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Abstract

Background: Tumor biomarkers are potentially useful in several ways such as the identification of individuals at
increased risk of developing cancer, in screening for early malignancies and in aiding cancer diagnoses; tumor
biomarkers may also be used for determining prognosis, predicting therapeutic response, patient tracking following
curative surgery for cancer and for monitoring therapy. Epigenetic alterations, especially aberrant DNA methylation,
are recognized as common molecular alterations in a variety of tumors and also occur during the development of
tumors. The Cancer Grade Predictor (CGPredictor) is an extendable package with functions designed to facilitate
systematic integrated and rapid analysis of high-throughput methylation through the use of most self-similarity
subgroups of patients supported by various validating examinations with regarded to survival outcome to obtain
the identity of the target predictor.

Results: We used high-grade serous ovarian cancer (HGSOC) and invasive breast carcinoma (BRCA) to demonstrate
the usefulness of the CGPredictor package. The clustering results and the identity predictors worked well and
efficiently in producing significant results after various tests were used to validate the usefulness of CGPredictor
package. Also, some of the markers for either the HGSOC or BRCA marker panel have been previously reported to
reveal significant results. Even when performed using a different platform with an independent large population
BRCA dataset for validation, the identity predictor provided an accurate assessment of patient conditions and
produced significant results.

Conclusions: CGPredictor package is not a customized analysis tool designed specifically for the identification of
only one or a few specific types of cancer but can be applied more broadly; moreover, the results indicate that the
extracted predictors may worthy of consideration for further clinical testing to identify their potential usefulness for
clinical molecular diagnosis and targeted treatments of patients with HGSOC and BRCA. So, the use of CGPredictor
is feasible for examining the statistical significance of specific markers of interest and shows great potential for use
with other types of cancers for cancer biomarker mining.

Background
DNA methylation has attracted a great amount of interest
in the field of cancer research and is currently considered
to be a common abnormality found during tumor initia-
tion and subsequent cancer progression [1-3]. DNA
methylation of CpG islands regulates gene expression

patterns in cancers [2,4]. Also, DNA hypermethylation of
promoter-associated CpG islands of tumor suppressor,
which leads to transcriptional silencing of these genes, has
been the most studied epigenetic alteration in human neo-
plasia [4]. Methylation patterns and gene expression pro-
files can be measured on a genome-scale with microarrays
which enable integration of these data for further identifi-
cation of genes that are crucial to cancer progression.* Correspondence: jchiang@mail.ncku.edu.tw
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An early diagnosis is critical for the successful treat-
ment of many types of cancer. DNA methylation is clo-
sely related to the development of cancer [5]. Since DNA
methylation occurs early and can be detected in body
fluids, it may be of potential use in the early detection of
tumors and for determining the prognosis of some
patients [1-3]. The potential to use DNA methylation to
determine a patient’s prognosis, to predict therapeutic
response, for surveillance following curative surgery for
cancer and to monitor affected critical genes presents
researchers with an attractive option for exploring the
clinical use of DNA methylation during the treatment of
malignancies. A preventive strategy is needed for patients
allowing the use of biomarkers designed to guide physi-
cians in the placement of patients into appropriate
screening or surveillance programs for the early detection
of cancers. Hence, more reliable markers associated with
a large population-base of tumors need to be developed
for widespread use in the diagnosis and treatment of can-
cer. The primary goal of CGPredictor package is to iden-
tify and examine biomarkers from strong self-similarity
pattern on patients’ profiles and the package can be
paired with various validation methods designed to facili-
tate the identification of distinct phenotypes in a variety
of cancers.
To demonstrate the utility of CGPredictor, we analyzed

alterations in DNA methylation in different cancers of 282
patients with HGSOC [6] as well as 241 patients with
BRCA [7] using the Cancer Genome Atlas portal. Tables 1
and 2 show the clinical characteristics of the patients con-
sidered in this study. We believe CGPredictor allows
researchers to use the first systematic approach which can
be used to support the mining and examining cancer bio-
marker candidates followed with various validation ana-
lyses and we found it to be highly efficient (see Table 4).
Whether performed using HGSOC or BRCA patients, the
statistical significance of the predictor and the clustering
genes can be examined; also known cancer markers could

be identified in the predictors based on previous reports in
the literature.

Methods
The use of CGPredictor requires several major steps. In
the clustering step, the function in the CGPredictor pack-
age called “kmeans” is used to cluster samples. In the bio-
marker selection step, the user can set parameters to
choose hypermethylation/hypomethylation corresponding
to the downregulated/upregulated intensity between the
clustered phenotypes. During the predictor performance
examination step, the Cox test is calculated with the clus-
tered clinical outcome of distinct phenotypes and the ran-
dom selection test can be performed for further validation
to increase confidence that gene sets have not been
selected randomly. Once validated, a bootstrap test was
used to examine the significance between the clustering
genes and the phenotypes.
First, the beta value matrix is used for the most self-

similarity pattern on patients’ profiles clustered together
by kmeans function in CGPredictor. To extract the bio-
marker candidates, gene name is used to link the methy-
lation and gene expression matrices. Also, the mean of
gene intensity in each cluster group was determined both
for gene expression and DNA methylation for subsequent
molecular intensity comparison between clustered phe-
notypes. Then, the filter function in the CGPredictor
package can be used to obtain the biomarker candidates
which are predictors for corresponding hypermethyla-
tion/hypomethylation to downregulated/upregulated
genes between phenotypes. Then, the function in CGPre-
dictor for Kaplan-Meier (KM) curves and Cox test with
any observed significant differences in survival for differ-
ent patient groups can be used to estimate the perfor-
mance of the predictors. To increase the level of
statistical confidence and for further validation of the
relationship found between clustering genes and the phe-
notypes and the significance of the predictor, bootstrap

Table 1 Characteristics of the HGSOC participants used in the analysis

O-CIMP-negative O-CIMP-positive Total

No. of Patients 81 32 113

Patient Phenotype Age, years

Median (LQ, UQ) 56(50, 63) 60(56, 70) 57(51, 66)

No. ≤ 40 years old 6 0 6

Survival (in months)

Mediana (LQ, UQ) 20.9(11.7, 34.6) 17.7(6.8, 27.8) 20(10.5, 30.9)

Sex

Female 81 32 113

Male 0 0 0

LQ, lower quartile; UQ, upper quartile; and CI, confidence interval.
aMedian survival and corresponding confidence intervals were estimated from the Kaplan-Meier curve
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and random selection tests can be performed, respec-
tively. The relationship between clustering genes and the
distinct subtype of patients could be measured using the
bootstrap test. The bootstrap sample datasets are from
the original cancer dataset; we used sampling with repla-
cement with a default iteration of 1,000 times. Also, the
original clustering genes were used for kmeans clustering
in each rebuilt sample set. Then, the sensitivity would be
performed for measuring the statistical significance
among the 1,000 iteration sampling dataset. Moreover,
the random selection test function is designed to ran-
domly select the same number of genes as were originally
extracted as biomarker candidates for a specific cancer.
The function in CGPredictor can also be used to effi-
ciently test the extracted predictor’s significance with the
same default of 1,000 iterations (see Table 4). The pro-
graming structure in CGPredictor functions is user
friendly. It will allow for future procedure extension as
long as the development of the new packages follow the
recommended input and output methods for data struc-
ture of every function of CGPredictor. Also, CGPredictor
is highly extendible for user modification with any of the
functions which can be implemented by R. CGPredictor is
not limited to DNA methylation microarrays and is scal-
able to various kinds of microarray analysis problems.
However, our integrated system is limited to use on MAC
and Windows operating systems and cannot be used on
Linux systems, for example.
Measuring how confident one can be of the usefulness

of the extracted biomarker candidates is very important
in cancer biomarker mining. Aside from some basic pro-
cessing functions in our integrated system, the statistical
validation functions play a critical role for examining the
extracted biomarker candidates. Users can measure how
their confidence in the relationship found between fea-
ture and the clustered phenotypes as well as the ability of
the predictor to examine the quality and significance of
the biomarker candidates they extracted using our pack-
age, CGPredictor.

Results
Study population
We used the CGPredictor package to analyze 282 HGSOC
and 241 BRCA patients using Infinium HumanMethyla-
tion27K (Illumina Inc., San Diego, CA, USA) including
27,578 CpG dinucleotides spanning about 14,000 genes
accessed from the Cancer Genome Atlas (TCGA) data
portal. Furthermore, an analysis of another large indepen-
dent dataset including 596 BRCA patients was analyzed
on a different platform, HumanMethylation450k; this was
performed for validation in the proposed R package. In
earlier work, the hESC specific gene panel has been found
to be enriched in poorly differentiated tumors[8]. Based
on the previous reports [8,9], we then compiled related
hESC gene sets. ESC over-expressed genes [10], Nanog,
Oct4 and Sox2 targets [11], Polycomb targets in hESCs
[12], and Myc targets [13,14]. Then, the primary analysis
was limited to the common gene set including a total of
3,800 genes for subsequent analysis.

High-grade serous ovarian cancer data analysis and
various validations
After kmeans clustering, the two extreme phenotypes
which included the most normal tissues and the most
abnormal tissues were labeled as O-CIMP-negative (high
grade serous ovarian cancer CpG island methylator phe-
notype) and O-CIMP-positive, respectively. Toyota, et al.
first characterized a CpG island methylator phenotype
(CIMP) in human colorectal cancer [15]. When hyper-
methylated and downregulated genes in HGSOC were
retrieved, the 43 extracted genes (as predictor in
HGSOC) included SOX1, CALCA, DCC, GATA4, and
NID2, which are the five genes known to be connected to
HGSOC. Aside from the five of 43 biomarker candidates
which have been reported to have significant usefulness,
the KM curve and Cox test for the specific phenotype
distinction had a p-value of 0.01647 (Figure 1). This indi-
cates the distinct phenotypes clustered by the extracted
predictor are significantly different from each other.

Table 2 Characteristics of the BRCA participants used in the analysis

B-CIMP-negative B-CIMP-positive Total

No. of Patients 77 12 89

Patient Phenotype Age, years

Median (LQ, UQ) 57(46, 66) 66.5(61, 70) 59(47, 68)

No. ≤ 40 years old 8 1 9

Survival (in months)

Mediana (LQ, UQ) 14.3(7.6, 21.1) 14.5(7.9, 18.8) 19.2(10.7, 32.9)

Sex

Female 77 12 89

Male 0 0 0

LQ, lower quartile; UQ, upper quartile; and CI, confidence interval.
aMedian survival and corresponding confidence intervals were estimated from the Kaplan-Meier curve

Cheng and Chiang BMC Systems Biology 2013, 7(Suppl 6):S10
http://www.biomedcentral.com/1752-0509/7/S6/S10

Page 3 of 7



Furthermore, the predictor for HGSOC were also signifi-
cant (p < 0.0001 after 1,000 iterations) when genes were
randomly selected for examining the significance of the
extracted predictor. After the bootstrapping with 1,000
iterations, the data was found to be statistically significant
(p < 0.0001) verified the significance of the clustering
results. These results showed that using an extracted pre-
dictor from CGPredictor package defined by DNA
methylation status is adequate for finding an independent
predictor for determining cancer phenotype. Also, the
usefulness of the predictor is worth further examination
during future clinical testing.

Breast cancer data analysis and various validations
We also considered the 241 BRCA patients which were fol-
lowed for DNA methylation, mRNA expression and data-
sets of clinical records as another way of validating the
usefulness of CGPredictor. The two distinct phenotypes,
B-CIMP-negative (BRCA CpG island methylator pheno-
type) and B-CIMP-positive were obtained after clustering.
After using the same processes as used for HGSOC, ten
genes were filtered out as predictors. Among these ten
genes, BMP6 and GSTP1 have previously been well docu-
mented as exhibiting tumor-specific methylation altera-
tions. The two distinct phenotypes were assessed as
significant (p = 0.0075, Figure 2), after using the function
for conducting a Cox test in CGPredictor. The result indi-
cates the gene panel remained a significant predictor of the
two distinct phenotypes in patients with BRCA. Further-
more, both the bootstrap test function and the random
selection test produced significant results (p < 0.0001); the
former was implemented in BRCA for examining the

relationship between genes for clustering and the distinct
phenotypes and the latter test was used for examining the
significance of the predicted predictor using randomly
selected genes for 1000 repetitions. The result shows the
clustering result performed by those clustering genes and
the extracted predictor for BRCA were significant.
Furthermore, in addition to the support from various

validation analysis results and when considering some
biomarker candidates which have been significantly
reported previously, we used another large independent
dataset which was analyzed on a different platform. Spe-
cifically, HumanMethylation450k, was performed on 596
BRCA patients in the CGPredictor R package. Table 3
shows the clinical characteristics of those patients. The
Cox test supported the use of the identity predictor as a
feasible and significant (p = 0.01798) predictor which
could distinguish the two phenotypes very well for
BRCA (Figure 3). The results indicate the devised
CGPredictor package, when supported with the various
validation methods, could accurately identify a reliable
and genome scale cancer independent prognostic epige-
netic marker panel. Also, CGPredictor is not simply a
tool that custom designed for identifying a specific can-
cer. CGPredictor can be broadly applied in biomarker
mining for various types of cancer.

Discussion
For analysis of the HGSOC and BRCA patient data,
CGPredictor package was used to group the most self-
similarity pattern on patients’ profiles with cancer as
subgroups and allowed the identification of 43 and 10
genes as predictors for HGSOC and BRCA, respectively.
Significant survival differences were seen in the two

Figure 1 The relationship between O-CIMP status and patient
outcome clustered by the predictor of HGSOC. O-CIMP-positive
(blue lines) and O-CIMP-negative (red) is shown for each KM survival
curve. The distinct DNA methylation phenotype within HGSOC
patients was identified; a significantly better survival was observed
for O-CIMP-negative patients when compared to O-CIMP-positive
patients.

Figure 2 KM survival curve for the distinct BRCA phenotype.
The significantly better survival for B-CIMP-negative (red) patients
compared to B-CIMP-positive (blue) patients was also observed from
the plot data; the significant difference between phenotypes was
assessed by the predictor evaluated from CGPredictor.
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distinct phenotypes defined by DNA methylation status
(Figure 1 and 2). Previous reports have identified filtered
hypermethylation and downregulated genes including
SOX1, CALCA, DCC, NID2, and GATA4 as significant
HGSOC markers. As for the predictor for BRCA, GSTP1
and BMP6 both of these have previously been reported
to be significantly related to the presence of BRCA.
Based on these results, to test to see if the relationship

between the established clustering gene and the pheno-
types was significant, we used bootstrapping with 1,000

iterations; for both HGSOC and BRCA, the clustering
results were statistical significance of the clustering result.
The identity predictors for each specific type of cancer
were examined with the randomly selected genes for the
same number of extracted markers in specific cancers for
1,000 iterations. For both the bootstrap test and the ran-
dom selection test use here, the results were significant
(p < 0.0001). Moreover, the predictor for BRCA was
shown to be capable of indicating significant variations in
survival rates using a different independent large popula-
tion dataset performed using Infinium HumanMethyla-
tion450 (Figure 3). These results indicate that the
extracted predictor and the clustering results examined
from various validations all produce reliable results using
CGPredictor; also the CGPredictor package has very good
potential for use in mining and examining independent
prognostic epigenetic marker panels for other cancers.
When retrieving hypermethylated and downregulated

genes indicative of HGSOC, the 43 selected genes
includes five which have been previously reported to be
connected to HGSOC: SOX1, CALCA, DCC, GATA4,
and NID2. Sox domain proteins are a class of develop-
mentally important transcriptional regulators related to
the mammalian testis determining factor SRY [16]. Sox
B1 group genes, Sox1, Sox2, and Sox3, are involved in
neurogenesis in various species and only the overexpres-
sion of Sox1 in cultured neural progenitor cells is suffi-
cient to induce neuronal lineage commitment [17]. The
methylation of SOX1 has been reported as being corre-
lated with the recurrence of ovarian cancer and with

Table 3 Characteristics of the BRCA participants used in the independent validation analysis

B-CIMP-negative B-CIMP-positive Total

No. of Patients 96 108 204

TCGA Patient Phenotype Age, years

Median (LQ, UQ) 55(45, 66.25) 62(54.7,71) 60(49,68.25)

No. ≤ 40 years old 14 6 20

Survival (in months)

Mediana (LQ, UQ) 35.6(17.5,55.5) 20.3(6.9,46.3) 28.2(12.9,48.3)

Sex

Female 96 105 201

Male 0 3 3

LQ, lower quartile; UQ, upper quartile; and CI, confidence interval.
aMedian survival and corresponding confidence intervals were estimated from the Kaplan-Meier curve

Table 4 The performance evaluation of the package CGPredictor

Sample size Read raw data Process Bootstrap (1,000 iterations) Random selection (1,000 iterations)

HGSOC 282 samples
5640 probes

25 sec 8 sec 21 sec 463 sec

BRCA 241 samples
3038 probes

16 sec 6 sec 16 sec 393 sec

Intel Core2 2.33 GHz, 2 GB memory, Windows XP

Figure 3 Kaplan-Meier survival curves comparing B-CIMP-
positive (red) and B-CIMP-negative (blue) patients performed
with a different independent platform dataset. Obviously, the
significant survival differences were demonstrated for phenotypes
by the extracted predictor through the CGPredictor package.
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overall survival rates for patients with ovarian cancer
[18]. As for the gene GATA4, it is expressed in most
organs and plays a critical role in the development of
these organs [19]. GATA4 is initially expressed during
the formation of extraembryonic endoderm differen-
tiated from the pluripotent embryonic stem cells of the
inner cell mass during early embryonic development
[20] and is also expressed in human ovarian epithelial
cells [21,22]. However, GATA4 is often lost in ovarian
cancer cells [21,23]. The GATA4 gene is believed to dic-
tate distinct pathological pathways leading to serous ovar-
ian carcinomas [24]. Nidogen-2 (NID2) is a basement
membrane protein. The basement membrane plays an
important role in maintaining tissue organization and
compartmentalization [25]. Thus, either removal or dis-
ruption of the integrity of the basement membrane creates
an invasion-permissive environment, often promoting can-
cer cell proliferation and invasion [26,27]. The loss of
nidogen expression has been shown to have a potential
pathogenic role in colon and stomach tumorigenesis [28].
Also, the NID2 is reported to be a biomarker for ovarian
cancer and has been reported to be closely correlated with
CA125 [29]. DCC (Deleted in Colorectal Carcinoma) is an
important tumor suppressing gene. DCC is a metastasis
suppressor gene which targets both proinvasive and survi-
val pathways in a cumulative manner in combination with
other genes [30]. Previous report indicated 52% of malig-
nant ovarian cancers did not express the DCC gene, and
also suggested a significant correlation exists between
DCC expression and ovarian cancer [31]. As for the pro-
moter of CALCA, it was also informative for differentiating
methylation between the early stages of ovarian disease
and the healthy maintenance of control [32].
In related analysis, two well-known genes are among the

ten extracted biomarker candidates which is predictor of
BRCA. For instance, BMP6 and GSTP1 are involved in sig-
nal transduction and cell detoxification, respectively.
These two genes are two of the top ten hypermethylated
genes which have been identified and are used to distin-
guish between cancerous and normal tissues [33] and dif-
ferent kinds of cohorts have been used for these purposes
[34]. Both papers [33,34] suggested the genes might be
useful predictors for developing epigenetic-based predic-
tive and prognostic biomarkers for breast cancer. A pre-
vious study has also tested from women with palpable
lesions suspicious of breast cancer for aberrant promoter
hypermethylation, and the GSPT1 candidate gene can be
easily detected in fine needle aspirated washings. Promoter
hypermethylation in benign and malignant lesions was
more commonly found in GSPT1 than the reported candi-
date genes [35]. Another previous study determined the
frequency of aberrant methylation of GSTP1 candidate
gene in primary breast cancer tissue for patients with pre-
dominantly advanced cancers and suggested that GSTP1 is

potentially important in the early diagnosis of breast can-
cer [36].

Conclusions
The detection of cancer-specific alterations in DNA
methylation warrants further investigation because it pro-
vides a potential benefit in the early diagnosis of cancer as
well as in the evaluation of the prognosis and therapeutic
responsiveness of patients. We developed an effective and
flexible tool for mining and examining predictors sup-
ported by systematic analysis. In addition to efficiently per-
forming the analysis, the CGPredictor package has a
variety useful functions which can assist researchers in
examining the statistical significance of predictors/specific
genes of interest as well as clustering results. With these
significant results and based on the fact that some signifi-
cant genetic markers have been reported previously in the
literature for both HGSOC and BRCA, our findings pro-
vide further support for idea that CGPredictor package
has great potential for mining and examining genome
scale independent prognostic epigenetic marker panels for
various cancers and also support the potential of the
retrieved predictors future clinical testing.

Availability
CGPredictor R package is implemented in R and is
freely available at http://goo.gl/DVqni. A vignette with
detailed descriptions of the functions and examples is
included.
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