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Abstract

In this paper, we propose an interactive visualization called VERMONT which tackles the problem of visualizing
mutations and infers their possible effects on the conservation of physicochemical and topological properties in
protein families. More specifically, we visualize a set of structure-based sequence alignments and integrate several
structural parameters that should aid biologists in gaining insight into possible consequences of mutations.
VERMONT allowed us to identify patterns of position-specific properties as well as exceptions that may help predict
whether specific mutations could damage protein function.

Introduction
Some DNA mutations (i.e., substitutions, insertions and
deletions), which naturally occur due to evolutionary
pressure, are known to affect protein function. In fact,
an important open problem in Bioinformatics is how
specific modifications in protein amino acid properties
may help identify potentially critical mutations, some of
which may cause protein destabilization or significant
structural modifications. Depending on where mutations
take place, a protein may lose its function or become
inactive.
A possible solution to this problem consists of collect-

ing, integrating and processing a huge amount of informa-
tion, ultimately presenting it in a simple manner in order
to facilitate comprehension of the possible impacts of
mutation. Our proposed solution involves two major pre-
mises: first, that protein structure data may give important
clues about the impact of mutations on protein function
and stability; and second, that a huge volume of different
types of data must be integrated in order to improve the

ability to study and predict harmful mutations. The result-
ing dataset is thus complex and difficult to analyze in a
simple textual manner.
We believe that by presenting such data in a visualiza-

tion which allows user interaction, much more interesting
features, patterns, trends and exceptions may emerge from
the dataset. Consequently, the goal of this work is to
develop an interactive visualization tool that allows users
to explore a diverse set of information about residues and
mutations, enabling the identification of important muta-
tions and their possible consequences on protein function.
The major contributions of this work are the investiga-

tion, selection and combination of a set of sequence-and
structure-based data to estimate the impact of mutations,
as well as the proposal of a visual representation of this
multivariate dataset along with a selection of analytical
interaction techniques that can boost analysis. Given that
proteins may be modelled as networks of interacting
atoms or residues, we mainly use as structure-based data
protein topological features modelled as complex network
measures, as well as physicochemical properties of inter-
acting pairs.
The remainder of this paper is organized as follows: in

Methods, we briefly describe the dataset, which has been
previously detailed in this special issue, the types of
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supplementary data computed and combined into VER-
MONT, and the visual representations, as well as their
resources and the strategies used to present information.
In Results and discussions, we present and discuss the
identified set of mutations which may potentially impact
protein function and how they were selected. Finally, in
Conclusion, we summarize VERMONT features, the set
of selected mutations and present perspectives for future
work.

Methods
Raw sequences and structures
The protein sequences were obtained from the organi-
zers of the BioVis Contest (see Acknowledgements).
They comprise a functionally defective triosephosphate
isomerase (dTIM) and its S. cerevisiae parent (scTIM),
both with 248 residues, as well as 1.4Mb of raw
sequences of all other known triosephosphate iso-
merases (TIMs). The structure of scTIM was obtained
from the Protein Data Bank (PDB).
The PDB was searched for each of the provided

sequences and all corresponding structures were retrieved,
resulting in the 133 enzyme set used in this work. Multi-
prot [1] was used to perform a structure-based sequence
alignment of all sequences against chain A of the wild type
PDB protein 2YPI, hereinafter called 2YPI:A. In VER-
MONT, each sequence is depicted as a row where col-
umns represent equivalent positions in this alignment.
Retrieved PDB structures were improved using the

PDBest package [2], a tool developed by our group to
clean, filter and standardize data from PDB. The following
procedures were applied in this work: chain separation,
identical chain and structure removal, and exclusion of
chains with missing atoms. In case of comparative models,
we used the first one depicted in the PDB file.

Computed data
Although sequence-based predictors have shown good
performance, it has been previously demonstrated that
prediction quality may be further improved by introducing
features derived from three-dimensional protein structures
[3]. In this work, we consider sequence conservation from
a structural perspective by performing structure-based
pairwise sequence alignments to allow all sequences in the
dataset to be compared to a reference protein, in this case
a mutant and defective enzyme. Also, we enrich the data-
set with several structural features such as presence at the
active site and solvent accessibility, as well as various types
of data computed from the chemical interactions that a
residue may establish with its structural neighbors. In this
section, we detail each data type and discuss the intuition
behind its usage for tackling the problem of predicting
harmful mutations.

Active sites
The most obvious question one must answer when analyz-
ing a mutation occurring in a member of an enzyme
family is whether or not it affects the active site. Therefore,
the first and simplest structural feature considered in this
work is the presence of a mutation in a previously
described active site. Thus, for each analyzed mutation,
VERMONT users may verify whether it occurs on a
known active site.
Active site data were retrieved from Catalytic Site Atlas

(CSA) [4], a database documenting enzyme active sites
and catalytic residues. CSA defines active site residues
either based on bibliographic references or, more automa-
tically, on remote homology computed by PSI-BLAST
alignments.
Solvent accessibility
Globular proteins present a small fraction of their residues
completely exposed to solvent molecules while the major-
ity of residues are in the protein core. It is well known that
hydrophobic residues tend to hide from solvent, forming
hydrophobic cores inside the protein structure. These core
residues also tend to be in close contact forming many
interacting pairs, in a packing that tends to be very con-
served in each protein family. Because of the contacts that
residues inside a protein structure establish, we believe a
mutation in the core of the structure tends to have much
more impact on protein stability than one of a residue
completely exposed on the surface. Hence, one of the
structural features we computed is solvent accessibility, in
an attempt to aid users in detecting mutations that are
likely destabilizing.
Solvent accessibilities were computed by software NAc-

cess, available in http://www.bioinf.manchester.ac.uk/
naccess/, which implements the algorithm developed by
Lee and Richards [5]: a probe of a given radius is rolled
around the surface of the protein, and the accessible sur-
face is defined as the path traced by the probe’s center.
Typically, the 1.4Å radius of a water molecule is used, so
as to consider the solvent-accessible surface. Absolute
accessibility is given in Å2. Since each amino acid residue
presents distinct volume and surface area, we work with
relative accessibilities, which express the accessible sur-
face as a percentage of that observed in a Ala-X-Ala tri-
peptide (to mimic the extended conformation).
Chemical interactions
Analogous to the aforementioned packing patterns, when
analyzing protein structures, one may observe many che-
mical interactions being established by a residue. Such
contacts are essential to protein folding and stabilization.
One may often find close residues interacting by the
hydrophobic effect as well as via salt bridges and hydro-
gen bonds, both of which are dipole interactions. The set
of interactions that a residue can establish with its
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surrounding pairs and the cumulative energy involved
may be used as evidence of the residue’s importance in
protein folding and stabilization. Previous works [6-13]
have shown that the interaction patterns established by
residues are very conserved across each protein fold and,
thus, may be used to understand protein function and
interaction with other molecules.
We believe protein contacts are a very strong struc-

tural feature that may be used to predict the impact of
mutations on protein structure and function. For exam-
ple, the non-conservative substitution of a highly con-
nected residue may disturb the previously established
contacts, destabilizing the protein and impacting its
function.
In this work, we use a cutoff-independent approach to

geometrically compute amino acid interactions at the
atomic level, which we then mapped to the residue level.
For each protein, we used the CGAL software library [14]
to build a Voronoi diagram followed by its Delaunay tes-
sellation [15,16] and, using both distance and physico-
chemical properties described in [17], we classified
contacts into one of the following types: charged attractive,
charged repulsive, aromatic, hydrophobic or hydrogen
bond. To avoid long edges representing illegitimate con-
tacts, Gromacs [18] was used to solvate protein chains (as
previously discussed in [19]).
Topological properties
A complex network is a graph with non-trivial topologi-
cal features or, in other words, that does not occur at
random. As we have recurrently discussed in previous
works, proteins may be modelled as graphs where nodes
are residues (or atoms) and edges represent chemical
interactions that exist between residue pairs.
In [20], the authors used complex networks to study

the role of an amino acid in both local and global struc-
tures, as well as to determine the extent to which dis-
ease-associated mutations and Single Amino acid
Polymorphisms (SAPs) differ in terms of their interac-
tions with other residues. They showed that mutations
are likely disease-associated when they occur at a high
centrality and/or high degree site in the network. A
node’s centrality measures its relative importance within
the graph, while its degree represents the number of
connections it is involved in.
In this work, we computed some of the most often

employed complex network centrality measures using
the iGraph package [21] from R software [22], namely:

• The degree ki of node i in a graph is the number of
edges connected to it [23]. For an undirected graph
containing n nodes, the degree may be written in

terms of the adjacency matrix as ki =
∑n

j=1
Aij .

• The betweenness is a centrality measure that repre-
sents the extent to which a node lies on paths

among other nodes. Mathematically, let nist be 1 if

node i lies on the geodesic path from s to t, and 0
otherwise or if there is no such path (because s and
t lie in different network components). Then, the
betweenness centrality xi is given by xi =

∑
st n

i
st .

This definition considers separately the geodesic
paths in either direction between each node pair.
Since our network is undirected, this effectively
counts each pair twice, so we compensate by divid-
ing the result by 2. Nodes with high betweenness
centrality may have considerable inuence within a
network due to their control over information pas-
sing among others.
• The closeness centrality measure represents the
average distance from a node to all other nodes.
Suppose dij is the length of a geodesic path from i to
j (i.e., the number of edges along the path). Then,
the mean geodesic distance from i to j, averaged

over all vertices j in the network, is li = 1
n

∑
j
dij .

This measure takes low values for nodes that are
separated from others by only a short geodesic dis-
tance on average. Such nodes might have better
access to information at other nodes or more direct
influence on them.

Visualization
In this section, we describe the proposed visualization,
discuss some of the challenges posed by the data and the
requirements visualizations were expected to meet, as
well as some project decisions we have made. All visual
representations were implemented in D3 [24].
The dataset was originally composed of a extensive set

of sequences of about 250 residues. We computed several
physicochemical and topological properties for each resi-
due, which demanded a visualization capable of represent-
ing these properties as well as the sequences. Therefore,
we have a multivariate quantitative visualization problem
which requires a tool that allows domain specialists to
compare multiple sequences and their parameters so as to
reveal patterns and exceptions.
It is well known that random insertions, deletions and

substitutions on the nucleotide sequence within a gene
may change the amino acid sequence of the correspond-
ing protein. Some mutations do not drastically alter the
protein’s structure, but others do, thus impairing the pro-
tein’s ability to function. Therefore, alignment strategies
must be able to properly compare protein sequences.
Once such robust alignments are available, proper visua-
lization techniques are required to make sense of the
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similarities and dissimilarities between the set of
sequences.
Biologists are used to visualizing and analyzing sequence

alignments. Classical visualizations consist of depicting
each sequence on a row, with columns representing
equivalent positions in the alignment, where it is common
to use color codes to aid the spotting of relevant conserva-
tions and exceptions in columns. Thus, an important
requirement of the present visualization challenge was to
stick to these traditional visual representations very easily
interpreted by biologists. Consequently, the traditional
visualization of multiple sequence alignments is the basis
for those produced in this work and is shown in Figure 1.
In addition to displaying aligned sequences, we include a
varied set of physicochemical and topological parameters
and some techniques for analytical interaction.
Screen
Figure 2 shows the screen of the proposed tool. Four
sections exist and users can decide whether to expand
or compress each one. There is also an option to see a
reduced subset of the sequences using a scroll bar.
Structure-based sequence alignment
On the first section, we present a structure-based
sequence alignment in which users may analyze the pro-
tein family in terms of sequence conservation through-
out evolution. The mutant and the wild type proteins
are presented in the first and second rows, respectively.
In this panel, users may use three different color
schemes, which were adapted from www.bioinformatics.
nl/~berndb/aacolour.html:

• CINEMA: distinguishes among polar positives (H, K,
R), polar negatives (D, E), polar neutrals (N, Q, S, T),
non-polar aliphatic (A, G, I, L, M, V), nonpolar rings
(F, P, W, Y) and cysteine residues (C);
• CLUSTAL: distinguishes among broader groups
(G, P, S, T), (H, K, R), (F, W, Y) and (I, L, M, V);
• LESK: divides the residues into small non-polar (A,
G, S, T), hydrophobic (C, F, I, L, M, P, V, W, Y),
polar (H, N, Q), negatively charged (D, E) and posi-
tively charged (K, R).

Once a color scheme is selected, a set of selection but-
tons with the scheme groups is presented and users may
filter residues individually or in groups by highlighting
or attenuating them. Additionally, users may see the
whole set of sequences in their full-length at a glance, as
shown in Figure 2, or zoom in to see parts of the align-
ment in more detail, as depicted in Figure 3.
Contacts panel
The contacts panel works a bit differently from the
others as it is intended to depict relationships between
residues. Amino acid residues can interact with each
other by establishing five types of chemical interactions:
charged attractive, charged repulsive, aromatic, hydro-
phobic and hydrogen bond, which are distinguished by a
color code. Three options are available for this panel:

• One type of contact in one selected column: in this
case, users must click on a specific column and
select a single type of contact to visualize with what
other columns it interacts;
• All types of contacts in one selected column: users
must click on a specific column to visualize all the
established contacts, which are presented with an
appropriate color scheme;
• One type of contact in all columns: this selection is
a bit different and does not present contacts for a
specific column, but for all the columns that estab-
lish the selected contact type.

Physicochemical and topological properties panel
This visualization combines the traditional sequence align-
ment visualization with a heatmap. It shows, using color
intensities, the following measures: relative solvent accessi-
bility, degree, betweenness and closeness. It helps users to
spot conserved properties at specific alignment positions.
On all panels, users may obtain details on demand by

passing the mouse over a residue cell. The tool will
show residue type, position in the structure-based align-
ment and real position in the original sequence, as well
as the values for all computed parameters.
The three panels were designed to help users visualize

the whole set of sequences combined with the

Figure 1 Basis for the proposed visualizations. Proposed visualization with CINEMA color scheme. Rows represent sequences and columns
represent equivalent positions in the structure-based sequence alignment.
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supplementary data added to support the process of
selecting important mutations. The results presented at
the BioVis Conference were obtained manually by
experts and are presented in the Results and Discussion
section. However, manual analysis is an arduous task
considering the large number of sequences and amount
of data to be evaluated. Therefore, we decided to
develop a strategy to automatically select promising

mutations by maximizing the number of different types
of data that suggest probability of the mutation being
deleterious, as explained in the following subsection.

Automatic mutation selection
We developed a strategy based on Genetic Algorithms
(GAs) [25-27] to automatically select mutations which
could potentially lead to protein function damage.

Figure 2 VERMONT Screen. Proposed visualization of the tool.

Figure 3 Structure-based sequence alignment. Proposed visualization for structure-based sequence alignment panel zoomed and filtered by
polar residues.
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According to [28], GAs are stochastic search algorithms
that act on a population of solutions and are inspired by
the mechanics of population genetics and selection.
Potential solutions are called \genes”, which are strings of
characters from a given alphabet. New solutions are gener-
ated by \mutating” members of the current population or
by \mating” two solutions to form a new (hopefully better)
one. Good solutions are selected to breed and/or mutate,
while bad ones are discarded. Genetic algorithms are prob-
abilistic search methods, which implies that the states they
explore are not determined solely by the properties of the
tackled problems. They are used in artificial intelligence to
search a space of potential solutions for one which solves
the problem at hand.
In the proposed GA, each possible solution to the pro-

blem is composed of a set of \genes”, each of which corre-
spond to a position (i.e., column) in the alignment
provided in the Structure-based sequence alignment panel
of VERMONT. The number of positions in a solution is a
parameter that may be set by the user and can vary from 1
to 102, which is the total number of mutations in dTIM
according to our alignment. To select the positions in
which a mutation could potentially impact protein func-
tion, we proposed a fitness function that takes into consid-
eration the same types of data used in the visualization.
The main goal of the GA is to obtain a solution (i.e., a set
of positions) which maximizes the fitness.
The fitness function takes into account solvent accessi-

bility, degree, betweenness, closeness, residue conservation
and mutation score of a column. These data are impor-
tant because if residues with low solvent accessibility and
high values of degree, betweenness and closeness are
mutated, there is considerable chance that such a muta-
tion impacts protein function. Also, it is important to
consider the physicochemical features of residues
involved in a mutation, seeing that non-conservative
mutations (e.g., from Ala to Arg) have greater impact
than conservative ones (e.g., from Ala to Gly). Therefore,
and given that we compare similar sequences, substitu-
tion matrix PAM250 [29] was used to penalize non-con-
servative mutations. Other substitution matrices may be
explored in the future. Equation 1 depicts the proposed
fitness function, where N is the number of positions (i.e.,
columns) in a solution and Ti is the partial fitness for
each position, defined by Equation 2

Fitness =
N∑

i=0

Ti (1)

Ti = (1− Resfreq) + (1− Score) + (1− SRM) (2)

Term Resfreq corresponds to the frequency of the
mutated residue in the column and Score, to the

substitution matrix score, maximizing the partial fitness
of non-conservative mutations. The SRM component is
calculated by Equation 3, where Accavg, Degavg, Betavg
and Cloavg correspond, respectively, to the average
accessibility, degree, betweenness and closeness normal-
ized by the highest average of each parameter in the col-
umn. Because some parameters (e.g., accessibility) highly
influence fitness when they have low values, we used 1
to equate the final result.

SRM =
ACCavg

ACCmax
+

Degavg
Degmax

+
Betavg
Betmax

+
Cloavg
Clomax

(3)

The size of the GA population is set by parameter
population size. During each step of the GA run, a
population of individuals (i.e., possible solutions) is gen-
erated, so it is important to choose the promising ones
to continue with in the next steps. In this work, such
solutions were selected by tournament, a method in
which a subset of K solutions is randomly picked from
the population and, among them, the one with best fit-
ness wins the tournament. Then, we apply to the
selected solution(s) the genetic operators of cloning,
crossover and mutation, detailed in [26]. Such operators
are important to diversify the population while keeping
the positive features acquired by previous generations.
The steps performed by the proposed GA are the

following:

1 Randomly generate an initial population;
2 Calculate the fitness for all individuals in the cur-
rent population;
3 Select two individuals in the current population by
tournament and use them to generate two new indi-
viduals by performing crossover;
4 Repeat step 3 until a new population of same size
is created composed of newly generated individuals
and cloned individuals;
5 Apply the mutation operator to each individual of
the new population;
6 Repeat steps 2 through 5 until the maximum num-
ber of generations is reached;
7 The solution will be the best individual in the last
generation, i.e., the one with highest fitness.

It is important to point out that this GA is a work in
progress which allows us to automatically choose muta-
tions that may potentially change protein function by
taking into consideration a variety of topological and
physicochemical properties of residues. Although see-
mingly promising, as can be observed in the Results and
Discussions section, we must carefully and deeply assess
the importance of each property in the fitness function
and their corresponding weights.
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Results and discussion
Manually generated results
As previously mentioned, we decided to work only with
sequences whose 3D structures were available, since
structures are much more conserved than sequences
and the vast majority of the supplementary data we
used are derived from structures. Based on the align-
ment and analysis of the mutant sequence (dTIM) and
its wild type protein (2YPI:A), we identified 102 muta-
tions to further evaluate. Each single point mutation was
studied from different perspectives: family residue con-
servation, as well as physicochemical and topological
properties.
This work’s main hypothesis is that important residues

are conserved throughout evolution, so conserved posi-
tions in the structure-based sequence alignment are
important for function preservation. As previously dis-
cussed, some mutations drastically alter a protein’s struc-
ture and function. Some amino acid substitutions are
commonly found throughout the molecular evolution
process, while others are rare: Asn, Asp, Glu and Ser are
the most mutable amino acids, while Cys and Trp are the
least. It is important to mention that the substitution of
an amino acid by another with similar physicochemical
properties will likely not impact protein stability. Having
this in mind, we classified amino acids according to three

different schemes (i.e., CINEMA, CLUSTAL and LESK)
and analyzed mutations as conservative or not.
Non-conservative mutations were prioritized in this

work, seeing that they likely have greater impact on pro-
tein function. For each mutation, we manually verified if
it was frequent, rare or very rare in the family. Frequent
mutations probably do not impact function, since they
occurred in other proteins of the family at a similar con-
text and did not yield function loss. Therefore, only rare
and very rare mutations were further investigated.
One of our first assessments when analyzing the BioVis

Contest data was that every mutation was present in at
least one other sequence of the family, which meant that
no single mutation causing function loss was found. It is
also important to mention that no mutations were found
in protein active sites (N10, K12, H95, E165 and G171).
Such mutations would obviously impact function. We
have also investigated possible mutations in residues that
are in contact with the active site, which could likely
affect active site conformation and lead to function modi-
fication. However, no such mutation was found either.
The non-conservative rare and very rare mutations

were then carefully investigated regarding accessibility
and topological properties, which lead to the set of sig-
nificant mutations presented in Table 1. The 22 muta-
tions we considered to be likely to cause problems in

Table 1 Predictions of harmful mutations: 22 mutations identified as possibly causing damage to protein function
using our manual selection strategy.

Mutation Avg. degree Avg. betweenness Avg. closeness (E-04) Avg. accessibility

S19E 3.93 101.68 9.9 47.47

I20A 8.45 728.61 9.9 3.12

N28K 5.54 93.93 9.9 30.09

K56G 6.87 198.56 9.9 16.32

T60K 5.25 455.12 9.8 25.92

K69E 4.57 362.98 10.0 39.75

S71K 2.86 160.55 9.7 69.87

K89D 3.82 289.67 9.9 44.37

D111K 5.08 89.62 9.8 44.26

G118E 3.53 19.84 9.8 78.12

E152A 3.8 22.26 9.9 73.91

E153G 5.91 120.75 9.9 40.56

K155D 3.49 23.58 9.8 74.42

T158K 4.39 100.68 9.9 60.49

S194E 4.37 26.71 9.9 74.15

K195N 4.61 49.99 9.9 55.2

K199E 3.56 56.41 9.9 64.94

S202E 4.35 100.48 9.9 52.74

N213K 5.72 265.96 9.9 37.79

G214P 4.09 108.98 9.9 31.33

K221A 5.24 246.48 10.0 19.78

D222A 4.89 56.55 9.9 68.43

Sequence numbering according to PDB ID 2YPI:A

Silveira et al. BMC Proceedings 2014, 8(Suppl 2):S4
http://www.biomedcentral.com/1753-6561/8/S2/S4

Page 7 of 10



protein function were selected based on parameter
values that reect the topological importance of the
affected residues in the protein structure. Mutations
I20A, K56G, T60K, K69E, K89D, E153G, N213K and
K221A present the highest centrality values (i.e., degree,
betweenness and closeness) and the lowest accessibility
values, which indicates that the corresponding residues
are buried in the hydrophobic core and consequently
perform more atomic interactions. We observed many
non-conservative mutations (S19E, N28K, S71K, G118E,
E152A, T158K, S194E, K195N, S202E, G214P and
D222A) that add or remove charged residues, which
may cause the loss or gain of contacts. Finally, we also
observed completely destabilizing non-conservative
mutations such as D111K, K155D and K199E, which
alter the physicochemical properties of the residue.

Conclusion
In this paper, we propose VERMONT, an interactive
tool to visualize mutations in the context of a protein
family and infer their possible consequences on protein
structure and function. We modelled the problem as
that of spotting residue conservations together with the
conservation of physicochemical and topological proper-
ties. The proposed interactive visualization provides a

macro view of the structure-based sequence alignment
as well as several other structural features.
The tool allows users to view, at a glance, a multivariate

set of residue parameters, expanding or compressing
panels and zooming out to see the full length of sequences
or zooming in to focus on specific areas. Users may also
filter residues individually or by groups of similar proper-
ties by highlighting or attenuating them, which aids visual
spotting of patterns and exceptions.
Using the proposed visualization tool, we were able to

predict 22 mutations we believe have a significant prob-
ability of causing damage to protein function, some of
which seem to be more severe and have a high likeli-
hood of causing function loss.
Finally, the development of a strategy to automatically

select likely damaging mutations, thus aiding experts, is
ongoing. It is based on the know-how developed by
experts in this type of analysis and is inspired in genetic
algorithms. It tries to find mutations with maximum prob-
ability of causing function damage using the data inte-
grated in VERMONT. Table 2 shows the 22 mutations
that can potentially cause damage to protein function
according our automatic mutation selection based on GA.
Preliminary results comparing the manual and auto-

matic strategies indicate that it is necessary to improve

Table 2 Predictions of harmful mutations: 22 mutations identified as possibly causing damage to protein function
using our automatic GA-based strategy.

Mutation Avg. degree Avg. betweenness Avg. closeness (E-04) Avg. accessibility

I20A 8.45 728.61 8.2 3.12

R26A 6.76 236.21 7.69 33.79

Y49T 6.8 227.64 7.68 23.21

S50A 9.26 565.23 8.52 0.33

L53A 6.76 138.71 7.45 36.94

K56G 6.87 198.56 7.64 16.32

V59I 7.63 537.69 8.49 5.7

T60K 5.25 455.12 9.01 25.92

A66C 7.12 1016.93 9.32 3.35

V80P 9.2 719.95 8.77 1.19

W90Y 6.96 1275.57 10.24 6.37

F115H 6.48 416.05 8.57 22.09

Q119H 6.21 165.8 8.22 27.2

G122K 5.22 485.78 9.66 16.62

L147T 9.48 808.43 9.23 0.47

V150L 10.96 1109.65 9.48 0.67

E153G 5.91 120.75 7.98 40.56

L204V 9.26 1076.06 9.87 3.06

N213K 5.72 265.96 8.09 37.79

G214P 4.09 108.98 7.57 31.33

V226I 9.31 787.96 9.6 1.76

V241L 7.29 518.77 8.31 16.84

Sequence numbering according to PDB ID 2YPI:A
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the fitness function or adjust the genetic algorithm para-
meters. Figures 4 and 5 show the mutant residues con-
sidered harmful for protein function, along with values
of centrality measures for both strategies. A total of six

mutations were found, namely I20A, K56G, T60K,
E153G, N213K and G214P.
VERMONT is available in http://homepages.dcc.ufmg.

br/~alexandrefassio/vermont/vermont.html.
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