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Abstract

Background: Transcriptional regulation in multi-cellular organisms is a complex process involving multiple modular
regulatory elements for each gene. Building whole-genome models of transcriptional networks requires mapping
all relevant enhancers and then linking them to target genes. Previous methods of enhancer identification based
either on sequence information or on epigenetic marks have different limitations stemming from incompleteness
of each of these datasets taken separately.

Results: In this work we present a new approach for discovery of regulatory elements based on the combination
of sequence motifs and epigenetic marks measured with ChIP-Seq. Our method uses supervised learning
approaches to train a model describing the dependence of enhancer activity on sequence features and histone
marks. Our results indicate that using combination of features provides superior results to previous approaches
based on either one of the datasets. While histone modifications remain the dominant feature for accurate
predictions, the models based on sequence motifs have advantages in their general applicability to different
tissues. Additionally, we assess the relevance of different sequence motifs in prediction accuracy showing that even
tissue-specific enhancer activity depends on multiple motifs.

Conclusions: Based on our results, we conclude that it is worthwhile to include sequence motif data into
computational approaches to active enhancer prediction and also that classifiers trained on a specific set
ofenhancers can generalize with significant accuracy beyond the training set.

Background
Transcriptional regulation in development is a complex
biological process that is absolutely essential for the exis-
tence of multi-cellular organisms, especially in the meta-
zoa kingdom. While the main principles of transcriptional
regulation on the molecular level have been discovered in
1960s [1], and we do have relatively complete pictures of
transcriptional regulation in single-cell model organisms
such as E. coli [2] or S. cerevisiae [3], we still don’t have a
complete map of developmental regulation for even a
singlemulti-cellular organism.

One feature that clearly differentiates multi-cellular
species from simpler organisms is the modularity of reg-
ulatory elements. In microbial systems, transcription fac-
tors bind directly to gene promoters and modulate gene
activity via direct repression or activation. In metazoan
systems, it is more typical for a gene to have multiple
regulatory elements, attracting collections of transcrip-
tion factors and regulating target gene expression in a
combinatorial fashion sometimes over large genomic
distances. Important class of regulatory elements are
enhancers: discrete DNA elements, able to enhance
expression of their target genes in a tissue specific fashion.
Since enhancer activity can be tested by creating trans-
genic reporter assays, they are able to act independently of
each other and cannot require any specific chromosomal
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context. This modular structure of regulatory sequences,
particularly evident in developmental regulation [4],
makes it difficult to build comprehensive models of tran-
scriptional networks. In order to make it more tractable,
the task of building global models can be broken down
into two distinct sub-problems: identification of all rele-
vant regulatory sequences and linking them with respec-
tive target genes. Recently, we have shown [5] that in cases
where we have a biological model with an experimentally
verified map of enhancer elements, the second problem
can be tackled with a probabilistic model giving high accu-
racy of predictions of both target genes and their tissue-
specific expression. However, the first problem of finding
the positions of all enhancers still poses a major challenge
for the bioinformatics community.
Historically, there have been two main bioinformatical

approaches to enhancer discovery. Firstly, people have
observed that clustering of transcription factor binding
sites is an indication of enhancer activity [6]and secondly,
it has been shown in multiple cases that many functional
enhancers are evolutionarily more conserved than other
non-coding sequences in a genome [7]. Soon, these two
observations were used together to give rise to multiple
methods using evolutionary conservation and motif
enrichment to find functional regulatory elements [8,9].
While methods based solely on the sequence informa-

tion have achieved significant enrichment for true enhan-
cers among their predictions, they are still prone to errors.
On one hand, many of predicted enhancers are not func-
tional because of contextual factors such as chromatin
conformation [10] leading to false positive predictions. On
the other hand, enhancers responsible to species-specific
or recently evolved features are bound to fail the evolu-
tionary conservation filters leading to false negative predic-
tions [11]. More recently, due to development of methods
for experimental measurements of histone marks and
other epigenetic features [12] it has become standard to
identify regulatory regions en masse by ChIP-Seq experi-
ments on such factors as H3k4me1 [13] or p300 [14].
Major experimental efforts such as ENCODE [15] are now
underway to map multiple chromatin marks in as many
conditions as possible, leading to more direct epigenetic
maps of the genome. While these measurements are more
directly assaying functionality of regulatory elements, they
are, unfortunately, not a perfect solution. In particular, in
a recent study [16], we were able to show that not only is
the activity of enhancers “encoded” in multiple marks, but
the epigenetic patterns associated with enhancer activity
are non-additive, making it more complex to recover truly
active regions.
In this work we attempt to combine the strengths of

both sequence-based and chromatin-based methodsfor
enhancer prediction while avoiding the difficulties asso-
ciated with each of these approaches. In the following

sections we will describe the method itself and present
the results obtained with this approach on several data-
sets consisting of different regulatory elements in the
Drosophila melanogaster model organism.

Results and discussion
Predicting enhancer activity from histone modifications
Our first attempt was to reproduce results from a recent
paper by Bonn et al. [16], where we used a Bayesian net-
work classifier to predict enhancers from chromatin fea-
tures (6 histone modifications, PolII occupancy and
Mef2 binding). While we were able to obtain a similar
prediction accuracy (80%), due to the small size of the
training set, the variability on prediction quality between
cross-validation folds was very high (see Figure 1). For
this reason, we have re-computed the epigenetic features
for a larger set of putative CRMs compiled by Zinzen
et al. [17] from Chip-chip experiments. This dataset (see
Table S3, Additional file 3) is much larger (8008 puta-
tive enhancers and 8008 random regions in contrast to
62 verified enhancers), however it is not fully experi-
mentally validated. Assuming that the validation results
from the work of Zinzen [17] can be extrapolated to the
whole dataset, we expect not more than 5% of errors in
this dataset (see Methods for details). In Figure 1b we
can see that the Bayesian network classifier performs
much better on the larger dataset (AUC of 0.93 as
opposed to 0.75 for the smaller dataset). As the larger
dataset proves to be much better for classifier training,
we have focused on it in our further analysis.

Using sequence motifs to improve predictions
While features based on histone modifications contain
enough information to obtain good and reproducible
classifier training, we wanted to verify if the same can
be predicted from the DNA sequence of the respective
sequences and to what extent the sequence motif infor-
mation is redundant with the epigenetic component. To
this end we have used all 125 insect related transcrip-
tion factor binding site motifs deposited in the publicly
available JASPAR database [18]. Even though they repre-
sent less than half of the estimated total number of
transcription factors in the Drosophila genome, they
represent all major classes of DNA-binding domains.
Based on our earlier results [9], we assumed that this
motif set should allow us to make reasonable predic-
tions of enhancers based only on the motif occurrences.
We extracted the DNA sequences of all positive and
negative examples and computed the thermodynamical
binding energy score (TRAP) [19] for each motif-
sequence pair. This gave us a much larger feature set
(125 features) in comparison with the epigenetic marks.
Due to the high complexity of Bayesian Network recon-

struction, BNFinder is not recommended for analysis of

Podsiadło et al. BMC Systems Biology 2013, 7(Suppl 6):S16
http://www.biomedcentral.com/1752-0509/7/S6/S16

Page 2 of 7



datasets with large sets of feature. For this reason, we have
tested two popular general classification methods: Support
Vector Machines (SVMs) [20] and Random Forests (RFs)
[21]. In order to assess the quality of motif features and its
redundancy with the epigenetic marks we have trained
each classifier on 3 feature sets: motifs alone (MOT), epi-
genetic marks alone (EPI) and both datasets combined
(ALL). The detailed classification qualities measured by
the Area Under the ROC Curve (AUC) in a10-fold cross-
validation can be found in Table 1.
BNFinder seems to be indeed the best method for

extracting the correct dependence of activity on the epige-
netic marks, however it is unable to learn as much as other
methods from datasets with more features. In particular, it
fails completely on the motif-only feature set, indicating
that there might not be a small subset of motifs allowing to
predict activity. The other two methods perform similarly,
although it should be noted that the random forest
approach seems to be giving slightly, but statistically signifi-
cantly (p ≤ 10−13 according to the model presented in [22])
better results in case of combined feature sets. Overall, all
methods can improve significantly their accuracy by incor-
porating sequence information. In order to verify if the
high predictive power of DNA motif information is not a
product of a biased negative set or some very simple feature
of enhancer sequences, we have performed two additional
tests. Firstly, we have tested if the randomly chosen nega-
tive set is not biased towards low-complexity regions. For
this purpose we have re-generated the negative sequence

set avoiding the low-complexity regions annotated in the
Drosophila genome. As can be seen in Table 2, such modi-
fied dataset gives almost the same classification results for
both sets of features including histone marks indicating
that the results were not biased by potentially poorer read-
mapping efficiency in repeat regions. Interestingly, remov-
ing repeated regions makes the classification with motifs
only almost as successful as with the complete feature set.
This would be in line with the findings [23] that repeated
regions such as transposons may harbor many transcription
factor binding sites.

Validating classifiers on known enhancers
In order to assess whether the classifiers might be useful
to biologists, we wanted to go beyond standard cross-vali-
dation approaches and test the classifiers trained on the
8008 mesodermal enhancers on the more comprehensive,
human-curated verified enhancer database. For this pur-
pose we have used the well known Redfly database [24]
that gathers enhancers reported in literature and makes
them available with some human curation and additional
annotation on tissue-specificity. As our training set was
derived from mesodermal CRMs, we first tested our
trained classifiers on the 250 enhancers reported to be
active in mesoderm and then on 1480 enhancers non-spe-
cific to mesodermal tissue. Each dataset was complemen-
ted with a set of newly-generated random regions non-
overlapping the training set (See Table S4, additional file 4
and S5, additional file 5).

Table 1 Classification using different feature sets and
classifiers

Dataset BNFinder SVM RF

EPI 0.9 0.88 0.86

MOT 0.5 0.89 0.87

ALL 0.93 0.97 0.98

Table 2 Classification with repeat-masked negative sets

Dataset SVM RF

EPI 0.88 0.87

MOT 0.96 0.95

ALL 0.97 0.98

Figure 1 Comparison of prediction quality from histone marks. Difference in prediction quality achieved with BNFinder on epigenetic
features for dataset of different sizes: 64 examples from [16] - AUC of0.75 on average (a) and 8008 examples from [17] - AUC of 0.93 on average
(b). Both experiments are reported for cross-validated training.
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The results are summarized in Table 2. It is clear that all
classifiers give significantly non-random results. In the
more predictable case of mesodermal enhancers, the com-
plete feature-set expectedly gives the best performance. In
case of non-mesodermal enhancers, however, the best per-
forming classifier is the one based on sequence motif
information. It seems that the performance of classifiers
using epigenetic measurements specific to mesoderm was
severely affected (in case of all enhancer up to to60%).
However, the motif based classifier remained at a steady
performance of 77%. This indicates that the motif infor-
mation driving enhancer activity is possibly not as specific
as it was thought earlier.

Feature importance
In both partial sets the classification error is around
11-12 per cent, whereas in the ALL set the classification
error drops significantly to 2 per cent. One should stress
remarkable stability of the results. The average classifi-
cation error in standard and reversed cross-validation
scheme were very close to each other, in all cases the
error is only 1 per cent higher in the reversed setup.
All features were identified as important by Boruta algo-

rithm [25], in all three EPI, MOT and ALL data sets. In the
ALL dataset the variables representing histone modifica-
tions were consistently ranked higher than those represent-
ing the motif binding, see Figure 2. (The detailed ranking
of importance is given in Table S1, additional file 1).
The more detailed analysis of feature importance

revealed several unexpected results. The iterative removal
of least important TFs revealed that single transcription

factor (zeste - TF 104 in our feature set) is sufficient to
improve the classification accuracy to a level similar to
that of the full classifier, see Table S2, additional file 2.
The analysis of redundancy between epigenetic modi-

fications shows that removal of the most important
modifications from the feature set leads to rapid degra-
dation of the model quality. On the other hand removal
of the least important modification decreases the model
quality only gradually, see Figure 3.
The analysis of these results suggests that a feature set

consisting of single sequence motif (zeste) and three
chromatin marks (H3K4me1, H3K36Me3 and Mef2
ChIP-Seq data) should be sufficient to build a model with
stable prediction accuracy. This hypothesis was examined
and it was confirmed by the 10-foldcross-validation. The
average classification error obtained was 2.1 per cent.
The quality of this model cannot be improved either by
increasing the number of TFs or by adding more modifi-
cations. This is however not the only set of such features
as removing any single motif (even the most important
one) can be largely buffered by usage of the redundant
information from the other features. In case of epigenetic
marks, the situation is different, as removing any one of
the three most important marks results in a significant
loss of accuracy (see Figure 4). The most prominent
marks are also the expected ones: Mef2 is a mesodermal
transcription factor, H3K4Me1 is widely reported to be
associated with enhancers and H3K36me3 is strongly cor-
related with transcribed regions, which are negatively cor-
related with regulatory activity.

Conclusions
Our results strongly suggest that neither histone modi-
fications nor sequence motif scan explain the total
enhancer activity. However, our classification results
for the complete data set are very promising suggesting
that a model based on both types of features is suffi-
cient to explain all phenomena represented in our

Figure 2 Feature importance computed from Boruta package.
Relative importance of different features as computed by the Boruta
package [29]. Each boxplot corresponds to a different feature and
represents importance z-score from 500 randomizations. Histone
modifications are the most important (z-score above 10), followed
by all motif features (z-score above 3), all of which are separated
from the randomized control variables with (red, z-scores below 3).

Figure 3 Accuracy loss as a function of multiple chromatin
feature removal.
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training set. Relatively lower importance for motifs
suggests that individual motifs are redundant - and
cooperation of multiple TF is required. This is consis-
tent both with our earlier results on purely sequence
based prediction methods [9] as well as recent findings
in heart-related enhancers [26]. The analysis of feature
importance lead to the discovery of the reduced fea-
ture set comprising of three chromatin marks (Mef2
+H3K4me1+H3K36me3) and a single transcription fac-
tor (TF 104 - zeste - a TF active in development) suffi-
cient for a model with almost the same level of error
that the full feature set. While all of these findings are
in line with our current knowledge of the function of
these features, it is difficult to make final biological
conclusions due to redundancy between features. It is
especially interesting in the context of apparent gener-
ality of the motif-based component of the classifier.
Overall, our analysis proves that not only there is non-
redundant information between motifs and epigenetic
modifications, but we can show that it is enough to
get near-perfect predictions of enhancer activity.
While our results are very promising, it should be noted

that the training set is coming from a relatively simple
model organism. In order to test if these findings can be
applied to more complex systems such as mammalian
genomes remains unanswered. While this question is vital
for any medically oriented applications, it is currently very
difficult to answer due to lack of comprehensive enhancer
datasets such as Redfly [24]. Additionally, much larger size
of mammalian genomes will undoubtedly be a challenge
to computational scalability of machine learning methods.

Methods
Training enhancer sets
A small dataset, containing 23 positive and 39 negative
samples was taken from work of Bonn et al. [16]. An

average length of an enhancer was 1120 bp, maximum
was 1985 bp and minimum was 999 bp.
A larger dataset containing 8008 samples of active

enhancers was taken from the work of Zinzen et al.
[17]. The average length of a positive sample in this set
was 270.47 bp, maximum was 1182 bp and minimum
115 bp, with standard deviation of 112bp. The 8008
positive samples were complemented with an equal
amount of randomly chosen negative samples. Negative
set was chosen randomly from the remainder of the
genome. Lengths of negative samples were chosen
according to Gaussian distribution with the same mean
and variance as observed in the positive set.

Histone modification data
Histone modification ChIP-Seq data was taken from the
work of Bonn et al. [16]. It contained 8 different chromatin
marks:H3K4me1, H3K4me3, H3K27Ac, H3K27me3,
H3K36me3, H3K79me3, Mef2, PolII, all measured between
6-8 h of development, values were given for windows of
the length of 50 bp. The score for a given enhancer was
averaged across all windows a sample overlapped with.

Motif feature derivation
125 of used motifs were taken from the JASPAR database
[18]. TRAP score [19] was used, in order to compute fea-
tures based on the motifs. Parameters used while comput-
ing the TRAP score were left as default values of 0.7 for l
and e0.584·motif_length−5.66 for R0.

Classifier training
The Bayesian Network Classification was done with BNFin-
der [27], using Bayesian-Dirichlet equivalence (BDE) as the
cost function. Because of computational cost of this
method, cardinality of set of parents was limited to 3.
Used implementation of Random Forest comes from

scikit-learn library for Python [28]. Classification was
done using Random Forest Classifier, using 30 estimators.
Results obtained for the smaller dataset were generated

in 4-cross-validation process. All the results presented for
the larger dataset were averaged over 10-cross-validation
folds. Subsets used forcross-validation were chosen ran-
domly from shuffled samples.

Enhancer datasets for validation
Validation of trained classifiers was performed on two
enhancer datasets, coming from REDFly Database [24].
The general set contained 1830 samples of enhancers
active for Drosophila melanogaster. The length of enhan-
cers varied from 14 bp up to 22573 bp, with the averaging
being 1829 kb.
The narrower, mesoderm related set consisted of 325

positive samples of enhancers annotated as active in meso-
dermal cells. The average length of marked enhancers was

Figure 4 Accuracy loss as a function of single chromatin
feature removal.
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1796 bp, maximal one was 20253 bp and minimal was
66 bp with standard deviation of 2285 bp.
Both positive sets were complemented with the equal

amount of negative samples, chosen randomly from the
remainder of the genome. Lengths of negative samples
were chosen according to Gaussian distribution with the
same mean and variance as observed in the positive set. In
order to avoid bias in our favor, we have removed any
regions overlapping the training set, decreasing the size of
the larger training set to 1480 positive and 1824 negative
samples. The smaller dataset was reduced to 250 positive
and 325 negative samples.

Feature importance
Assessment of feature importance and ranking was per-
formed with the help of Boruta [29] library in R [30]. In
this method the feature importance for classification
obtained from Random Forest classifier [21] is compared
between original feature and additional variables that do
not carry information by design. The method is described
in [25]. Boruta was used with default parameters. In the
current paper additional procedure was applied to con-
trol the level of false positive discoveries. To this end the
original system was extended by the set of contrast vari-
ables that don’t contain information on decision variables
by design - in the similar manner as within Boruta algo-
rithm itself. The importance of variables in the set
extended in this way was then examined using Boruta.
The procedure was repeated 30 times with different reali-
zation of the contrast variables in each repetition. The
average number of contrast variables that were deemed
important by Boruta was a measure of expected number
of false discoveries in the original set. The measure used
for ranking the importance of features was a Z-score
obtained from 30 steps of Boruta algorithm.
The procedure described above was applied to three

datasets. In the first data set (MOD) the histone modifica-
tions were used as the descriptive variables and in the sec-
ond set (MOT) the binding affinities for transcription
factors from TRAP model. In the third set (ALL) both
types were used.
We have performed additional analysis of importance of

individual features for classification as well as extent of fea-
ture redundancy. The analysis was performed in a different
way for histone modifications and for transcription factors.
In all cases the starting point and reference set was the full
feature set, containing all modifications and all transcrip-
tion factors. In the case of modification we have examined
the importance of individual features by removing the sin-
gle modification from the feature set. We have also exam-
ined redundancy of information in modifications by
removing K modifications at once, for K varying between
one and seven. To keep number of tested combinations
on a reasonable level the set of excluded modifications

comprised either K most important modifications or K
least important modifications. The number of features cor-
responding to transcription factors is much larger than the
number of modifications and the importance of individual
transcription factor is much smaller than importance of
modifications. Therefore in the case of TFs the analysis was
simpler. We applied an iterative procedure in which 80 per
cent of least important TFs were removed from the infor-
mation system examined in the previous step. When the
number of TFs was smaller than 5 the single TF was
removed.

Classification with Random Forest
The classification was performed in two ten-fold cross-vali-
dation setups. In both setups the data was split in ten
parts. In the first setup each 1/10th of the data set was
once set aside as a test set and the remaining 9/10ths of
the data set were used to train the classifier. Then the clas-
sification error was measured on the test set. The average
error from all 10 test sets is then reported. In the second
setup the role of the train and test set are reversed - the
classifier is trained using 1/10th of the data set and the
error is measured using the remaining 9/10ths of the data.

Additional material

Additional file 1: Table S1 – Detailed ranking of feature importance.
For the convenience of the reader, all supplementary information can
also be obtained from the supplementary website http://bioputer.
mimuw.edu.pl/papers/enhancer_prediction.

Additional file 2: Table S2 – Results of iterative feature removal. For
the convenience of the reader, all supplementary information can also
be obtained from the supplementary website http://bioputer.mimuw.edu.
pl/papers/enhancer_prediction.

Additional file 3: Table S3 – Training set. For the convenience of the
reader, all supplementary information can also be obtained from the
supplementary website http://bioputer.mimuw.edu.pl/papers/
enhancer_prediction.

Additional file 4: Table S4 – Redfly mesodermal testing set. For the
convenience of the reader, all supplementary information can also be

Table 3 Validation of classifiers on the Redfly database

Dataset Redfly Meso RedFly

EPI 0.77 0.62

MOT 0.74 0.77

ALL 0.78 0.75

Table 4 Classification quality with different cross-
validation schemes

Dataset Cross-validation 9:1 Cross-validation 1:9

EPI 88.2 ± 0.6% 87.3 ± 0.2%

MOT 89.9 ± 0.9% 87.2 ± 0.6%

ALL 98.1 ± 0.5% 97.2 ± 0.4%
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obtained from the supplementary website http://bioputer.mimuw.edu.pl/
papers/enhancer_prediction.

Additional file 5: Table S5 – Redfly non-specific testing set. For the
convenience of the reader, all supplementary information can also be
obtained from the supplementary website http://bioputer.mimuw.edu.pl/
papers/enhancer_prediction.
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