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Abstract

Background: Protein interactions mediate a wide spectrum of functions in various cellular contexts. Functional
versatility of protein complexes is due to a broad range of structural adaptations that determine their binding
affinity, the number of interaction sites, and the lifetime. In terms of stability it has become customary to
distinguish between obligate and non-obligate interactions dependent on whether or not the protomers can exist
independently. In terms of spatio-temporal control protein interactions can be either simultaneously possible (SP)
or mutually exclusive (ME). In the former case a network hub interacts with several proteins at the same time,
offering each of them a separate interface, while in the latter case the hub interacts with its partners one at a time
via the same binding site. So far different types of interactions were distinguished based on the properties of the
corresponding binding interfaces derived from known three-dimensional structures of protein complexes.

Results: Here we present PiType, an accurate 3D structure-independent computational method for classifying
protein interactions into simultaneously possible (SP) and mutually exclusive (ME) as well as into obligate and
non-obligate. Our classifier exploits features of the binding partners predicted from amino acid sequence, their
functional similarity, and network topology. We find that the constituents of non-obligate complexes possess a
higher degree of structural disorder, more short linear motifs, and lower functional similarity compared to obligate
interaction partners while SP and ME interactions are characterized by significant differences in network topology.
Each interaction type is associated with a distinct set of biological functions. Moreover, interactions within
multi-protein complexes tend to be enriched in one type of interactions.

Conclusion: PiType does not rely on atomic structures and is thus suitable for characterizing proteome-wide
interaction datasets. It can also be used to identify sub-modules within protein complexes. PiType is available for
download as a self-installing package from http://webclu.bio.wzw.tum.de/PiType/PiType zip.

protein-protein interactions biological network analysis, protein structure prediction, systems biology, sequence analysis

Background

Detailed protein interaction maps derived for many
important model organisms [1] have become one of
the principal tools of systems biology research. A wide
range of high-throughput experimental methods is avail-
able today for detecting protein interactions at proteome
scale, but they essentially provide a binary readout -
whether or not two proteins form a complex - and give no
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clue as to how strongly the protomers interact with each
other, how long the interaction lasts, and in which order
multiple interaction partners associate with each other.
Knowledge about the lifetime and binding affinity of non-
covalent protein assemblies is crucial for understanding
their mode of action and their role in cellular processes.
So far most of the mechanistic insights into the nature
of protein interactions came from high-resolution struc-
tures of protein complexes [2,3]. One important distinc-
tion can be made between obligate and non-obligate
interactions, dependent on whether or not the protomers
can exist independently from each other. The interfaces of
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non-obligate interactions tend to be smaller, less tightly
packed, more polar, less conserved, and overall more
similar to normal protein surfaces in terms of amino acid
composition than those of obligate interactions [4-9].

Protein complexes can also be subdivided into two
classes based on their binding affinity and lifetime. Con-
stituents of permanent interactions, such as enzyme-
inhibitor or antibody-antigen complexes, are only found
in bound state while transient interactions, usually
involved in intracellular signaling, are short-lived and
readily associate and dissociate [2]. Interaction sites of
transient protein complexes have the tendency to be dis-
ordered and their binding specificity is often determined
by short linear amino acid motifs (ELM) [3,10]. Obligate
interactions are usually permanent [2] whereas non-
obligate interactions are mostly transient [11].

Several machine learning methods have been proposed
to automatically classify protein complexes with known
three-dimensional structure into various types based on
physical, chemical, geometrical, and evolutionary proper-
ties of protein recognition sites [12-20]. For example,
Mintseris and Weng achieved an accuracy of 91% in
separating transient from permanent complexes using
atomic contact vectors to describe the properties of inter-
action interfaces [20]. Likewise, the NOXclass classifier
developed by Zhu et al [17] distinguishes obligate from
non-obligate interactions with an accuracy of 91.8% by
considering the interface area, amino acid composition,
shape complementarity, and evolutionary conservation.

Protein interactions can also be classified into two
types based on their timing and the spatial distribution
of binding sites on the protein surface. Products of co-
expressed genes [21] may form stable complexes and
interact with each other simultaneously, which is only
possible when a network hub ("party hub”) possesses a
unique binding site for each interaction partner [22].
Alternatively, hub proteins that are not co-expressed
with their interaction partners are believed to bind their
partners individually at different times (or in different
cellular locations) via the same interface ("date hubs”)
[22]. Following Kim et al. [22] we refer to the interac-
tions of the first and the second type as simultaneously
possible (SP) and mutually exclusive (ME), respectively.
SP and ME interactions and the corresponding binding
interfaces can be directly studied by overlaying high-
quality protein interaction data with known three-
dimensional structures of protein complexes. Analyses
of such a structurally resolved interaction network (SIN)
together with gene expression patterns revealed dis-
tinctly different cellular roles of party and date hubs,
with the former corresponding to stable network mod-
ules and the latter connecting modules with each other.
Date hubs show much lower average degree and are
more often encoded by essential genes than party hubs.
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As well, proteins involved in SP interactions (and hence
co-expressed) tend to be more functionally similar than
those involved in ME interactions, which led to the sug-
gestion that ME interactions are mostly transient [22]
while SP interactions are preferentially obligate [23].

So far efforts to classify and predict protein interaction
types have exploited structural information and are thus
only applicable to the minor part of the currently known
interactome for which atomic structures of protein com-
plexes are available. Here we present the first attempt
to classify protein interactions without reliance on 3D
structures. We have devised an accurate prediction tech-
nique, called PiType, which is able to distinguish obligate
from non-obligate interactions and SP from ME interac-
tions based on readily accessible features, including
sequence and functional properties of the two binding
partners and their network context. We apply PiType to
large-scale protein interaction data and investigate the
cross-talk between SP/ME and obligate/non-obligate
interactions.

Materials and methods

Protein sequences, structures, and annotations

Protein sequences and associated annotation for Homo
sapiens, Escherichia coli, and Saccharomyces cerevisiae
were extracted from the Uniprot database [24] based on
the taxon identifiers of these organisms (9606, 83333, and
559292, respectively). We only considered manually
reviewed Uniprot entries to reduce the influence of wrong
gene models on our results. If a protein had several anno-
tated isoforms we selected the longest one.

To establish the correspondence between known
three-dimensional structures and the protein sequences
in our dataset we used both the Uniprot-to-PDB mapping
available from the Uniprot ftp site and the PDB-to-
Uniprot mapping available through the PDB [25] SOAP
service. The Uniprot-to-PDB mapping was reversed (i.e.
converted to a list of PDB IDs corresponding to Uniprot
IDs) and then merged with the PDB-to-Uniprot mapping.
All PDB chain IDs that corresponded to more than one
Uniprot ID were removed, but we allowed an Uniprot ID
to be mapped to several different PDB chain IDs.

Gene ontology [26] assignments were obtained through
the QuickGO [24] proteome download page based on
taxonomic identifiers. Summary statistics about protein
information used in this work are shown in Table 1.

Dataset of obligate and non-obligate interactions

There are two well-known manually curated datasets of
protein interaction types created by Zhu et al. [17] and
Mintseris et al. [9,20]. In these datasets a non-redundant
set of protein complexes with known three-dimensional
structure from 80 different species was classified into
obligate and non-obligate (which also includes transient).
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Table 1 Overview of the protein information used in this
work.

Human Yeast E.

coli
Reviewed proteins in Uniprot 20226 6619 4303
PDB chain IDs mapped to reviewed Uniprot 41605 7585 15661
entries
Proteins with at least one mapped PDB chain ID 4519 920 1223
Proteins with at least one GO annotation 18283 5908 3744

However, the Mintseris dataset is not directly suitable for
training our classifier as it distinguishes transient non-
obligate and permanent obligate protein interactions,
neglecting permanent non-obligate interactions; we do
use this set for classifier evaluation (see Additional file 1).
The Zhu dataset was created by combining two data
sources: i) a non-redundant set of protein complexes
from the PDB database for which literature evidence indi-
cates that they occur naturally and are stable as a dimer
[18], and ii) a set of non-obligate interactions correspond-
ing to protein pairs that are found in the PDB database
both in the bound and unbound state [27]. In total this
dataset contains 137 interactions and was used to evaluate
several structure-based classifiers of protein interaction
types [13-15]; however, it contains only 25 data points
for human, yeast, and E. coli and is hence insufficient
for our study.

We therefore created a larger dataset by predicting the
interaction type of E. coli, yeast and human complexes
by a structure based classifier, NOXclass [17]. NOXclass
employs a two-stage support vector machine (SVM)
algorithm to first filter out crystal artifacts and then to
classify complex structures as obligate and non-obligate.
The NOXclass SVM was reported to achieve the highest
classification accuracy (90.9%) using the following struc-
tural features: interface area, interface area ratio, area
based amino acid composition, and gap volume index.
For calculating the former three features NOXclass
requires the NACCESS tool [28] while the latter feature
is computed using SURfnet [29].

We generated a dataset of obligate and non-obligate
interactions with the NOXclass predictor. A list of all
structures from human, yeast or E coli with at least two
chains in the biological unit was retrieved from the PDB
database. Protein chains that could not be mapped to
Uniprot entries (see above) were ignored. If a PDB entry
contained more than two chains we considered all possible
chain combinations and classified them using NOXclass.
Two confidence values were obtained for each pair of
protein chains - one for classifying this chain pair as a
biological assembly or a crystal artifact, and another one
for obligate vs non-obligate complexes. To generate our
dataset we accepted only those protein chains for which
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NOXclass produced confidence values of at least 90% at
both stages. The NOXclass predictions were subsequently
merged with the manually annotated interactions from the
Zhu dataset. In total we obtained 773 protein protein
interactions with known or reliably predicted interaction
type (Table 2).

Structural interaction network

The Structural Interaction Network 2.0 [30] (SIN) com-
bines structurally resolved protein complexes into a
comprehensive protein interaction network. The data-
base was generated by first selecting experimentally
determined high-confidence interactions in human and
yeast from the BioGrid [31] database. Each interaction is
then mapped to available PDB structures by sequence
similarity. A unique feature of this resource is the classi-
fication of interactions into mutually exclusive and
simultaneously possible ones. A protein interaction is
said to be mutually exclusive, if two or more proteins
interact with the same interface on the surface of their
common partner. Otherwise, if the interactors bind at
different sites of their common partner, the interaction
is considered simultaneously possible. We obtained
information from SIN on 3096 mutually exclusive and
816 simultaneously possible interactions in human as
well as on 584 mutually exclusive and 117 simultaneously
possible interactions in yeast.

Protein interaction data

Protein interaction data for yeast, human, and Escherichia
coli were obtained from the iRefIndex 9.0 meta-database
[32] which stores and cross-references information from
various resources, including DIP, MINT, Intact, Biogrid,
and HPRD [31,33-36]. We considered only information on
direct physical interactions measured by a variety of meth-
ods such as yeast two hybrid, tandem affinity, anti tag/bait
coimmunoprecipitation, etc. An overview of the network
size and the experimental data is given in Table 3.

Protein features used for machine learning

Edge graphlet degree vectors

We used edge graphlet degree vectors (EGDV) [37] as a
method for measuring the local topology of an edge e
in a graph g. Graphlets are small, connected, induced

Table 2 Sizes of the datasets of obligate and non-
obligate interactions for different organisms.

Organism Obligate interactions Non-obligate interactions
Human 121 423
Yeast 115 55
E. coli 45 15
Total 280 493
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Table 3 Sizes of protein interaction networks in human,
yeast, and E. coli.

Human Yeast E. Total
coli

Nodes 9917 5528 2068 17513
Non-redundant interactions 41115 39045 7197 87357
Raw interactions 77742 59336 13068 150146
Yeast two hybrid (MI:0018) 13876 11055 54 24985
Anti-tag coimmunoprecipitation 1311 10049 0 11360
(MI:0007)
Pull down (MI:0096) 6651 4024 78 10753
Experimental interaction detection 8243 23 6 8272
(MI:0045)
Enzymatic study (MI:0415) 1002 2 4 6491
Inferred by author (MI:0363) 0 388 5898 6286
Anti-bait coimmunoprecipitation 5984 22 2 6008
(MI:0006)
Tandem-affinity purification (MI:0676) 317 3631 1112 5060
Others 40358 30142 5914 76414

Non-redundant interactions: each unique combination of interactors A and B
is counted as a single interaction, regardless of directionality, experimental
system, and data source. Raw interactions: Each unique combination of
interactors A and B, experimental system and data source is counted as a
single interaction®. Each interaction detection method is annotated with its
Ontology Term (e.g. MI:0018).

subgraphs of a larger network (Figure 1). In this work
we consider graphlets of size two to five (i.e. having
between two and five nodes). The local topology of an
edge e can be determined by counting how often e is
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contained in all graphlets of size two to five in g. More-
over, one has to differentiate at which position e resides
in a graphlet. For example, there are two distal edges at
both ends of the graphlet G; and as well as one edge in
the middle. To distinguish between such cases the sym-
metry of each edge is described by its atomorphism
orbits. There is a total of 69 orbits, numbered 0 to 68.
However, the orbit 0 consists of just one edge connecting
two nodes. Since each edge in g touches this orbit exactly
once (namely itself), it is not considered while calculating
EGDV. We used a modified version of the FANMOD
algorithm [38] to find all graphlets in g which contain a
specific edge e (Figure 2) and determined the orbit of e in
the graphlet using the nauty package [39]. Since values
of the EGDV tend to be very large and are difficult to
compare we transformed them to the natural logarithmic
scale and normalized them by dividing each value by the
total sum of all orbits in the EGDV (thus the sum of each
orbit is 1).

We sought to identify the preferred network contexts for
protein interactions of different types. To this end we
investigated the enrichment of orbits in two specific local
topological patterns - clusters and hubs. Edges consti-
tuting a highly connected sub-graph (cluster) would be
expected to be enriched in orbits situated inside cliques,
such as 2, 12, 8, 25, 52, and 68 (Figure 1). To be more spe-
cific orbits 2, 8, 25, 52 lie within the 3-node clique (G5),
orbit 12 within the 4-node clique (Gg), and orbit 68 within
the 5-node clique (Gg). This over-representation of
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Figure 1 All possible graphlets of size 2 to 5 containing all 69 topologically unique edge orbits. Fach unique edge orbit inside each
graphlet is marked with a different color. For example, in the graphlet G;3 edge orbits 22, 23, 24, and 25 are colored red, blue, green, and

25.
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03 subgraphN = N(u) U N(v)

05 ifadded: remove(e, g)

02 while |extend| > 0:
03 w = shift(extend)

Algorithm: EnumerateGraphlets(u, v, g, k):
Input: Edge e = (u,v), graph g = (V, E) and graphlet size k
Output: EGDV for graphlets of size k in g with edge e

01 Ifenoting: add(e, g), added = True
02 extend = (N(u) U N(v))/{u,v}

04 extendSubgraph({u,v}, extend, subgraphN)

extendSubgraph(subgraph, extend, subgraphN):
01 if |subgraph| == k: getOrbit(e, subgraph)

04 extend’ = extend U (N(w)/subgraphN)

05 subgraphN’ = subgraphN U N(w)

06 subgraph = subgraph U {w}

07 extendSubgraph(subgraph, extend’, subgraphN’)

Figure 2 Pseudo code for the EGGV calculation algorithm. N(v) denotes the neighborhood of v, ie. all nodes that share an edge with v. A/B
denotes subtraction, for example: {1,2,3,5}/{2,3} = {1,5}. AnB denotes a union of two sets, for example: {1,2Ju{2,3} = {1,2,3}.

certain orbits is the consequence of the large amount of
combinatorial occurrences of different graphlets in tightly
connected network clusters. For example, a fully con-
nected 10-node clique, in which each node is connected to
each other node, will contain the 3, 4, and 5 node sub-cli-

ques exactly ( 130), (140), and (150>, or 120, 210, and

252, times, respectively. Thus every edge in the 10-node

clique touches orbits 2, 12, and 68 exactly < 110 ), (120 >,

1
and ( 30 ), or 10, 45, 120 times, respectively, and every

other orbit 0 times. The lower numbers in the binomial
coefficients describing orbit counts are two less in com-
parison to sub-cliques because for every edge the two
nodes which it connects are fixed.

Clusters are also enriched in orbits (namely 8, 9, 20,
21, 24, 25, 27, 28, 51, 52, 61, 62, 63) that lie within
cliques even if the associated graphlet includes further
orbits that do not belong to any clique. For example,
the graphlet G¢ includes three orbits - one 8 orbit and
two 9 orbits - that form a 3 node clique as well as the
orbit 7 which is a single attached edge to the 3 node
clique. For illustration let us now consider a network
consisting of 11 nodes, of which 10 nodes form a tightly
connected clique, as above. In other words, an addi-
tional edge is added to the 10-node clique connecting
one of the clique nodes to a node outside of the clique.
In all occurrences of Gg in this network the newly
added edge will correspond to the orbit 7 of G¢ while the
two other orbits of Gg , 8 and 9, will lie within the 10

node clique. As a result, orbits 8 and 9 will be enriched
for edges belonging to highly connected clusters.

Edges connecting hub nodes and non-hub nodes, as
well as those connecting two different hub nodes, are
primarily associated with orbits 1, 5, and 18. The reason
for this is that hubs tend to have a high degree and a
low cluster coefficient, i.e. their neighbors are sparsely
connected. Edges incident to a hub are thus unlikely to
form cliques.

Finally, another crucially important type of network
nodes are bottlenecks, which come in two flavors:
hub-bottlenecks and nonhub-bottlenecks [40]. Hub-
bottlenecks are proteins characterized by high betwee-
ness and high degree; they are situated between protein
clusters, such that a large number of the shortest paths
pass through them. Nonhub-bottlenecks also display
high betweeness, but their degree is low; they are the
members of each respective protein cluster which inter-
act with the hub-bottleneck node. Thus, orbits that
touch a clique (such as 7, 45, 50, 57, and 58) will be
enriched in interactions connecting hub-bottlenecks and
nonhub-bottlenecks.

PageRank Affinity

We calculated the PageRank Affinity score [41]http://
gaussian.bu.edu/pnns.html that describes the closeness
of two nodes on the network. It was developed to deter-
mine whether or not two nodes share the same graph
cluster. Since we expect that obligate interactions will
tend to share a cluster the PageRank affinity score may
be instrumental in separating non-obligate interactions
from the obligate ones.
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Betweenness

Betweenness (or centrality) of an edge is defined by the
number of shortest paths passing through that edge.
Since non-obligate interactions are typically involved in
signal transduction pathways they would be expected to
reside on shortest paths more frequently than obligate
interactions. We used the igraph R package [42]http://
cran.r-project.org/web/packages/igraph/index.html to
calculate edge betweenness.

Degree

The degree of an edge e is the number of edges that share
at least one node with e. In other words the degree of an
edge between node v; and node v, is the number of
edges that have at least v; or v, as a node.

Eukaryotic linear motifs (ELM)

It has been suggested that interactions in eukaryotic
organisms that are mediated by short linear sequence
motifs tend to be non-obligate [3]. To determine the num-
ber of ELMs for each protein we downloaded the
ELM database [43]http://elm.eu.org/infos/news.html and
searched in each protein sequence for all occurrences of
each ELM. Hence each interaction was characterized by
two integer values giving the numbers of ELMs found in
both interaction partners.

Disordered binding regions

We predicted disordered binding regions for interacting
protein pairs by ANCHOR [44] and considered as fea-
tures the total number of disordered binding regions,
the fraction of disordered amino acids, as well as the
length of the longest disordered binding region in both
interacting proteins. Hence, for each pair we obtained
two values for the number of disordered binding regions
and the fractions of disordered amino acids and one
value for the length of the longest disordered binding
region.

Functional similarity

Functional similarity between two proteins was calcu-
lated based on their associated Gene Ontology (GO)
annotation [45] using the method of Wang et al. [46] as
implemented in the GOSemSim package [47]http://
www.bioconductor.org/packages/2.4/bioc/html/GOSem-
Sim.html. This method describes the similarity between
two GO terms based on their location in the GO graph.
To calculate the functional similarity between a protein
A having GO terms GOy, ..., GO; and a protein B with
GOy, ..., GO; all i GO terms of A are compared with all j
GO terms of B, yielding a matrix m with i rows j columns
corresponding to GO terms of A and B, respectively.
Functional similarity between A and B is then the mean
over the maxima of each row and column of m:

> o1 max(miy ) + Y, max(my_ij)

funsim (A, B) = !
i+]
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Machine learning methods

In this section we describe the applied machine learning
methods (see Additional file 2 for a more detailed
description of machine learning procedures). We used
the Weka package[48] (http://www.cs.waikato.ac.nz/ml/
weka, v. 3.6.6) and its java API for feature selection and
classification.

Random forest

Block et al. reported that from all tested classifiers the
decision tree method achieved the best performance in
distinguishing between permanent and transient interac-
tions based on known three-dimensional structures of
protein complexes [16]. Moreover, the random forest
algorithm has a better accuracy and is more robust than
the decision tree approach [49]. We used the random
forest classification algorithm with an ensemble of 10
decision trees. These trees are used to create a confi-
dence value for each predicted class ¢, which lies between
0 and 1. This value describes the fraction of decision
trees that voted for class c.

Biological validation

Functional enrichment analysis

The goal of the enrichment analysis is to determine
whether proteins of the same class share the same mole-
cular function, as defined by Gene Ontology [50-53],
more frequently than random proteins. In order to
apply this approach to protein interactions the following
two circumstances need to be taken into account: a)
protein interactions can be both SP and obligate at the
same time, since the SP/ME and obligate/non-obligate
classifications are independent from each other. Thus all
possible combinations of the interaction types (obligate
and SP, obligate and ME, non-obligate and SP, non-
obligate and ME) need to be analyzed, and b) GO anno-
tation is only available for individual proteins and not
for protein interactions. We therefore annotated protein
interactions by combining the GO annotation of the
two interacting proteins. For an interaction e between
two proteins A and B we first retrieved all associated
GO terms for protein A and protein B, and then anno-
tated e only with those GO terms occurring in both
protein annotations. The Ontologizer tool [54] was
employed to find differences in GO term enrichment
between a study set and the general population of
protein interactions. P-values were calculated using the
Parent-Child-Union method [55]. We conducted a GO
enrichment analysis for all four possible class combina-
tions such that the population set and P-value calcula-
tion stayed the same while the study set contained
interactions with the same predicted class combinations.
The Ontologizer represents the enriched GO terms as a
hierarchical tree.
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Protein complex data

In this study we utilized two datasets of multi-protein
complexes. One of them was the manually curated col-
lection of 1845 human protein complexes obtained from
the CORUM database [56]. Information about pairwise
interactions between complex members was extracted
from the iReflndex database (see Table 3). We considered
only those 921 CORUM complexes that formed a con-
nected sub-graph in the iRefIndex interaction network,
such that there exist a path between any two members of
the complex. Furthermore we removed all protein com-
plexes with less than 4 members, leaving us with only
244 complexes.

We also utilized the recently published study of the
human protein interaction network, which revealed
13993 high-confidence interactions between 3006 proteins
in HeLa S3 and HEK293 cells (further referred to as
the HeLa dataset) [57]. These interactions were generated
by biochemical fractionation combined with quantitative
tandem affinity mass spectrometry and were further strin-
gently filtered by an integrative computational approach,
taking into account additional supporting evidence. The
authors applied the ClusterOne algorithm [58] to derive
622 putative protein complexes from this network, of
which 187 had already been annotated in pubic databases.
Note that by design all HeLa complexes form connected
sub-graphs. After the publication four proteins were
removed from this dataset, reducing the total number of
proteins, pairwise interactions, and clusters to 3002,
13979, and 621, respectively. We excluded from considera-
tion 151 protein complexes with less than four members
to obtain 470 HeLa protein complexes, of which 163 were
previously annotated and 307 were putative, computa-
tionally derived complexes.

Enrichment of interaction types in protein complexes

We were interested to find out whether network clusters
corresponding to protein complexes are enriched in a
certain interaction type (SP/obligate, etc.) or are rather a
mixture of different interaction types. Such enrichment
was assessed based on the information content of a
protein complex c¢ calculated as

R(c) =log,4 — H (¢)
where H(c) denotes the Shannon entropy

{type}
H(c) = — Z P(t,c) xlog,P(t, c)

t

and P(t, ¢) the frequency of interaction type t in the pro-
tein complex. The information content value ranges
between zero and two bits, where a value of two means
that all interactions in the protein complex are of the same
type and a value of zero indicates that each protein interac-
tion type is equally represented in the protein complex.
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Results and discussion

Feature analysis

We started by searching for features (see Table 4 for
abbreviations used) that are best discriminant for each
of the two classification problems addressed in this
work - obligate vs non-obligate interactions and SP vs
ME interactions (Figures 3, 4) - and ranking features
based on their Wilcoxon ranked-sum test P-value (for
the top 40 features see Tables 5, 6, and for the bottom
40 features see Additional file 1). For a better overview
we grouped features into three distinct sets - functional
similarity (BP, CC, MF, MeanSim; total of 4 features),
sequence features (ELM, disorderedness, total of 8
features), and network features (degree, Affinity Page-
Rank, betweenes, EGDV, total of 71 features).

Sequence based features

In this work we evaluated two sequence features - number
of ELMs and number of predicted disordered regions. On
average non-obligate interactions tend to have almost
three times as many disordered regions than obligate
interactions (rank 4 in Table 5, Figure 3a) and the proteins
that participate in non-obligate interactions have a consi-
derably higher fraction of disordered amino acids (rank
5 in Table 5, Figure 3b). Furthermore, the longest binding
regions associated with non-obligate interactions tend to

Table 4 Features used for machine learning

Name Abbreviation

Sequence based features

Number of found short linear eukaryotic motifs in elmA
protein A

Number of found short linear eukaryotic motifs in elmB
protein B

Number of disordered binding regions in protein A DisRegionsA
Number of disordered binding regions in protein B DisRegionsB
Fraction of disordered Amino Acids in protein A FracDisASA
Fraction of disordered Amino Acids in protein B FracDisASB
Length of the longest disordered binding regions in MaxDisLen
both proteins

Network based features

Degree Degree
Betweeness of the interactions Betweeness
Affinity page rank score for the interactions APR
EGDV values for orbit n = {1,2,3, .., 69} 1,23, .,69
Functional similarity based features

Functional similarity based on cellular component GO [«
terms

Functional similarity based on biological process GO BP
terms

Functional similarity based on molecular function GO MF
terms

Mean of CC, BP, and MF values. MeanSim
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be twice as long as those in obligate interactions (rank 6 in
Table 5, Figure 3c). These results are in line with recent
reports, which state that proteins involved into non-
obligate interactions tend to be more disordered than
those associated with obligate interactions [59]. We also
found that non-obligate interactions tend to have more
ELM regions (rank 8 in Table 5, Figure 3d), which agrees
with the notion that ELM primarily mediate weak
transient interactions occurring in signaling [60].

Proteins involved in SP interactions tend to be more
disordered than those in mutually exclusive interactions
(Table 6, Figure 4a-c), presumably because simultaneously
possible interactors undergo stronger conformational
changes upon binding their partners than mutually exclu-
sive interactors [61]. At the same time we do not find any
significant difference in the distribution of ELMs in SP
and ME interactions (P-value 1, rank 73 in Table S2,
Figure 4d).
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Figure 4 Boxplot distributions of features in simultaneously possible (red) and mutually exclusive (blue) interactions. For the number
of disordered binding regions, the fraction of disordered amino acids, and the number of found ELM both values for protein A and B are
combined into one distribution. For EGDV (g) only top 10 features with the lowest P value are plotted.

Network based features

Network based features do not play a significant role in
distinguishing between obligate and non-obligate inter-
actions. Overall, they performed poorly (Figure 3e-f),
with only betweeness showing a high rank in Table 5.

However we do find that orbits 2, 25, 8, 52, and 68
(rank 17, 30, 31, 32, and 33 in Table 6) located inside
cliques (Figure 1, section 2.5.1) are enriched in obligate
interactions while orbits 18, 26, 17, 32, and 23 describing
hub-like proteins (Figure 1, section 2.5.1) are enriched in
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Table 5 Ranking of the top 40 features for the obligate and non-obligate classes based on their Wilcoxon ranked sum

test P-values.

Rank Feature name Mean obligate Mean non-obligate P-value Rank Feature name Mean obligate Mean non-obligate P-value

1 MeanSim 0816 063 72e-48 21 33 0.0095 0.0148 2e-08
2 CcC 09 0.748 1.7e-47 22 45 0.0049 0.00841 6.5e-08
3 BP 0.768 0517 2.7e-41 23 50 0.0040 0.00737 8.6e-08
4 DisRegions 217 727 93e-39 24 57 0.0016 0.00395 2.7e-07
5 FracDisAS 0.0737 0.163 24e-35 25 30 0.0224 0.0281 53e-07
6 MaxDisLen 17.5 422 19e-31 26 Degree 354 59 7.7e-07
7 MF 0.779 0.626 43e-24 27 31 0.015 0.0216 2.1e-06
8 ELM 96.2 151 13e-18 28 39 0.0155 0.0193 3.9e-05
9 Betweeness 2463 4315 48e-16 29 12 0.0027 0.00132 0.0001
10 18 0.0293 0.04 6.5e-14 30 25 0.0225 0.0148 0.0001
11 26 0019 0.0274 78e-13 31 8 00122 0.0082 0.0001
12 17 0.0239 0.0326 74e-12 32 52 0.0079 0.00432 0.0001
13 32 0.0109 00177 42e-11 33 68 0.0017 0.00065 0.0001
14 23 00122 0.0181 43e-11 34 51 0.0065 0.00398 0.0007
15 7 0.0105 0.0141 21e-09 35 41 0.0082 0.00484 0.0008
16 4 00173 0.0222 63e-09 36 20 0.0298 0.0353 0.001
17 2 0.0043 0.00258 69e-09 37 24 0.0216 0.0159 0.0017
18 6 0.0045 0.00752 8e-09 38 44 0.0058 0.00858 0.0022
19 43 0.0037 0.00804 1e-08 39 1 0.0031 0.00161 0.0026
20 5 0.0267 0.0323 1.2e-08 40 49 0.0027 0.00114 0.0028

The numbers in the name column refer to EGDV values for orbits (see Table 4). For the number of disordered binding regions, fraction of disordered amino
acids, and ELM both values for protein A and B are combined into one distribution which has two values for each interaction. The Wilcoxon P-value is then

calculated for this distribution.

non-obligate interactions (rank in 10-14 Table 6, Figure 3g).
In particular, the orbit number 68, the five clique, occurs
three times more often in obligate interactions than in
non-obligate interactions (P-value 0.00001, rank 33 in
Table 6), yet the signal is too weak to distinguish those
classes efficiently. This observation is compatible with
the fact that obligate interactions are permanent and
usually occur in functional modules corresponding to
tightly connected clusters in interaction networks [62].
Indeed, we observed slightly larger APR values for obli-
gate interactions (Figure 3h) that for non-obligate
interactions.

In contrast, network topology differs greatly between
SP and ME interactions, since there is a physical limit
to how many interaction partners can simultaneously
bind to a protein [22]. While we observed no significant
difference for betweeness (P-value 1, rank 70 in Table
S2, Figure 4e), degree is the best feature to separate
these two classes (rank 1 in Table 6, Figure 4f). There
are also differences in local topology, with the orbits 13,
3, 15, 22, and 6 enriched in SP interactions and orbits
57, 43, 45, 50, 58 being more prominent in ME interac-
tions (Figure 4g). ME interactions were enriched in
orbits describing bottlenecks, with 58 being the only

exception (Figure 1, section 2.5.1), which implies that
ME interactions are key connectors in the interaction
network and that at least one of the two interacting pro-
teins has a higher chance to be an essential gene [40]. In
contrast, SP interactions prefer sparsely connected orbits
(Figure 1, section 2.5.1), probably due to the physical
limits of binding multiple partners simultaneously.
Similar to obligate interactions, SP interactions tend to
have larger APR values (Figure 3h).
Functional similarity
For the obligate/non-obligate classification the most sig-
nificant P-values were reached with functional similarity
features (ranks 1-3 in Table 5, Figure 3i). This is caused
by the fact that all obligate interactions are permanent
while the majority of non-obligate interactions are tran-
sient [4]. The only permanent non-obligate interactions
are antibody-antigen and enzyme-inhibitor interactions.
Further work is needed to distinguish those interactions
from signaling and receptor-ligand interactions, which
would open up the possibility of classifying interactions
as permanent or transient and also distinguishing
between strong and weak interactions.

For the SP/ME classification we only find a weak corre-
lation with functional similarity (ranks 48, 53, 60 62 in
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Table 6 Ranking of the top 40 features for the simultaneously possible and mutually exclusive classes based on their

Wilcoxon ranked sum test P-values.

Rank Feature name Mean SP Mean ME P-value Rank Feature name Mean SP Mean ME P-value
1 Degree 36.6 86.9 2.8e-106 21 42 0.00631 0.0108 8.2e-45
2 57 0.00207 0.00584 2.5e-95 22 16 0.0657 0.0502 1.2e-44
3 43 0.00486 0.0104 9.8e-86 23 47 0.00333 0.00622 2.7e-44
4 45 0.006 00113 5.2e-82 24 10 0.00372 0.00619 1.5e-43
5 50 0.00407 0.00853 3.6e-81 25 36 0.00772 0.0125 1.3e-41
6 13 0.0895 0.0552 9.5e-79 26 65 0.00099 0.00263 7.6e-38
7 3 0.0556 0.0363 1.2e-76 27 32 0.0145 0.0206 14e-31
8 58 0.00211 0.00563 14e-76 28 66 0.00116 0.00263 59e-29
9 15 0.0871 0.0558 3.8e-76 29 34 0.00912 0.0136 1.7e-26
10 64 0.00076 0.00315 39e-74 30 38 0.00576 0.00866 34e-26
11 33 0.00999 0.0166 2.1e-66 31 55 0.00267 0.00481 23e-23
12 48 0.00309 0.00716 3.7e-66 32 23 0.0152 0.0197 1.1e-22
13 54 0.0033 0.00707 3.7e-65 33 61 0.00211 0.00397 6e-22
14 22 0.0491 0.0344 2.8e-63 34 40 0.00921 0.0133 9e-21
15 60 0.00176 0.00444 9.9e-61 35 59 0.00186 0.003 9.8e-21
16 56 0.00187 0.0048 7.1e-58 36 7 00117 0.0144 5.6e-20
17 6 0.00608 0.00917 9e-53 37 62 0.00172 0.0029 2.1e-19
18 44 0.00651 0.0107 24e-50 38 67 0.00076 0.00156 1.1e-17
19 1 0.0265 0.0199 34e-48 39 14 0.0474 0.039 24e-17
20 53 0.0044 0.00793 2.3e-46 40 46 0.00712 0.00968 2.2e-16

The numbers in the name column refer to EGDV values for orbits (see Table 4). For the number of disordered binding regions, fraction of disordered amino
acids, and ELM both values for protein A and B are combined into one distribution which has two values for each interaction. The Wilcoxon P-value is then

calculated for this distribution.

Table 6, Figure 4i). However, all functional similarity
features had a P-value of less than 0.05 (significant level).
Thus, we expect it to play at least some part in the
classification.
Predictor evaluation
As an additional evaluation method we trained a random
forest classifier (RUSBoost ratio 0.37 for obligate/non-
obligate, and 0.31 for SP/ME; see Additional file 3 for
justification of these values) with either all features or
only with features from each individual group (functional
similarity, network based features, sequence based
features). In a 10-fold cross-validation the auROC values
for obligate/non-obligate classification were 0.881, 0.810,
0.822, and 0.772 for all features, for functional similarity,
sequence features, and network features, respectively.
Analogously, we performed the same analysis for
simultaneously possible and mutually exclusive interac-
tions. The random forest auROC values (RUSBoost ratio
0.31) were 0.851, 0.657, 0.806, and 0.808 for all features,
for functional similarity, sequence features, and network
features, respectively. Using either disordered features or
ELM features separately we achieved an auROC of 0.75
and 0.66, respectively. However, when both disordered
and ELM features were utilized the auROC was substan-
tially higher - 0.806 - underlying the importance of

cross-talk between these two groups of biological
properties.

Predictor evaluation

We preformed an extensive analysis and benchmarking
of both the obligate/non-obligate and SP/ME classi-
fiers, which can be found in the Additional file 3. Over-
all we achieved an auROC of 0.881 and 0.851 for
obligate/non-obligate and SP/ME classification, respec-
tively. The F-measure values were 0.56, 0.88, 0.71, and
0.85 for SP, ME, obligate, and non-obligate classifi-
cation, respectively. Notably, these results solely based
on sequence and network information are only margin-
ally worse than 3D-structure derived predictions by
NOXClass [17].

Large scale classification of protein interactions

We applied our method to classify 13978 HeLa and
83788 iReflndex protein interactions as either obligate or
non-obligate as well as either SP or ME. Each interaction
was also attributed to one of the four class combinations
- obligate and SP, obligate and ME, non-obligate and SP,
or non-obligate and ME - and assigned two confidence
values - one for the SP/ME classification and one for the
obligate/non-obligate classification.
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We analyzed the number of classified interactions for
each class and class combination for various random
forest confidence values (Figure 5, 6). Note that we
ignored cases where the classifier was indecisive (i.e.
confidence 0.5 for both classes). The number of classified
cases declines with increasing stringency of the classifier.
For example, at the random forest confidence value of
0.7 two thirds of interactions get classified and around
10% are left at the 0.9 threshold.

What is the optimal threshold for the random forest
confidence values? As seen in Figure 7 the classifier
precision, determined by 10-fold cross-validation, is
positively correlated with the random forest confidence
value cut-off. In particular, at the cutoff value of 0.6 the
classifier precision is 0.72, 0.9, 0.83, and 0.88 for SP,
ME, obligate, and non-obligate classification, respec-
tively. In other words, it achieves precision of over 0.8
for each classification problem, except for SP classifica-
tion. However, since 21% of the SP/ME interactions are
SP, a random SP classifier achieves a precision of 0.21,
which means that our classifier is considerably better
than a random classifier. Furthermore, the confidence
value cutoff of 0.6 seems an acceptable trade off
between precision and the number of classified interac-
tions. Another reason to choose 0.6 as a cut-off value is
that it guarantees the difference in confidence values
between the opposing classes of at least 0.2. Note that
confidence values are calculated by weighted majority
voting. This means that at least 60% of the weighted
random forest trees decided in favor of the chosen class
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and at most 40% for the opposing class, which implies
that the classifier decision is based on a distinct majority.

For random forest confidence values >= 0.6 the total of
638 and 506 HeLa interactions as well as 1747 and 2620
iRefIndex interactions were classified as SP/obligate and
SP/non-obligate, respectively. The total of 1010 and 6118
HeLa interactions were classified as ME/obligate and
ME/non-obligate, respectively, while for the iRefIndex
dataset the corresponding numbers were 1772 and
54580.

It was recently suggested that SP interactions are
mostly permanent and ME interactions are mostly
transient [22]. As discussed above transient interactions
are by definition non-obligate while permanent interac-
tions are mostly obligate. In line with the results reported
in [22] most of the ME interactions were classified as
non-obligate both in the HeLa and iRefIndex datasets,
presumably because proteins involved in ME interactions
compete for the same binding side, which is only possible
when the interactions are non-obligate. However, we
found that 44% of the SP interactions in the HeLa dataset
and 59% of the SP interactions in the iRefIndex were
classified as non-obligate (compare Figures 5 and 6). This
result implies that a multimeric protein complex can
either exist as a stable compound throughout its entire
lifetime or it can dynamically form and dissolve during
its lifetime. An example for a non-obligate multimeric
protein complex are coat proteins involved in formation
of molecular vesicles. The coat proteins associate
together to form the coat of the molecular vesicle and
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upon delivering their payload they dissolve again from
each other.

We also evaluated the classification results for iRefIndex
interactions measured by different experimental methods,
focusing on yeast two hybrid (Y2H) essay and tandem
affinity purification (TAP). It was suggested that TAP has
a preference for detecting obligate interactions while
Y2H has no bias towards obligate or non-obligate inter-
actions [3]. Indeed, as shown in Figure 8, interactions
determined by TAP get classified as obligate three times
more often that those measured by Y2H. At the same
time the fraction of SP interactions increases by 40%
from 0.10 in Y2H to 0.14 in TAP, in line with the pre-
vious observation that around half of the SP interactions
are also obligate.

Protein complex analysis

We further applied our method to classify all intra- and
inter-complex interactions in the CORUM and HeLa
datasets (see section Protein complex data). The overlap
between different class combinations in terms of GO
categories associated with them is very low, implying
that each interaction type is intrinsic for a distinct set of
cellular functions (see Additional file 4). As expected,
most of the inter-complex interactions in each dataset
(CORUM, HeLa) were classified as ME/non-obligate,
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indicating that protein complexes interact mostly transi-
ently with each other.

With regard to intra-complex interactions we
observed that small protein complexes possess high
information content and thus tend to be enriched in
just one interaction type (Figure 9). Larger protein com-
plexes generally display increased diversity in terms of
interaction types (except for complexes of size 8 in the
HeLa dataset for which the sample size is very small),
probably because they may contain functionally specialized
subcomplexes, each with its own prevailing interaction
type. For example, RNA polymerase II and the transcrip-
tion factor TFIIH form an obligate/SP sub-compartment
while TFEII, TFFII, and TFIIB are mostly involved in non-
obligate/ME interactions, and the interactions between
TFHII and the RNA polymerase II are also mostly non-
obligate/ME (Figure 10).

Knowledge about interaction types can be instrumen-
tal for assessing the quality of protein complexes derived
by computational methods. For example, the predicted
mini-chromosome maintenance (MCM) complex (HeLa
ID 587, Figure 11) consists of an obligate/SP part and
a non-obligate/ME part. The obligate part exactly
matches the CORUM MCM complex (CORUM ID
387), which is essential for DNA replication, initiation,
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and elongation in eukaryotic cells. The non-obligate/ME
part is a novel addition to the MCM complex, which
consist of the following proteins: amidophosphoribosyl-
transferase, RNA-binding protein 12B, splicing factor 3A
subunit, and testis-specific serine kinase substrate.
These proteins do not have any biological function asso-
ciated with DNA replication, initiation, and elongation
and it is probably safe to assume that they constitute
false positive predictions added in the predicted HeLa
complex to the manually verified CORUM complex.

We defined a protein cluster to be enriched in a given
interaction type when it constituted at least 50% of the
intra-complex interactions and plotted the fraction protein
complexes enriched in each interaction type (Figure 12).
Both in the HeLa and in the CORUM datasets most of the
protein complexes are enriched in ME/non-obligate inter-
actions due to the fact that most of the ME interactions
are non-obligate and the latter are frequently involved in
intracellular signal transduction [2]. Correspondingly,
ME/non-obligate interactions are enriched in GO terms
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Figure 10 Protein interactions within the RNA polymerase Il holoenzyme complex (CORUM ID: 103) classified as obligate (green) vs
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Figure 11 Protein interactions within the mini-chromosome maintenance (MCM) complex (HeLa ID: 587) classified as obligate (green)
vs non-obligate (orange) and SP (red) vs ME (blue) (b). Uniprot accession numbers are shown for each protein. Additionally gene names are

Q8IXTS Q15459

(b)

associated with biological process regulation (see Addi-
tional file 4). Furthermore, around 50% of the protein
complexes in the HeLa dataset are enriched in SP
interactions whereas in the CORUM dataset only 25%
of the complexes are SP-heavy. We speculate that the
reason for this discrepancy lies in the somewhat differ-
ent nature of these two datasets. The CORUM dataset
used in this work was generated by overlaying multi-
protein complexes described in the CORUM database
with the binary interactions from the iRefIndex
resource, while the HeLa dataset was derived by its
authors by applying the CLusterOne method to a high
confidence PPI network.

Conclusions

We report PiType, a novel technique for classifying
protein interactions into obligate/non-obligate as well as
into SP/ME based exclusively on sequence and network
information. In contrast to previous work that relied on
known 3D structures of proteins our method is suitable
for large-scale characterization of interaction data. In
particular it can be applied to improve protein complex
prediction. Its performance is comparable with that of
the structure-based classifiers, achieving an auROC of at
least 80% and a F-measure close to 80% in a nested
cross-fold validation. PiType is available at http://webclu.
bio.wzw.tum.de/PiType/PiType.zip.
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Figure 12 Fraction of enriched protein complexes in each dataset.
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We have conducted a thorough investigation of
sequence and network features characteristic for each
type of interactions. Proteins involved in non-obligate
interactions tend to have more disordered regions and
short linear eukaryotic motifs than obligate interactors.
Non-obligate interaction partners are also less functionally
similar than obligate interaction partners. These results
are in line with previous observations [3] (note that the
majority of non-obligate interactions are transient). Like-
wise, SP interactors are more disordered than ME interac-
tors, most likely because the former undergo stronger
conformational changes upon binding their partners [61].
By analyzing edge graphlet degree vectors (EGDV)
we identified network contexts in which interactions of
different types typically occur. Obligate interactions are
enriched in orbits associated with tightly connected
clusters, whereas non-obligate interactions are frequently
found in orbits characteristic for network hubs. EGDV
analysis also revealed that ME interactions are enriched in
orbits describing bottlenecks, key network elements with
high betweenness. In contrast, we observed that orbits
with a low edge degree (i.e. 13, 3, 15, 22, and 6; see
Figure 1) are more prominent in SP interactions for still
unclear reasons.

Endnote

* Definition for raw interactions and non-redundant
interactions are taken from http://wiki.thebiogrid.org/
doku.php/statistics.
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