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Abstract

repositioning candidate discovery platforms.

Background: Given the costly and time consuming process and high attrition rates in drug discovery and
development, drug repositioning or drug repurposing is considered as a viable strategy both to replenish the
drying out drug pipelines and to surmount the innovation gap. Although there is a growing recognition that
mechanistic relationships from molecular to systems level should be integrated into drug discovery paradigms,
relatively few studies have integrated information about heterogeneous networks into computational drug-

Results: Using known disease-gene and drug-target relationships from the KEGG database, we built a weighted
disease and drug heterogeneous network. The nodes represent drugs or diseases while the edges represent shared
gene, biological process, pathway, phenotype or a combination of these features. We clustered this weighted
network to identify modules and then assembled all possible drug-disease pairs (putative drug repositioning

candidates) from these modules. We validated our predictions by testing their robustness and evaluated them by
their overlap with drug indications that were either reported in published literature or investigated in clinical trials.

Conclusions: Previous computational approaches for drug repositioning focused either on drug-drug and disease-
disease similarity approaches whereas we have taken a more holistic approach by considering drug-disease
relationships also. Further, we considered not only gene but also other features to build the disease drug networks.
Despite the relative simplicity of our approach, based on the robustness analyses and the overlap of some of our

predictions with drug indications that are under investigation, we believe our approach could complement the
current computational approaches for drug repositioning candidate discovery.

Background

Drug development in general is time-consuming,
expensive with extremely low success and relatively high
attrition rates. To overcome or by-pass this productivity
gap and to lower the risks associated with drug develop-
ment, more and more companies are resorting to
approaches, commonly referred to as “Drug Reposition-
ing” or “Drug Repurposing”. Drug repositioning is nothing
but identifying and developing new uses for existing or
abandoned pharmacotherapies [1]. Since the starting
point is usually approved compounds with known
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bioavailability and safety profiles, proven formulation and
manufacturing routes, and well-characterized pharmacol-
ogy, repositioned drugs can enter clinical phases more
rapidly and at a fraction of costs incurred in the discov-
ery and development of completely novel compounds [2].
This new indication discovery has already yielded several
successes that include the repositioning of sildenafil from
an anti-angina drug to erectile dysfunction treatment and
repositioning thalidomide, a withdrawn drug, for leprosy
and multiple myeloma. Indeed, it is not surprising that in
recent years, repositioned drugs account for ~30% of the
new medicines that reach their first markets. Although
there are several advantages, rational drug repositioning
poses formidable challenges primarily because the mole-
cular basis and the underlying mechanisms of most
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diseases and drug actions are either elusive or poorly
understood, intricate, or are not readily amenable to
human or computational data mining techniques.

Drug repositioning is predominantly dependent on
two principles: i) the “promiscuous” nature of the drug
and ii) targets relevant to a specific disease or pathway
may also be critical for other diseases or pathways [3,4].
The latter may be represented as a shared gene or fea-
ture (biological process, pathway, or phenotype) between
a disease-disease, drug-drug, or a disease-drug. Based on
this principle, some computational approaches (see
recent review [5]) have been developed and applied to
identify drug repositioning candidates ranging from
mapping gene expression profiles with drug response
profiles [6-12], to side-effect based similarities [13-15].

An increasing number of network-based methods built
on “guilt by association” principle have also been used
to identify drug repositioning candidates. For instance,
Chiang and Butte computed disease-disease similarity
network to identify drug repositioning candidates [16],
while some other approaches used either drug-drug
similarities [13,17] or both disease-disease and drug-
drug similarities [18-20]. However, most of these
approaches were either drug-centric or disease-centric
and not “indications-centric”. In other words, few stu-
dies have used a direct disease-drug-centric approach.
While there have been studies using heterogeneous net-
works [17,21-24] for drug repositioning, to the best of
our knowledge there have been no previous reports that
(a) undertook a direct analysis of heterogeneous disease-
drug network and (b) used network clustering-based
approaches on heterogeneous networks to identify drug
repositioning candidates.

In the current study, we built a gene and feature-based
(shared biological processes, pathways, phenotype) disease
and drug heterogeneous network and applied network
clustering to identify drug repositioning candidates. We
used two state-of-art network clustering approaches
[25,26] to identify the modules of diseases-drugs. We
validated the robustness of our methodology by removing
ten percent of the edges and calculating the recovery rate
of our predictions. Finally, we performed a literature and
clinical trials data search to check for potential overlap of
our discovered novel indications.

Methods

Disease-gene and drug-gene associations

Known disease-gene and drug-target associations were
downloaded from KEGG Medicus (Feb, 2013), [27]. There
were a total of 1301 diseases and 3613 drugs with at least
one known gene association along with 1976 known indi-
cations (representing 364 diseases and 1066 drugs). To
augment the drug targets, we also used drug-target data
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from DrugBank [28] using KeggDrug-DrugBank mappings
(see Additional file 1 for a complete list of disease-genes
and drug-targets).

Generation of disease-disease, drug-drug, and disease-
drug pairs based on shared genes or features

The nodes in our network are diseases and drugs while
the edges represent either a shared gene or a shared fea-
ture (enriched biological process, pathway or pheno-
type). We first built a gene-based network where two
nodes (disease or drug) are connected if they share a
gene. We used Jaccard coefficient (see below) to mea-
sure the similarity between two nodes.

] (node1, node2) = |Genesnoder N Genespodes |
, =
|Genesyoger U Genespoger |

Because a disease or drug can be related to other dis-
ease or drug even if they do not share a gene, we further
enhanced our network by adding edges that represent
shared features (biological processes, pathways, and
mouse phenotype). To do this, we first performed an
enrichment analyses of each of the disease and drug
using ToppFun application of the ToppGene Suite [29].
For each of disease and drug, we first computed the
enriched biological processes, pathways, and mouse phe-
notype. We then built a feature-based network where
nodes represent disease or drug while the edges repre-
sent shared enriched features (biological process, mouse
phenotype and pathways; p-value <0.05 Bonferroni cor-
rection). We used Jaccard score to measure the feature
similarity between each pair of the nodes. We thereby
generated a list of disease-disease, drug-drug, and dis-
ease-drug pairs based on shared genes and/or enriched
features (Figure 1).

Graph clustering of weighted drug-disease
heterogeneous network

We applied graph clustering to the weighted drug-dis-
ease heterogeneous network to extract densely con-
nected clusters of diseases and drugs and mined them
to extract potential candidates for drug repositioning.
We used two state-of-art graph clustering algorithms,
namely ClusterONE [26] and Louvain’s modularity [25]
for the module detection.

The Louvain method, in the first step, looks for
“small” communities by optimizing modularity in a local
way. In the second stage, it aggregates nodes of the
same community and builds a new network whose
nodes are the communities. These steps are repeated
iteratively until a maximum of modularity is reached.
This process naturally leads to hierarchical decomposi-
tion of the network and results in several partitions [25].
It measures the density of edges inside the community
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as compared to edges of inter-communities and is
defined as:

1 kik;

Q= om Z,-J |:Ai,j - 21”;] 8 (Ci,Cj)

where A;j represents the edge between node i and j,
ki = _;Aij is the sum of the weights of edges associated
with node j, ¢i is the community that node i is assigned
to, 8 (u,v)was 1 if u = v and 0 if otherwise and m - iz,-]m,.
Although the partitioning seems like an approximate
method and nothing ensures that the global maximum
of modularity is attained, several tests have shown that
it provides a decomposition in communities with modu-
larity that is close to optimality [25]. The implementa-
tion is available as a plug-in in Gephi [30].

We also used another graph clustering approach,
ClusterONE (Clustering with Overlapping Neighbor-
hood Expansion) [26], to find the disease-drug modules.
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The cohesiveness of a cluster in ClusterONE is defined
as follows:

win (V)

SV = i (V) + Whound () 4 P|V|

where, W(V) denotes the total weight of edges
within a group of vertices V, Wb (V) denotes the
total weight of edges connecting this group to the rest
of the graph while P|V] is the penalty term. We used
ClusterONE because of its ability to identify overlapping
cohesive sub networks in weighted networks and was
shown previously to detect meaningful local structures
in various biological networks [31,32]. We used the
ClusterONE plug-in available in Cytoscape [33] for
implementation.

Results

Analyses of known indications in disease-drug network
Starting with 1976 known indications (disease-drug
pairs) from Kegg Medicus, we first filtered out diseases
and drugs that do not have a known gene association in
the Kegg database of disease genes and drug targets.
This resulted in 1041 known indications representing
203 diseases and 588 drugs (Additional File 2). Using
this data, we found that of the 1041 known indications
(disease-drug pairs) only 132 pairs share at least one
common gene (i.e., a disease-associated gene is also a
drug target). We then checked if any of the known indi-
cations share a pathway. To do this, we used the dis-
ease-pathway and drug-pathway annotations from Kegg
Medicus. While this also revealed that only 116 disease-
drug pairs share a common pathway, what was surpris-
ing was that only 36 disease-drug pairs share both a
pathway and a gene. This demonstrates that disease-
drug relationships cannot be captured just through
gene-centric approaches.

To analyze the characteristics of known indications
further, we computed a distance measure between each
of the known indication pairs in the human protein
interactome (downloaded from NCBI’'s Entrez Gene
[34]). We calculated the shortest path for all known
indications (i.e., shortest path between a known disease
and drug pair) in the protein interactions network using
JUNG [35]. Of the 1041 known indications, we were
able to compute the shortest paths for 1008 disease-
drug pairs. For the remaining pairs, we were unable to
compute the shortest paths because their encoded pro-
teins were either absent in the interactome or were not
reachable (e.g., a disease protein and drug target present
in two different connected components of the protein
interactome). The average distance between a disease-
drug of known indications is 3.75 (median distance of
4), a finding concurred by previous reports [36]. These
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preliminary analyses, and our previous studies [37] with
rare disease networks where we noted that the relation-
ship between diseases cannot be fully captured by the
genes network alone, motivated us to build a feature-
based functional connectivity map between diseases and
drugs.

Disease-disease, drug-drug, and disease-drug pairs - edge
pruning and weighted heterogeneous network
generation

Using the disease-gene, drug-target, and the enriched fea-
tures of diseases and drugs (based on functional enrich-
ment analyses of diseases and drugs), we built a gene and
feature-based network where nodes represent disease or
drug while the edges represent shared gene and/or
enriched features (biological process, mouse phenotype
and pathways; p-value <0.05 Bonferroni correction). We
used Jaccard score to measure the feature similarity
between each pair of the nodes. In order to retain only
edges that represent significant potentially significant
relationships, we used a cutoff of 0.5 on Jaccard indexes
across the four networks (gene-based and the 3 feature-
based networks). Thus, the final network contained edges
which were a union of pairs that passed the 0.5 Jaccard
score threshold in each individual category.

Based on whether a pair of nodes (disease-disease, dis-
ease-drug, and drug-drug) shares genes or enriched fea-
tures or both, we assigned weights to all the edges in the
filtered pairs. For instance, a pair of nodes with a
weighted edge of 1 indicates that they share either a gene
or one of the three features whereas a weight of 4 indi-
cates that the two nodes showed significant associations
(sharing not only a gene but also the three features,
namely, biological process, pathway, and phenotype). The
resulting weighted heterogeneous network consisted of
657 disease nodes and 3489 drug nodes. The total num-
ber of edges in this network is 116493; 680 edges were
between two diseases, 1626 were between a disease-drug
and 114187 between two drugs (Additional File 3).

Modularity analyses of the disease-drug network
We used two graph clustering algorithms to detect dis-
ease-drug modules in this weighted heterogeneous net-
work of diseases and drugs. Using Louvain’s method, we
could identify 293 modules. Of these, 98 modules com-
prised nodes of both diseases and drugs. Using Cluster-
ONE, we were able to partition the disease-drug
heterogeneous network into 312 clusters (p value < 0.05),
of which, 110 clusters comprised both diseases and drugs
(see Additional file 4 for a complete list of ClusterONE
and Louvain method based modules) (Figure 1).

Using the ClusterONE and Louvain detected commu-
nities we generated all possible disease-drug combina-
tions on a per cluster basis. We call these the “drug
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repositioning candidates”. To test the robustness of
these novel drug repositioning candidate pairs, we
removed 10% of the edges at a time and calculated the
recovery rate of our predictions in a repetitive manner.
Briefly, in each run, we randomly removed 10% of edges
from the heterogeneous weighted disease-drug network
and performed graph clustering (both ClusterONE and
Louvain methods) to detect the communities and
extract drug repositioning candidate pairs. We repeated
this for ten times and compared the drug repositioning
candidates with those from the original network (before
randomly removing the 10% edges). The average recov-
ery rate in case of drug repositioning candidates gener-
ated by ClusterONE was ~95% while in case of Louvain
clustering it was ~85%. This demonstrates that the drug
repositioning candidates we have discovered are robust
and that additional edge removal or addition will not
affect the output significantly.

Drug repositioning candidates and literature-based
evaluation

From the 98 clusters found by Louvain clustering, 11160
drug repositioning candidates (disease-drug pairs) were
generated. In case of 110 ClusterONE-generated clus-
ters, 2518 drug repositioning candidates were extracted.
There were 2501 drug repositioning candidates (exclud-
ing 13 known indications) found by both of the cluster-
ing approaches (Additional file 5). We used these pairs
to perform a literature-based and clinical trials search
using CoPub [38] and a carefully designed PubMed
search using NCBI's E-Utilities feature [39]. In the
Figure 2 (panels A-H) we show the modules which con-
tained drug repositioning pairs with literature evidence
(see Table 1 for a list of drug repositioning candidate
examples along that had either a literature-based and/or
clinical trial-based evidence; See Additional File 6 for
complete details including the PubMed IDs). In the fol-
lowing sections we discuss two case studies wherein our
discovered drug repositioning candidates matched with
those in clinical trials and literature.

Vismodegib and Gorlin syndrome

Two of the drug repositioning candidates in our results
that overlapped with the literature reports and clinical
trials were derived from a cluster with drugs vismodegib
and erismodegib and diseases basal cell carcinoma
(BCC) and Gorlin syndrome. Interestingly, vismodegib,
an oral inhibitor of the hedgehog pathway, is the first
drug approved by the US Food and Drug Administra-
tion (FDA) for the treatment of locally advanced and
metastatic BCC [40,41]. Additionally, another study
reported the efficacy of vismodegib on patients with
Gorlin syndrome (basal cell nevus syndrome), a rare
autosomal dominant disorder in which those with the
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disease are prone to developing multiple BCCs at an
early age [42] (clinical trial NCT00957229). In our ana-
lyses, vismodegib and Gorlin syndrome do not share a
common gene but are still clustered together because of
the pathway-based connectivity (hedgehog signaling
pathway) (Figure 3). This demonstrates the utility of our
approach in using feature-based heterogeneous networks
to identify drug repositioning candidates.

v-secretase inhibitors, NSAID, Alzheimer’'s and
Hidradenitis suppurativa

Another interesting set of examples in our study were
related to Alzheimer’s disease (AD) and y-secretase inhi-
bitors (avagacestat, semagacestat and begacestat) and
NSAID (tarenflurbil or R-flurbiprofen) which have been
shown as potent reducers of levels of -amyloid (AB)
[43-45]. In our study, AD and hidradenitis suppurativa
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Table 1 Examples of some of the drug repositioning candidates along with their count of PubMed references (see

Additional file 6 for more details)

Disease ID Disease Name Drug ID Drug Name PubMed count
H00056 Alzheimer's disease D09869 Avagacestat 5
HO00056 Alzheimer's disease D08869 Begacestat 5
HO00056 Alzheimer's disease D09377 Semagacestat 32
HO00056 Alzheimer's disease D09010 Tarenflurbil 21
H00079 Asthma D09979 Tralokinumab 3
H00039 Basal cell carcinoma D09992 Vismodegib 39
H00728 Brugada syndrome D00303 Disopyramide 1
H00728 Brugada syndrome D08215 Mexiletine 17
H00218 Cystic fibrosis D09916 Ivacaftor 28
H00218 Cystic fibrosis D10134 Lumacaftor 1
H00937 Familial male precocious puberty D06247 Triptorelin 2
H00895 Gorlin syndrome D09992 Vismodegib 5
H00242 Liddle syndrome D07447 Amiloride 28
H00242 Liddle syndrome D00386 Triamterene 4
H00012 Polycythemia vera D09959 Ruxolitinib 19

Vismodegib

/

Basalcell
carcinoma

\edgehog

'_*Slgnallng
thw

Gorlin syndrome

Figure 3 Gene- and pathway-based connectivity map of
vismodegib and Gorlin syndrome. Drugs and diseases are
represented as triangles and rectangles respectively. Genes are
represented as hexagons while octagons represent pathways.
Although vismodegib and Gorlin syndrome do not share a
common gene, the hedgehog signaling pathway connects the drug
and the disease.

(acne inversa) were clustered along with the y-secretase
inhibitors and tarenflurbil. Since several studies have
implicated B-amyloid (AB) peptides in the etiology of
Alzheimer’s disease (AD) [46-48] and because AB is pro-
duced by the proteolytic cleavage of the amyloid precur-
sor protein by B- and y-secretase, y-secretase inhibition
is thought to have a therapeutic benefit for AD. How-
ever, all these drugs failed in phase III trials because
they either worsened cognition and/or increased the risk
of skin cancer. Although it is not known whether the
adverse effects of y-secretase inhibitors include hidrade-
nitis suppurativa, our results show the clustering of y-
secretase inhibitors along with hidradenitis suppurativa.
Interestingly, previous studies have shown that reduced
y-secretase and notchl activity in mice cause a high fre-
quency of skin cancer [49] and that hidradenitis suppur-
ativa can be an allelic disorder of early-onset familial
AD [50]. Indeed, the feature-based map of AD, hidrade-
nitis suppurativa, y-secretase inhibitors and tarenflurbil
converge on the notch signaling pathway (Figure 4).

While the overlap of our discovered drug repositioning
candidates with those under clinical trials (and literature
evidences) demonstrates the utility of our approach, it
also shows the limitations of computational approaches.
In other words, while the computational approaches can
provide potential candidates for drug repositioning, it
may not be easy to foresee their failure in clinical trials.
Nevertheless, the feature details (e.g., shared pathways,
biological processes, phenotypes) our approach provides
for the disease and candidate drug connectivity may not
only help in understanding the molecular basis of side-
effects but also make more informed decisions.
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Conclusions

Our approach to predict novel indications by representing
disease-drug combinations as combinations of their mole-
cular and mechanistic features, including biological pro-
cesses, pathways, and phenotypes, not only led to the
proposal of drug repositioning candidates but also allowed
mechanistic insights into them. The robustness of our pre-
dictions and their overlap with those reported in the litera-
ture and clinical trials demonstrate that this approach can
effectively identify new indications with the enriched fea-
ture patterns as an indicator for the mode of action.
Although we have looked beyond the gene-based relation-
ships, a limitation of this method is that it relies on the
feature patterns enriched in diseases and drugs which
themselves are generated using the genes associated with
diseases or drugs. Thus, diseases and drugs that currently
lack gene annotations are left out. Nevertheless, some of
the discovered novel indications are far from being
obvious and may also help in understanding the molecular
basis of side effects. As Novac points out in a recent
review [51], while it is too early to evaluate the success of
repositioning efforts, the obvious candidates for reposi-
tioning may have already been exhausted. Thus, a much
more thorough analysis and investment has to be done to
reposition the rest of the candidates [51].
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Additional file 1: Disease-gene and drug-target data used in the
study.

Additional file 2: List of known indications (disease-drug pairs) used
to analyze the distance metric in the protein interactome.

Additional file 3: Details of heterogeneous network (disease-drug
pairs) along with the edge details.

Additional file 4: Details of clusters (ClusterONE and Louvain
modularity).

Additional file 5: Complete list of drug repositioning candidates
(from ClusterONE modules, Louvain modules, and those occurring
in both).

Additional file 6: Examples of some of the drug repositioning
candidates along with their PubMed references.
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