result indicates that our BRCA-MoNet can
achieve very high precision. We investigated more closely
the E2 associated BRCA_MoA64 and found that among 17
drugs, 11 are known to be related to estrogen. Specifically,
three of them (Estropipate, alpha-estradiol, estrone) were

different forms of estrogen and six others (Norethisterone,
ethisterone, norethynodrel, levonorgestrel, etynodiol,
megestrol) are different forms of progestogen, a precursor
of estrogen. Epiandrosterone can induce androgenic activ-
ity, which can also lead to a precursor of estrogen, and Epi-
tiostanol is a form of anti-estrogen. Among the remaining
six drugs, Naringenin is a weak estrogenic bioflavonoid that
exhibits anti-estrogenic activity [32]; Aminophylline is
known to interact with estrogen [36]; kaempferol is a diet-
ary flavonoid that functions as a selective estrogen receptor
modulator [37-39]; Oxybenzone (also known as benzophe-
none-3) is a compound widely used in the sunscreen and a
few studies suggested that oxybenzone mimics the effects
of the estrogen and may cause higher risk to breast cancer;
Lorglumide has been shown to induce opposite effect of
estrogen in [40]; only nefopam has no evidence that sug-
gests any interaction with estrogen and breast cancer. This
significant over-representation of the estrogen related com-
pounds in the E2 associate MoA provides strong evidence
to suggest that the constructed MoAs in our BRCA-MoNet
do contain drugs of similar effect. Next, we predicted the
MoAs with the reverse treatment effect. The result
(Table 3; Additional file 3) is equally promising. In the
highest ranked MoA (BRCA-MoA 80), two of three drugs
(raloxifene, fulvestrant) are selective estrogen receptor
modulators, which have anti-estrogenic actions, and the
other one (monastrol) is an anti-breast cancer drug [41].
The second ranked MoA, BRCA-MoA86, contains one

Table 2 Top 20 predicted drugs and corresponding
BRC-MoA for similar effect prediction for E2.

Rank Drug Mean Expression MoA

1 0198306-0000 2.060663 BRCA_MoA7

2 guaifenesin 0.136039 BRCA_MoA7

3 0317956-0000 0.127664 BRCA_MoA7

4 Estradiol 2.002982 BRCA_MoA64

5 norethisterone 1.514845 BRCA_MoA64

6 alpha-estradiol 1.459319 BRCA_MoA64

7 estropipate 1.288005 BRCA_MoA64

8 epitiostanol 1.009552 BRCA_MoA64

9 nefopam 0.84901 BRCA_MoA64

10 kaempferol 0.795197 BRCA_MoA64

11 noretynodrel 0.76267 BRCA_MoA64

12 levonorgestrel 0.71241 BRCA_MoA64

13 naringenin 0.554154 BRCA_MoA64

14 aminophylline 0.541906 BRCA_MoA64

15 etynodiol 0.389381 BRCA_MoA64

16 ethisterone 0.239267 BRCA_MoA64

17 epiandrosterone 0.207091 BRCA_MoA64

18 oxybenzone 0.176137 BRCA_MoA64

19 megestrol -0.40088 BRCA_MoA64

20 estrone -0.81855 BRCA_MoA64

E2 is ranked 4th (highlighted).
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drug: bacampicilin. Bacampicilin is a penicillin antibiotic
and study showed that it interacts with estrogen to reduce
the effect of estrogen [42]. The third ranked MoA, BRCA-
MoA52, contains two drugs: cyproterone and nabumetone.

Cyproerone is a steroidal anti-androgen with additional
pro-gestogen and anti-gonadotropic properties. It can sup-
press the activity of the androgen hormones and subse-
quently reduce the productivity of estrogen. It has also
been studied in clinical I and II trail for its potential as an
anti-breast-cancer drug [43].
This query data were also applied to the original cMap
prediction, where the most up- and down-regulated
200 genes were used as the query signature genes. As
expected, the cMap project gave a mix results (Table 4)
in both predictions of similar-effect drugs (with positive
enrichment score) and reverse-effect drugs (with nega-
tive enrichment score). E2 itself only ranked 828
(Table 5) in the total 1309 compounds. In cMap, the
rank was a summary of a drug’s prediction results in
every sample of all different cell lines. E2 has a lot of
samples in the cMap data across all 5 cell line and the
enrichment scores of these samples have large varia-
tions, ranging from 0.707 (ssMCF7) to -0.040 (PC3)
(Table 6), and this large variation led an insignificant
prediction rank. In the reverse effect prediction, Raloxi-
fene, anti-estrogenic modulator, was found to be at rank 9
(Table 4) as expected, but fulvestrant, another anti-estro-
genic modulator, only ranked 861(Table 7). A closer look
at the detailed cell line results revealed that fulvestrant
had a negative enrichment score in the MCF7 cell line but
a positive enrichment score in the HL60 cell line and the
combined result led to a low rank. (Table 8) Over all, the
comparison between prediction results of cMap and

Table 3 Top 20 drugs and corresponding BRC-MoA for
reverse effect prediction for E2

Rank Drug Mean Expression MoA

1 monastrol -3.54584 BRCA_MoA80

2 fulvestrant -1.64228 BRCA_MoA80

3 raloxifene -1.08114 BRCA_MoA80

4 bacampicillin -0.39068 BRCA_MoA86

5 cyproterone -0.95575 BRCA_MoA52

6 nabumetone -0.32439 BRCA_MoA52

7 proguanil -0.32213 BRCA_MoA102

8 deferoxamine -2.16577 BRCA_MoA50

9 cobalt chloride -0.25959 BRCA_MoA50

10 wortmannin -0.60183 BRCA_MoA32

11 LY-294002 -0.5634 BRCA_MoA32

12 sirolimus -0.2227 BRCA_MoA32

13 metampicillin -0.65666 BRCA_MoA10

14 cefadroxil -0.25222 BRCA_MoA10

15 methocarbamol -0.19939 BRCA_MoA10

16 N-acetylmuramic acid -0.44691 BRCA_MoA33

17 dobutamine -0.3141 BRCA_MoA33

18 iohexol -0.15247 BRCA_MoA33

19 adrenosterone -0.94798 BRCA_MoA58

20 butamben -0.41198 BRCA_MoA58

Table 4 Top 20 prediction result generated from cMap using GSE4025 E2 treatment signature as a query

Rank Cmap name Mean N Enrichment P Specificity

1 MS-275 -0.954 2 -1.000 0.00000 0.0217

2 Vorinostat -0.697 12 -0.855 0.00000 0.0266

3 Trichostatin A -0.597 182 -0.735 0.00000 0.0000

4 Cephaeline -0.564 5 -0.889 0.00006 0.0361

5 Scriptaid -0.701 3 -0.962 0.00018 0.0000

6 Prochlorperazine -0.276 16 -0.506 0.00018 0.0472

7 Mefloquine -0.481 5 -0.805 0.00064 0.0278

8 5252917 0.657 2 0.977 0.00087 0.0000

9 Raloxifene -0.465 7 -0.670 0.00114 0.0130

10 perhexiline -0.476 4 -0.821 0.00193 0.0168

11 Ceforanide 0.199 4 0.813 0.00235 0.0207

12 Bacitracin 0.516 3 0.890 0.00252 0.0068

13 Ikarugamycin -0.525 3 -0.886 0.00292 0.0152

14 Iloprost 0.353 3 0.876 0.00354 0.0197

15 Isoxican 0.290 5 0.722 0.00375 0.0549

16 Diethylstilbestrol 0.413 6 0.666 0.00399 0.0737

17 Bufexamac -0.404 4 -0.786 0.00426 0.0000

18 Norcyclobenzaprine -0.404 4 -0.778 0.00501 0.0310

19 Riboflavin -0.412 4 -0.777 0.00511 0.0000

20 arachidonyltrifluoromethane 0.576 2 0.946 0.00535 0.0000
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BRCA-MoNet shows that BRCA-MoNet adds consider-
able prediction power to the existent cMap data and
greatly improves the prediction accuracy on both similar
and reverse prediction.

BRCA-MoNet Application Case 2: Prediction of BMS-
754807 Treated MCF7 Cell Line
One additional dataset treated with drug BMS-754807 was
tested against our BRCA-MoNet. This dataset (GSE33366)
came from breast xenograft MCF7 bearing mice treated
with BMS-754807. MBS-784807 is a dual IGF-1R/InsR
inhibitor that can synergize hormonal agents and has been
shown to be a potential breast cancer drug [44-47]. Study
showed that there is an elevated IGF-IR activity specific in
triple negative breast cancer and because of that, BMS-
784807 could be a possible treatment for triple negative
breast cancer [48]. It has been investigated in several
Phase I and Phase II Clinical Trials as an anti-cancer drug
[49-52]. This dataset was tested against our BRCA-MoNet
for similar treatment effect predictions. The top ranked
MoA was MoA 37 (Table 9 and Additional file 4 for com-
plete prediction). Interestingly, this MoA contains valproic
acid, which is ranked number 1 among all the 504 BRCA-
MoNet drugs. Valproic acid belongs to a general class of
drugs called anticonvulsants and was originally used as a
non-opioid pain reliever. It has also been used to prevent
migraine headaches [53]. Recently, valproic acid has been
shown to have great potential as an epigenetic drug for
anti-cancer activity through inhibiting cancer cell prolif-
eration in various types of cancer [54-56]. This prediction
result shows that both drugs with great anti-cancer poten-
tial are actually detected to have similar MoA by BRCA-
MoNet. This conclusion strongly supports the fact that
BRCA-MoNet can uncover new drug’s anti-cancer MoA
by assigning it to a known MoA.

BRCA-MoNet application case 3: prediction of drugs for
UNC breast cancer patients
Prediction power of BRCA-MoNet on the real breast can-
cer patients was investigated. To this end, dataset GSE2740

[57] was downloaded from GEO. This dataset includes
samples from 4 platforms (GPL885, GPL887, GPL1390,
and GPL1708) and various breast cancer subtypes.
To avoid possible bias due to platforms and breast cancer
subtypes, only patient samples of Lumina A (LumA) sub-
type and from the platform with the largest sample size
(GPL1390) were chosen. A total of 97 breast cancer
patients’ microarray data samples were tested against our
BRCA-MoNet using the reverse prediction. The ranking
result is shown in Figure 3-A (detailed in additional file 5).
Particular, several BRCA-MoAs were consistently ranked at
the top, where BRCA-MoA24 ranked the first in 30.21% of
the all the patients and ranked above top 20 in 61.46% of
all the patients among all 109 BRCA-MoAs. BRCA-MoA24
includes five drugs: spironolactone, rifabutin, vorinostat, tri-
chostatin A and CP-690334-01. Among these five drugs,
spironolactone is a synthetic, steroidal anti-mineralocorti-
coid agent with anti-androgen, weak pro-gestogen proper-
ties, and indirect estrogen effects. It has been used to
reduce the elevated or unwanted androgen activity in the
body [58]. (Androgen, as mentioned before, is the precursor
of all estrogens.) So, spironolactone can be potentially used
to induce anti-estrogenic activity against breast cancer.
Rifabutin is a semisynthetic ansamycin and primarily used
in the treatment of tuberculosis. Interestingly, ansamycin
has been found to be a HSP90 inhibitor and many of its
synthetic compounds are on trials as anti-breast cancer
drug. [59-61] Vorinostat is a member of a histone deacety-
lases (HADC) with a broad spectrum of epigenetic activ-
ities; it has been approved by the FDA to treat cutaneous
T-cell lymphoma in 2006. Since it has been also shown to
have effect on treating breast cancer [62-68], it has under-
gone multiple Phase I and II clinical trials as an anti breast
cancer drug [69-73]. Trichostatin A (TSA) is an organic
compound that serves as an antifungal antibiotic and selec-
tively inhibits class I and II mammalian HADC families of
enzymes [74]. It has gained extremely high attention in

Table 5 cMap overall prediction result for E2

rank Cmap name mean N Enrichment P Specificity

828 Estradiol 0.209 37 0.367 Null Null

Table 6 cMap detail prediction result for E2

Rank Name and cell
line

Mean N Enrichment P Specificity

12 Estradiol-ssMCF7 0.700 2 0.989 0.00016 0.0000

31 Estradiol-HL60 0.303 8 0.590 0.00335 0.1585

3091 Estradiol-MCF7 0.222 19 0.485 Null Null

3580 Estradiol-PC3 -0.040 8 0.223 Null Null

Table 7 cMap overall prediction result for fulvestrant

Rank Cmap
name

Mean N Enrichment P specificity

861 fulvestrant -0.295 40 -0.352 Null Null

Table 8 cMap detail prediction result for fulvestrant

Rank Name and
cell line

Mean N Enrichment P specificity

5 Fulvestrant-
MCF7

-0.595 21 -0.714 0.00000 0.0146

180 Fulvestrant-
HL60

0.178 6 0.442 0.13728 0.2086

2466 Fulvestrant-
ssMCF7

0.000 1 -0.594 Null Null

3274 Fulvestrant-PC3 -0.032 12 0.413 Null Null
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recent years and has been actively studied for its potent
antitumor activity against breast cancer ever since 2001
[75-79]. Although the information of the last drug (CP-
690334-01) is not available, the overrepresentation of breast
cancer related drugs in this MoA gives us a clear vision of
the significant detection power of BRCA-MoNet when
applied to real patient data.

Conclusion
A drug effect MoA network for breast cancer cell lines,
BRCA-MoNet, was constructed by using the cMap expres-
sion data. It was developed to address the problems of the
cMap algorithm and to provide robustness and more

accurate predictions for treatment effectiveness prediction
and drug screening. This improvement came partially as a
result of careful quality control on cMap data. In contrast
to cMap, BRCA-MoNet prediction is cell line specific and
removes the burden for user to select an effect signature
gene set. Moreover, BRCA-MoNet assesses the therapeu-
tics influence based on MoA instead of those for individu-
ally drugs. This network model not only leads to improved
prediction results but it also uncovered the underlying
MoA structure of the cMap data that has not been fully
discovered before.
The case studies we analyzed here returned favorable

results and insightful leads. For the E2 treated MCF7 cell
line case, the detection power and insight of the BRCA-
MoNet E2-related MoA were exploited. The BMS-754807
case showed that BRCA-MoNet is capable of assigning
new anti-cancer drug to the existing anti-cancer MoA and
yielding insight understanding of drug MoA detection.
The UNC breast cancer patients’ case demonstrated the
potential of BRCA-MoNet to be used as a tool for perso-
nalized treatment recommendation based on patients’
gene expression.
The BRCA-MoNet approach provides added values to

the connectivity map project and allowed for new and bet-
ter capability in identification of possible therapeutic can-
didates. Future direction will likely lend itself to two paths:
to expand the MoNet concept to other cancer and cell
lines by incorporating multiple drug treatment dataset,
and to mature BRCA-MoNet’s capability of prediction for
the real patients. We expect that the rapid development in
cancer profiling projects including The Cancer Genome
Atlas (TCGA) will greatly benefit our effort in these future
directions

Method
BRCA-MoNet workflow
The proposed scheme of generating a breast cancer spe-
cific MoA network or BRCA-MoNet from cMap data is

Table 9 Top 20 drugs for similar effect prediction of
BMS-754807

Rank Drug Mean Expression MoA

1 valproic acid 0.159748 BRC_MoA37

2 clobetasol 0.142458 BRC_MoA37

3 labetalol 0.110684 BRC_MoA37

4 tiapride 0.104771 BRC_MoA37

5 cinchonine 0.017354 BRC_MoA37

6 imipenem -0.00274 BRC_MoA37

7 norfloxacin -0.09407 BRC_MoA37

8 idazoxan 0.158088 BRC_MoA12

9 nordihydroguaiaretic acid 0.080311 BRC_MoA12

10 carmustine 0.028793 BRC_MoA12

11 15-delta prostaglandin J2 0.021515 BRC_MoA12

12 5155877 -0.0044 BRC_MoA12

13 5194442 -0.01294 BRC_MoA12

14 dioxybenzone -0.04312 BRC_MoA12

15 C-75 -0.04929 BRC_MoA12

16 (+)-chelidonine 0.15705 BRC_MoA1

17 prochlorperazine 0.032193 BRC_MoA1

18 erastin 0.002357 BRC_MoA1

19 famprofazone -0.02239 BRC_MoA1

20 clotrimazole -0.02361 BRC_MoA1

Figure 3 Prediction result of breast cancer patient. A) Top MoAs for reverse effect prediction for UNC lumA patients. Color of the heat map
indicates the predicted rank of the MoA in an increasing order from red to yellow. B) Drugs of BRC-MoA24.
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summarized in Figure 4. In the first step, new data pre-
processing, drug signature selection and clustering algo-
rithms were developed and applied to identify MoAs. In
the second step, the relationship between the MoAs in

terms of their effectiveness was assessed. Based on the
MoAs, the BRCA-MoNet was constructed to depict the
relationship of compound effectiveness. BRCA-MoNet and
the drug signatures were used for subsequent prediction.

Figure 4 The workflow of proposed BRCA-MoNet. The arrow shows the work flow of the project. The whole project can be divided into three
parts: 1. Data extraction and preprocessing; 2. Quality Control and signature selection; 3. BRCA-MoNet construction and prediction for new query.
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Two types of prediction can be carried out with BRCA-
MoNet including similar prediction and reverse prediction.
For the purpose of find the drug effectiveness on a tumor
sample, the expression profile of an individual tumor sam-
ple is used as a query, where reverse prediction is adopted
and the query will be inverse correlated against the MoAs
to predict treatment effects. The prediction result includes
a list of MoAs ranked in an increasing order of their nega-
tive correlation to the tumor profile. Since effective com-
pounds are expected to have an adverse effect to tumor,
MoAs with the negative correlations with the tumor profile
will likely be candidates of choice for treating this indivi-
dual tumor. For the purpose of finding a new compound’s
treatment effect, a query expression profile from treated
sample of a new compound would be used instead as an
input to BRCA-MoNet and both similar and reverse pre-
diction results will be of interest as they are the com-
pounds of respective similar and adverse effectiveness in
expression. The BRCA-MoNet can be updated when new
compound-treated expression profiles are available. One
can take the advantage of existing BRCA-MoNet and
update it by simply introducing a new MoA and their rela-
tionship to other groups. The algorithms are discussed in
details in Methods.

Data preparation
Gene expression profiles of compound treatments were
downloaded from Broad Institute’s Connectivity Map web
site (http://hRp://www.broadinsUtute.org/cmap/). Two
Affymetrix arrays were utilized in this study (excluding
184 arrays from early-access version of HT-HG-U133A):
HG-U133A (total of 807 arrays) and HT-HG-U133A
(6029 arrays), representing 1,267 compound treatments at
different dosages. In addition, data includes 5 cell lines:
HL60, PC3, SKMEL5 and MCF7/ssMCF7. Each treated
sample is accompanied by multiple control/vehicle sam-
ples. As for the normalization, the Perfect-Match(PM)
probe level intensities, obtained from one Affymetrix array
type (including treated and untreated hybridization), was
first performed background adjustment together by using
Robust Multi-array Average (RMA) procedure. after RMA
background adjustment for both array types, quantile nor-
malization was performed to all untreated samples; treated
samples were then partitioned according to the array type,
vehicle cell-line, and compound; for each group (same
array type, cell-line and compound; rank-invariant nor-
malization was performed against their corresponding
untreated samples (base line of the normalization was the
median of untreated vehicles) at probe-level to correct
possible nonlinear abnormality. After normalization, the
treated samples expression values were calculated by med-
ian polish procedure. At last, all samples (treated and
untreated, and both array types) were reassembled into
matrix according to Affymetrix probe set IDs.

Signature gene set selection and distance assessment
The goal of signature gene set selection is to select the
genes that are expressed differentially. Since most of the
drugs in cMap contains only two samples, the conven-
tional differentially analysis algorithms such as t-test can-
not be applied. We proposed the following test statistic to
measure if a gene, say i, is consistently differentially
expressed in a pair of samples

Ri =
xi
σx

∗ yi
σy

−
∣
∣
∣
∣
xi
σx

− yi
σy

∣
∣
∣
∣

Where xi and yi is the expression of gene i in sample ×
and sample y, respectively, and σx and σy are the corre-
sponding sample standard deviation. This statistic values
genes which are most differentially expressed in both sam-
ples, while taking the sample variation into the considera-
tion. The empirical distribution of this statistic R under the
null hypothesis that the gene is not differentially expressed
can be obtained by random sampling from replicates of the
cMap data. Based on the distribution, p-values can be com-
puted for every gene. A signature gene set of any paired
drug samples are determined to contain gene with p-value
< 0.1%. The algorithm is summarized in Figure 5. For
drugs having a larger sample sized than 2, the procedure of
determining signature gene set are fairly the same. Each
pair of sample would be used to determine a gene set and
then a common subset of all determined gene sets will be
the final signature set. Based on the above selected signa-
ture gene sets, the distance Dab between any two drug
treatment samples a and b is defined as

Dab = Dmax − 1
2

∗ (
1
n

∑

in

g(a−b)i

var(b)
+

1
m

∑

jm

g(b−a)j

var(a)
)

where Dmax is the maximum distance among all pairwise
drug treatment samples’, g(a−b)i is the ith gene expression
level of sample a signature gene set in sample b,n and m
are the size of the signature gene sets (the total numbers
of genes) for sample a and b, respectfully, and var(a), and
var(b) are the sample variance of a and b, respectfully.

Quality control
Quality control is done in two rounds of processing. In
the first round, which is part of the gene selection, some
drugs came by with no signature gene sets; this is a result
that no genes were consistently differentially expressed in
samples from this drug. The samples from those drugs
were removed. Although some drugs were determined
with a signature gene set, one or more of the outlier sam-
ples may not agree with the rest. To address this pro-
blem, a second round of further quality control process
was also performed on the cMap samples. In order to
remove these inconsistent samples, a new scheme was
proposed in Figure 6.
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MoA and MoNet generation
According to the definition of MoA, two compounds are
in the same MoA if they share the same genomic signa-
ture. This is equivalent to say that the samples from these
two compounds are highly correlated. In contrast, the
samples from different MoAs should have a correlation
distributed according to the distribution of the population
correlation. To determine if two drugs i and j belong to a
MoA, a hypothesis testing formulation is developed with
the null hypothesis defined by

H0 : Dij∼ pb(D)

where Dij is the Distance assessment between sample i
and j, and pb(D) is the the distribution of the population
distance. pb(ρ) is estimated empirically based on the pair-
wise distances between all sample pairs of the same cell
line. Then, a p value of 0.01 is chosen as the significance
level and the corresponding distance is determined as the
threshold. Hierarchical clustering is performed on all the
samples distances; then clusters are determined by cutting

the linkage at the threshold and the resulted clusters were
defined as the MoAs. Notice that since each MoA was
generated totally based on the threshold obtained from
the background distribution, some MoAs may contain
large number of samples while other MoAs only contain
few samples from one or two drugs; this is natural and
reasonable because some compounds just do not share the
treatment effectiveness with others.
Once the MoAs were identified, it was then desirable

to reveal the relationship of the MoAs in terms of their
therapeutic effects. Instead of investigating individual
compound in an isolated fashion, MoNet will enable
research to explore a set of compounds (MoAs) that
share the same MoA-Signature genes (potential targets),
as well as their correlated MoAs.

Drug Effectiveness Prediction
Using the MoNet and the MoA, one can 1) predict drug
effectiveness of a new compound (Similar Prediction)
and/or 2) screen compounds to predict the therapeutic

Figure 5 Pseudo code of the proposed gene set selection scheme.

Figure 6 Pseudo code of the proposed quality control scheme.
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effectiveness of different compounds if applied to an indi-
vidual tumor (Reverse Prediction). For drug effectiveness
prediction, the expression profile of cells/tissue treated by
a new compound needs to be obtained and the goal is to
identify the MoA of the compound. For the therapeutic
prediction, a query gene expression profile of the tumor
sample is required. The goal is to determine the degree of
the adverse relationship between the MoAs and the tumor
marker genes expression that reveals how likely the com-
pound is to reverse the expression of tumor marker genes.
From the perspective of algorithm development, predic-
tion of drug effect and compound screening are essentially
the same. The only difference is the distance criteria:
When similar prediction is applied, the MoA is first
ranked for the largest positive distance and then each
drugs within the MoA are then ranked with the same cri-
teria; when reverse prediction is applied, then the MoA is
first ranked for the smallest negative distance and then
each drugs within each MoA are ranked the same.

Additional material

Additional file 1: Detailed cMap prediction result for E2 treatment
query.

Additional file 2: Detailed BRCA-MoNet prediction result for similar
prediction of individual E2 treatment query.

Additional file 3: Detailed BRCA-MoNet prediction result for reverse
prediction of individual E2 treatment query.

Additional file 4: Detailed BRCA-MoNet prediction result for similar
prediction of individual BMS784807 treatment query.

Additional file 5: Detailed BRCA-MoNet prediction result for breast
cancer patient microarray dataset.
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