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Abstract

analysed as a pilot task.

Background: The emerging multi-layers of genomic data have provided unprecedented opportunities for cancer
research, especially for the association study between gene expressions and other types of genomic features. No
previous approaches, however, provide an adequate statistical framework for or global analysis on the relative
impact of different genomic feature layers to gene expression phenotypes.

Methods: We propose an integrative statistical framework based on a sparse regression to model the impact of
multi-layered genomic features on gene expression traits. The proposed approach can be regarded as an
integrative expression Quantitative Traits Loci approach in which not only the genetic variations of SNPs or copy
number variations but also other features in both genomic and epigenomic levels are used to explain the
expression of genes. To highlight the validity of the proposed approach, the TCGA ovarian cancer dataset was

Results: The analysis shows that our integrative approach has consistently superior power in predicting gene
expression levels compared to that from each single data type-based analysis. Moreover, the proposed method has
the advantage of producing a substantially reduced number of spurious associations. We provide an interesting
characterization of genes in terms of its genomic association patterns. Important genomic features reported in
previous ovarian cancer research are successfully identified as major hubs in the resulting association network
between heterogeneous types of genomic features and genes.

Conclusions: In this paper, we model the gene expression phenotypes with respect to multiple different types of
genomic data in an integrative framework. Our analysis reveals the global view on the relative contribution of
different genomic feature types to gene expression phenotypes in ovarian cancer.

Introduction

Cancer is a complex disease mainly characterized by
uncontrolled proliferation and cell growth. Genes regulat-
ing differentiation and cell growth must be altered for a
normal cell to transform into a cancer cell [1]. Expression
of oncogenes or tumor suppressor genes promotes the
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malignant phenotype of cancer cells or inhibits cell divi-
sion, development, or survival of cancer cell, respectively
[1]. In many respects, a general survey of gene expression
phenotypes serves as a proxy for the nature and breadth of
phenotypic variation in human cancer [2,3]. In addition,
gene expression is strongly associated with other types of
genomic data in genomic level or epigenomic level [4].

In order to identify the relation between gene expression
and other types of genomic data, there have been many
attempts for integrative analyses between them. The
expression quantitative trait loci (eQTL) approach, which
integrates large-scale genotype data and expression
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profiles, has been established and offers a new perspective
in biomedicine [5-8]. This approach treats gene expression
profiles as quantitative traits or intermediate phenotypes
and searches for genomic variation which can explain the
variance of the molecular traits [9,10]. In addition to SNP
data as a genome level, many integrative analyses between
copy number variation and gene expression have been
reported to identify genes that are associated with gene
dosage [11-14]. In terms of epigenetic regulation, DNA
methylation or histone modification can serve to regulate
gene expression in cancer [15-18]. Furthermore, as one of
the important regulators of gene expression, miRNA
expression can be integrated with gene expression to iden-
tify the selective degradation or selective inhibition of
translation [19-21].

Despite these efforts, however, it only reveals a limited
view on the genomic mechanisms underlying cancer with
only a pair of genomic data at hand. Recently, the emerging
multi-layers of genomic data have provided unprecedented
opportunities to identify the global view of relations
between multi-layers of genomic data. The Cancer Gen-
ome Atlas (TCGA) is a large-scale collaborative initiative
to improve understanding of cancer using multi-layers of
genomic data. The TCGA research network recently pub-
lished many notable papers on several cancers concerning
an interim analysis of DNA sequencing, copy number,
DNA methylation, miRNA, and gene expression data
[22-26]. The International Cancer Genome Consortium
(ICGC) is another multidisciplinary collaborative effort to
characterize a comprehensive description of genomic, tran-
scriptomic and epigenomic abnormalities in 50 different
cancer types [27]. While the TCGA and ICGC open many
opportunities to deepen the knowledge of the molecular
basis of cancer [27-29], it is particularly important to access
different levels of genomic data at hand for providing an
enhanced global view on interplays between them.

The emerging large-scale multi-layers of genomic data-
set demand novel computational methods. There have
been several integrative approaches for multi-layers of
genomic data. For example, Chari et al. used the integra-
tive analysis approach with multi-dimensional genomics
data, enabling the understanding of mechanisms that dis-
turb regulatory/signalling cascades and downstream effects
[30]. Another relevant method, CNAmet, is an R package
for integrative analysis of high-throughput copy number,
DNA methylation, and gene expression data to identify
genes that are amplified, hypomethylated and upregulated,
or deleted, hypermethylated and downregulated [31]. In
addition, other types of integrative methodological frame-
work have been recently proposed to identify multi-
dimensional regulatory modules from different levels of
genomic data [32] or to combine different levels of geno-
mic data for cancer clinical outcome prediction in the
multiple-scale and the synergistic manner [33,34], which
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highlights the importance of integrative approaches utiliz-
ing multi-omics data systematically. However, to the best
of our knowledge, there has not been any comprehensive
analysis on the relative contribution of different genomic
data to gene expression phenotypes, nor an adequate sta-
tistical approach to address this issue of elucidating gene
expression phenotypes with more than two types of geno-
mic data at hand. As different levels of genomic data such
as copy number, SNP, methylation, or miRNA, might
affect gene regulation through either specific or synergistic
fashion, an integrative framework that incorporates all
these different genomic features as potential regulators of
gene expression will lead us to an enhanced global view
on interplays between them (Figure 1). Simple correlation-
based association tests will typically result in a large num-
ber of associations redundantly appearing across different
types of genomic features. This makes it difficult to accu-
rately measure the relative impact of each genomic feature
type to gene expression traits. In this paper, we propose a
sparse regression based framework for elucidating expres-
sion phenotype using different layers of genomic data as
covariates.

In order to demonstrate the validity of the synergistic
impact of multiple genomic data on gene expression
phenotypes, ovarian cancer data from TCGA was used
as a pilot task. Ovarian cancer (OV) is one of the most
common gynecological malignancies, and is the 5™ lead-
ing cause of cancer mortality in women in the United
States [35]. Understanding the molecular pathogenesis
and underlying biology in ovarian cancer through the
global view on interplays between different levels of
genomic data is expected to provide guidance for
improved prognostic indicators and effective therapies.

Through this pilot task, we validate that the predictive
power of the proposed integrative model is consistently
superior compared to those of the individual approaches
that employ each type of genomic data separately. More-
over, the proposed framework is substantially more effec-
tive in reducing spurious associations between gene
expression phenotypes and other genomic features. Com-
parison of the resulting association networks from these
two approaches also supports the validity of the proposed
framework. Based on this validation, we provide more
focused analyses on the inferred association network to
highlight the biological significance of our findings.

Materials and methods

Data

Datasets in ovarian cancer were retrieved from the Can-
cer Genome Atlas (TCGA) data portal (http://tcga-data.
nci.nih.gov) (Table 1). The beta-value of Infinium methy-
lation 27 BeadChip, ranged from 0 to 1, was used for
DNA methylation data. After obtaining beta-values of
methylation probes, the final matrix of DNA methylation
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Figure 1 The schematic overview of the integrative framework. Different levels of genomic data such as copy number, methylation, or
miRNA might affect gene regulation through either specific or synergistic fashion.

was constructed by segmenting the 27,578 methylation
probes into 9,219 gene features after removing zero-
values across all the 381 samples. Level 3 data of gene
expression and miRNA expression from TCGA were
used as an expression signal of a gene or miRNA, con-
taining 12,042 genes and 799 miRNAs, respectively. Copy
number alteration (CNA) data were obtained from cBio
Cancer Genomics Portal in order to use the results of
GISTIC which attempts to identify significantly altered
regions of amplification or deletion across sets of patients
[36]. CNA data contains 54 significant cytoband regions
with categorical values, -2, -1, 0, 1, or 2. As we use
methylation, CNA, and miRNA data as covariates in our
predictive statistical framework, we denote these three
types of data as different genomic feature types.

Data preprocessing

To minimize the effect of heterogeneity in feature-wise
distributions, type-specific preprocessing schemes are
applied to each genomic feature set. Methylation data hav-
ing the greatest number of features are non-specifically fil-
tered by variance such that methylation features with

Table 1 Data description

lower 25% variance are removed from the feature set. We
use all the 799 microRNA features without further filtering
not only because the number of miRNA features is rela-
tively small in comparison with that from methylation
data, but also because the overall variance of microRNA
expression data were relatively high. Copy number altera-
tion data have unique characteristics in that the copy
number alteration event typically occurs across long range
of loci on a chromosome rather than on each single locus
or short regions. After exploring several different feature
representation alternatives, for example, those based on
either probes or genes, we chose to use cytoband-based
copy number alteration features, the output of GISTIC,
showing the best performance through our analyses below.

We examine the impact of these resulting genomic fea-
tures on each of the 12,042 gene expression traits. The
feature values of all genomic data are finally normalized
to have a zero mean and standard deviation of one across
samples so that the relative impact of different genomic
features on expression traits can be properly represented.
Under this setting, let y; denote an N-dimensional vector
for expression traits of gene k in N = 381 individuals, and

Cancer type Data type Platform # Features (d) after preprocessing
ov CNA Agilent SurePrint G3 Human CGH Microarray Kit 1x1M 54

Methylation Infinium humanmethylation27 BeadChip 6,913

mMIiRNA Agilent Human miRNA Microarray Rel12.0 799

Gene expression Affymetrix HT Human Genome U133 Array Plate Set 12,042
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let X denote an N x J' feature matrix for N samples
and /"% number of genomic features where 7' = 54, 6913,
and 799 for me {CNA, methylation, miRNA}, respectively.

Simultaneous feature selection and regression by a
sparse regression
We first describe the baseline framework for modeling
the effect from a single type of genomics features to gene
expression traits. Typically, the association between
genomic features and gene expression traits has been
analyzed by a simple correlation test, either under a para-
metric assumption or in non-parametric way. As this
relies on a pair-wise test between each single feature and
each single gene, it is not capable of modeling the syner-
gistic effect from multiple features to an expression trait.
Moreover, the simple correlation measure tends to pro-
duce a large number of indirect genomic associations
and does not reflect the possible interplays between
potential regulators. The multiple testing issues caused
by the huge number of pairwise tests also discourage the
use of such a test for this type of integrative analysis.
Instead of this, we employ a sparse regression frame-
work that has recently emerged as a powerful tool for
detecting associations in a high-dimensional space. Under
this model, the impact of J possible features x,,, ... , xj; to a
trait value y; is modeled as a multivariate linear regression
as follows:

Yi=Bo+P1x1i+Paxoi+...0 x5+ ¢ gi ~N(0, 0?)

where i denotes the index for different samples. The L;-
penalized regression framework called lasso [37] solves the
following optimization problem to detect a relatively small
number of effective covariates affecting the trait:

min Zi(yi — (Bo + Bix1i + Paxai + ... Bxii))* + 1 ZjlBil

The second term of L,-penalty on B = (3, .., ;) induces
a sparse solution by reducing the number of non-zero coef-
ficients in . The regularization parameter A controlling the
degree of sparsity is determined by cross-validation. There-
fore, the solution given by lasso generates a set of a few fea-
tures in association with the trait and the association
strength of each effective feature j from ;. We adopt a
Screen and Clean procedure [38] on top of lasso as our
baseline statistical framework to allow further filtering of
detected features based on p-values. We set the threshold
for the p-values as 0.05 throughout our analysis.

We extend this baseline to an integrative model that
deals with M different types of data as covariates assuming
the following formulation:

yi= B x4 B e x® s 4 pM o kM L gy g ~ N(O, 0?)

where ™, x™i e R'™ for m = 1, .., M.
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Note that we excluded the intercept B, because we
already centered the data matrix to have zero mean col-
umn-wise. Through this formulation, a trait may be
impacted by either one type of genomic features, or by
multiple types of genomic features synergistically. Since
the selected TCGA dataset provides three different types
of genomic data as genomic features, the final optimiza-
tion problem we solve is:

- . . . 2
(BCNA .xCNAi + Bmethl}atlon . xmezhlya[mni + ﬁmlRNA .xmeNAi)) +

A Z(HBCNAHI + Bmerhlyarion‘ll + HBmiRNAHI)

min %;(y; —

We denote the sparse solution of the above integrative
Setting bY B{m}integrative'

As a base case, the aforementioned lasso-based Screen
and Clean procedure is applied to each pair of (X,y,)
separately for me {CNA, methylation, miRNA}, and for
each gene k = 1,..,12042. We denote the resulting coeffi-
cient matrix by B{"‘}Smgle.

We validate the proposed integrative framework by
comparing these two association networks implied by
ﬁ{m}integmtive and B{m}single. Note that both the ‘integrative’
approach and the ‘single type’-based approach generate
pairs of genomic associations between a genomic feature
and a gene expression phenotype, and the strength of the
association given by the magnitude of the corresponding
regression coefficient.

Results

Predictive power of the integrative feature is consistently
superior compared to that of each single type of
genomic features

One of the advantages of the sparse regression framework
we adopt is that it is a predictive model and thus allows a
quantitative performance evaluation. As a validation for
the proposed integrative approach, we first compare the
overall prediction accuracy of the integrative approach
with those from each single genomic type based
approaches using CNA, methylation, miRNA data sepa-
rately. The average correlation coefficient between the
actual gene expression levels and the predicted ones across
samples is used as an accuracy measure. To examine the
trend in the overall predictive power of each feature type,
the genes are first partitioned into 10 equal-sized bins
according to (a) the average expression levels p across
samples, (b) the standard deviation of the expression levels
o, and (c) the ratio of the two y/ 6. Then we removed the
predicted associations with association strength smaller
than a threshold p of 0.1 to filter out less confident asso-
ciations in both approaches. The prediction accuracies on
the resulting genes are displayed in Figure 2 (A,B,C). The
number of genes predicted to be in association with at
least one feature is also displayed along the same deciles
(Figure 2 D,E,F).
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Figure 2 Comparison of overall predictive power. The average prediction accuracy of the proposed integrative method is compared with
those using each genomic feature type separately (A,B,C). Genes are first partitioned into 10 equal-sized bins according to their average
expression levels, standard deviation, and the ratio of the two, respectively, and then the result is displayed as a function of these deciles. The
number of genes in each bin having at least one genomic association is also displayed in D,EF.

A number of interesting association patterns are clearly
seen from Figure 2. First of all, the overall predictive
power of the integrative feature is consistently superior
to that from each single type of genomic features across
the deciles. We also find that highly expressed genes
(with higher ) tend to be explained better by copy num-
ber alteration data, both before and after normalization
by standard deviation (Figure 2 A,C). In contrast, variably
expressed genes (with higher ¢ in Figure 2B, or more
apparently, with smaller p/c in Figure 2C) tend to be
explained better by the methylation features. This obser-
vation confirms the expectation that methylation plays a
more dynamic role in regulating the gene expression
through a dynamic epigenetic mechanism.

The number of genes having at least one genomic asso-
ciation is slightly smaller in case of the integrative frame-
work than in a single type based approach using either
methylation or miRNA data only. Considering the super-
ior prediction accuracy of the integrative approach, we
conjecture that this is because the indirect or spurious

associations are effectively reduced in the integrative
approach.

Integrative approach is effective in reducing spurious
associations

We next compare the number of genes specifically asso-
ciated with each genomic data type and that of genes
synergistically affected by multiple types of features.
Recall that in our integrative approach, the expression
level of a gene k is represented as a linear combination of
CNA, miRNA, and methylation features using three coef-
ficient vectors N4, B™ENA and pretiation [f gt least
one element in the estimated B” is non-zero, we can say
the gene is associated with the genomic feature type m.
Therefore, a certain gene may be associated with more
than one genomic feature type.

The summary for the number of genes impacted by each
genomic feature type is presented in Figure 3. First, the
number of genes having at least one genomic association
with each feature type is smaller in the case of the
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integrative approach, for example, we find 3,082 CNA
associated genes versus 6,349 such genes in the integrative
and the single type based (of CNA-only) analyses, respec-
tively. As already mentioned above regarding the predic-
tive accuracy, this appears to be because of the fewer
number of false positives produced in the integrative
approach.

Furthermore, the single-type based approach estimated
a very large number of genes that are impacted synergis-
tically by all the three feature types, that is, 3,320 among
total 12,042 genes, and more than half of either CNA,
miRNA, or methylation associated genes. This seems to
be a clear over-estimation of such genes. In contrast,
the proposed integrative approach yields a substantially
smaller number and fewer fractions of such synergisti-
cally impacted genes (541 genes). As a result, a greater
number of genes fall into the class impacted specifically
by only one genomic type under our integrative frame-
work (e.g. 1,066 CNA-only-associated genes, versus 759
such genes in the single type-based analysis) even with a
smaller number of total genes in association. This high-
lights the potential utility of our integrative approach
for characterizations genes based on the genomic asso-
ciation and for the investigation of relative contribution
of different genomic feature types as well.

Heterogeneous genomic association network from the
integrative approach has better modularity

We provide a global outlook of the association networks
estimated from both the integrative approach and the
single type based approach. Figure 4 shows the heteroge-
neous genomic association networks in which features

from copy number alteration, methylation, miRNA or
gene expression data are represented as nodes and the
edges are constructed from the estimated non-zero
regression coefficients B{m}integmﬁve and B{m}smgle. For bet-
ter visualization, the network edges were further filtered
with a threshold p = 0.3 and nodes without any con-
nected edge were removed. The resulting networks reveal
very different global topologies such as the number of
connected components or the clustering coefficients.
Overall, the one from the proposed approach clearly has
better modularity as illustrated in Figure 4, which may
imply more functionally coherent network modules in it.

We performed functional enrichment test with respect
to GO Biological Process for the set of genes in the largest
connected component in each network. The enriched GO
BP terms with the smallest FDR corrected p-values are lar-
gely related to defense response and immune system in
both approaches. For example, the most significant term
was GO:6952 defense response, and GO:9611 response to
wounding, with FDR corrected p-values of 2.65e-23 and
1.13e-20, respectively, in the integrative and the single-
type based approach. The integrative approach also
detected GO:42330 taxis and GO:6935 chemotaxis (FDR
corrected p-values of 9.35e-12 and 9.35e-12, respectively)
as the 9™ and 10™ most significant terms, which has
known to be essential in cancer progression and metasta-
sis. In contrast, the single type-based analysis tends to pro-
duce more broad terms such as GO:48856 anatomical
structure development or GO:48731 system development
(4™ and 5", FDR corrected p-values of 3.53e-18 and
1.72e-17, respectively) other than the aforementioned
common terms.
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Figure 4 Comparison of the heterogeneous association networks recovered from the integrative and individual approaches. The
association networks having heterogeneous types of genomic features and expression traits as nodes and their associations as edges are drawn
using Cytoscape. Overall, the one from the proposed approach reveals enhanced network modularity.
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Relative contribution of each genomic feature type to
gene expression phenotypes

We now perform more focused analysis on the associa-
tion network estimated under the proposed framework.
In Figure 5, the relative contribution of each genomic
feature type to gene expression traits is characterized by
looking at an increasing number of detected genomic
associations. Specifically, the proportion of genes in asso-
ciation with each genomic feature type calculated using
the top K strongest genomic effects are shown for K =
100,200,400,800,1600,3200, and 6400.

First, the effect of methylation feature was the most
dominant overall. Among the top 100 genomic associa-
tions, only one association was occurring with copy num-
ber alteration feature (CCNE1 expression and copy
number alteration at 19q12), 24 were with miRNAs, and
the remaining 75 were with methylation features. We
noticed that among 75 methylation-mediated associa-
tions, 29 were the trivial associations of a gene with the
methylation near the same gene. This may have caused

to overestimate the proportion of methylation-affected
genes when we consider too small number of top signals.
As we increase the number of top genomic effects K, the
proportion of CNA-associated genes steadily increases
from 0.01 to 0.27 while that of methylation-associated
genes decreases from 0.75 to 0.5 until K = 3200 and
remains similar after that. The proportion of miRNA-
associated genes remains similar across K, ranging from
0.22 to 0.28. While methylation seems to contribute the
most to gene expression variation in ovarian cancer, the
impacts of CNA and miRNA are also surprisingly signifi-
cant considering the substantially smaller number of
used features (54 and 799, respectively) than that of
methylation features (6913).

Hub genomic features and the functional characterization
of the co-affected genes

We further zoom into the association network and exam-
ine the top 10 hub genomic features impacting the largest
number of genes. The hub genomic features and the
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most significant GO terms and SP-PIR (Swiss-Prot and
Protein Information Resource) keywords for the set of
associated genes are listed in Table 2. For instance,
miRNA-768-5p, which has previously shown to play an
important role in ovarian cancer progression [39], has
the greatest number of 303 genes as neighbours. miRNA-
768-5p was also identified as microRNA signatures of
tumor-derived exosomes for the diagnostic biomarkers of
ovarian cancer [40]. The functional enrichment test using
DAVID shows that the affected genes of miRNA-768-5p
are the most significantly enriched with SP-PIR keyword
acetylation (FDR corrected p-value = 1.4e-19). In addi-
tion, miRNA-29-a is well known of oncosuppressor
miRNA, which is frequently lost or down-regulated in
cancer so that target oncoproteins like CDK6, MCL1, or
BCL-2 can be upregulated [41]. Among the top 10 hub
features, 7 of them were copy number alteration features,
supporting the significance of copy number alteration
event in cancer progression and treatment. CNA features
affect several genes associated with acetylation, phospho-
protein, or nucleus. Methylation of Sprouty-4 (SPRY4),

an inhibitor of the receptor-transduced mitogen-acti-
vated protein kinase (MAPK) signalling pathway, has
been detected in prostate cancer [42]. Methylation at
SPRY4 affects 119 genes in downstream, which also is
related to acetylation.

Discussion and conclusion

We proposed to elucidate the gene expression pheno-
types with multiple different types of genomic features
together to gain better insight on the global genomic
mechanism underlying cancers. Through the analysis of
TCGA ovarian cancer dataset, we validated the proposed
integrative framework in various aspects. The proposed
approach provided a systematic view on the relative con-
tribution of different types of genomic data on the
expression of genes. Since different levels of genomic
data might affect gene regulation through either partly
independent or partly complementary fashion, proposed
framework that incorporates all these different genomic
features as potential regulators of gene expression will
lead us to an enhanced global view on interplays between
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Table 2 Top 10 hub genomic features impacting the largest number of genes.

p-value (FDR) Most significant SP-PIR keyword p-value (FDR)

Genomic feature Type N  Most significant GO term
hsa.miR.768.5p miRNA 303  GO:0005739
mitochondrion
hsa.miR.29a miRNA 154 GO:0007049
cell cycle
SPRY4 methylation 119 GO:0003723
RNA binding
16p13.3 CNA 117 GO:0031974
membrane-enclosed lumen
129231 CNA 113 GO:0070013
intracellular organelle lumen
19423 CNA 113 GO:0012505
endomembrane system
6p21.1 CNA 109 GO:0042974
retinoic acid receptor binding
17925.3 CNA 108 non-membrane-bounded
organelle
1p36.11 CNA 103 GO:0016071
mMRNA metabolic process
19p13.12 CNA 102 GO:0043232

intracellular non-membrane-bounded

organelle

8.67E-09 acetylation 1.10E-22
(1.18E-05) (1.40E-19)
7.99E-20 cell cycle 7.30E-17
(1.21E-16) (1.44E-13)
3.19E-4 acetylation 1.09E-6
(04197) (0.0013)
4.10E-5 iron-sulfur 9.98E-5
(0.0506) (0.1257)
4.29E-5 acetylation 2.62E-6
(0.0534) (0.0032)
7.3E-4 phosphoprotein 471E-6
(0.8908) (0.0059)
4.86E-8 nucleus 1.84E-5
(6.38E-5) (0.0228)
0.0092 acetylation 6.39E-9
(11.23) (8.03E-6)
0.0046 phosphoprotein 13184
(6.86) (0.1632)
1.24E-5 nucleus 1.24E-5
(0.0150) (0.0149)

The most significantly enriched GO terms and SP-PIR keywords for the set of associated genes are listed together.

them. Understanding the molecular pathogenesis and
underlying complex mechanisms in ovarian cancer
through the global view on interplays between them is
expected to provide guidance for improved prognostic
indicators and effective therapies [33].

The proposed approach may be regarded as an integra-
tive eQTL approach in which not only the genetic varia-
tions of SNPs but also other features in both genomic and
epigenomic levels are used to explain the expression of
genes. The original purpose of eQTL is to search genomic
variations which can explain the variance of the gene
expression as an intermediate phenotype. Thus, it can be
conceptually extended to integrative approach with other
levels of genomic features in order to better explain gene
expression as a phenotype level. Since TCGA does not
provide SNP data publicly, we excluded SNPs from our
analysis. Thus, we used copy number data as a feature in
genome level in this study. However, integration with SNP
data will provide opportunities to investigate the genetic
associations as well as the epigenetic associations in a
principled way.

One limitation of the proposed approach is the para-
metric assumption of normal distribution for genomic
features, which is not valid in general. We leave this
investigation about the deviation from the parametric
assumption and possible improvement as our future
work. Another interesting direction for further research
would be the integration with existing biological knowl-
edge. Systematic schemes for the choice, representation,
and incorporation of such knowledgebase remains as our
further research plan.

We used ovarian cancer dataset, which is one of the
datasets in the first phase of TCGA project, as a pilot
task for the study. However, TCGA has been generating
additional cancer genomic data for about 25 tumor types
as the second phase of the project, mainly sequencing-
based data. Since our proposed method is flexible to use
any kind of multi-omics data, it will be easily extended to
other cancer types as a future work.
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