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Abstract

Background: Majority of influenza A viruses reside and circulate among animal populations, seldom infecting
humans due to host range restriction. Yet when some avian strains do acquire the ability to overcome species
barrier, they might become adapted to humans, replicating efficiently and causing diseases, leading to potential
pandemic. With the huge influenza A virus reservoir in wild birds, it is a cause for concern when a new influenza
strain emerges with the ability to cross host species barrier, as shown in light of the recent H7N9 outbreak in
China. Several influenza proteins have been shown to be major determinants in host tropism. Further
understanding and determining host tropism would be important in identifying zoonotic influenza virus strains
capable of crossing species barrier and infecting humans.

Results: In this study, computational models for 11 influenza proteins have been constructed using the machine
learning algorithm random forest for prediction of host tropism. The prediction models were trained on influenza
protein sequences isolated from both avian and human samples, which were transformed into amino acid
physicochemical properties feature vectors. The results were highly accurate prediction models (ACC>96.57;
AUC>0.980; MCC>0.916) capable of determining host tropism of individual influenza proteins. In addition, features
from all 11 proteins were used to construct a combined model to predict host tropism of influenza virus strains.
This would help assess a novel influenza strain’s host range capability.

Conclusions: From the prediction models constructed, all achieved high prediction performance, indicating clear
distinctions in both avian and human proteins. When used together as a host tropism prediction system, zoonotic
strains could potentially be identified based on different protein prediction results. Understanding and predicting
host tropism of influenza proteins lay an important foundation for future work in constructing computation models
capable of directly predicting interspecies transmission of influenza viruses. The models are available for prediction
at http://fluleap.bic.nus.edu.sg.

Background
Influenza is one of the most well-known infectious dis-
eases attracting attention worldwide. Seasonal influenza
epidemics are the cause of over three million severe
cases of illness and about 300,000 to 500,000 deaths
yearly [1].There have also been four influenza pan-
demics since the 20th century, infecting millions of

people and killing hundreds of thousands globally [2].
Because of this, influenza has been the subject of inten-
sive research in the past century. While much knowl-
edge regarding the virus has been discovered, we are
still no closer to having the ability to predict the next
pandemic, such as in the case of 2009 H1N1 pandemic.
Current understanding of influenza zoonotic transmis-
sion potential of novel strains still remains poorly
understood. This poses a significant threat to public
health, not knowing when or where the next pandemic
would strike.
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A large number of influenza A viruses naturally reside in
avian species where they constantly circulate and evolve.
Most influenza A viruses are restricted to their host spe-
cies, having limited capability to cross species barrier and
infect a new host. It is not rare, however, for a virus strain
to acquire the capability to make that zoonotic leap [3,4].
This is highlighted by confirmed cases of human infections
by highly pathogenic H5N1 viruses, and more recently, the
H7N9 outbreak in China [5]. Analysis of the recent influ-
enza H7N9 outbreak in China found the virus strain to be
a reassortant from multiple mixed avian sources, causing
infections via direct contact with poultry [6,7]. Similar to
H5N1 strains, this further affirms the potential of avian
influenza strains capable of directly infecting human, caus-
ing severe illnesses.
Species barrier limits influenza strains from freely

infecting different host organisms as they must over-
come host range restriction to adapt to a new host. One
crucial determinant of host tropism is hemagglutinin
(HA) receptor specificity, in particular, preference of
specific species of sialic acid on host cells. Human
strains predominantly recognize a2,6-sialic acid linkages
while avian strains preferentially binds receptors of
a2,3-sialic acid linkages [8-10]. Studies in influenza
receptor specificity have shown that specific amino acid
substitutions can alter receptor binding site and binding
specificity, which in turn, alters receptor preference
[11-13]. Another major determinant involves viral poly-
merase complex, more specifically, the PB2 subunit
which has long been implicated in playing a crucial role
in determining host tropism. A single amino acid resi-
due in PB2 at position 627 was found to be sufficient to
determine host range of influenza viruses [14-16]. Gluta-
mic acid is found at position 627 in most of the avian
strains, whereas replacing the amino acid with lysine
enables viral replication in humans [17-22]. Further-
more, genomic signatures of both avian and human
influenza viruses have also been explored by position-
specific entropy profiles created by comparing both
types of viruses [23]. Mutations on specific positions
may render an avian strain capable of infecting humans.
All these information play a part in further contributing
to the understanding of host tropism of influenza
viruses.
Information from the underlying molecular mechan-

ism of host tropism would be useful in the construction
of computational prediction models. A novel prediction
model was first constructed by Qiang and Kou to discri-
minate between avian and human influenza A viruses
based on molecular patterns in protein sequences [24].
The model employed a method based on wavelet packet
decomposition transforming protein sequences into
energy feature vectors for training an artificial neural

network (ANN) model. Another recent prediction
model constructed by Wang et al. made use of the
avian and human genomic signatures discovered pre-
viously to also classify avian and human strains [25].
Position-specific entropy profiles of avian and human
protein sequences were encoded with amino acid physi-
cochemical properties and then trained with support
vector machine (SVM). Both prediction models classify
avian or human influenza strains based on compilation
of six inner proteins of influenza A viruses, including
one matrix protein (M1), nucleoprotein (NP), one non-
structural protein (NS1), and three RNA polymerases
(PA, PB1 and PB2). These prediction models could be
of use in predicting interspecies transmission of influ-
enza A viruses.
In our study, we further extended the prediction mod-

els to include all 11 influenza proteins for the prediction
of host tropism. The 11 proteins include HA, neurami-
nidase (NA), NP, both matrix proteins (M1 and M2),
both non-structural proteins (NS1 and NS2), as well as
the rest of the viral polymerase proteins (PA, PB1, PB1-
F2, and PB2). Prediction model for each individual influ-
enza A protein was constructed to predict host tropism
of the protein. In addition, a combined prediction
model was also constructed using all 11 proteins for
each strain. Similar to previous studies, the final model
could classify between avian and human influenza A
viruses from protein sequences, providing clues into the
host range a novel influenza A strain might be predis-
posed to. This could be crucial in providing an early
insight of novel strains capable of crossing species barrier,
leading towards the prediction of interspecies transmission
of influenza A viruses.

Methods
Influenza protein sequence dataset
A total of 67,940 influenza A protein sequences isolated
from avian and human hosts were obtained from Influenza
Research Database http://www.fludb.org/ in February 2014
[26]. Incomplete and duplicate sequences were removed to
minimize bias in the machine learning training process.
Strains isolated from avian samples were classified as nega-
tive samples while human-isolated samples were classified
positive. The protein datasets were further divided into
separate training and testing datasets, by randomly allocat-
ing 20 percent of the sequences as testing datasets. Further
details can be found in Table 1, which depicts the total
number of samples used in the training and testing of each
prediction model. An additional file lists the distribution of
various influenza subtypes used in the training and testing
dataset for each protein [see Additional file 1]. In summary,
20,923 positive human samples and 30,548 negative avian
samples were used in the training of machine learning
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classification models as well as 5,262 positive human sam-
ples and 7,668 negative avian samples as testing datasets for
external validation of the models.
The construction of a combined model utilized

sequences of all proteins. Only strains with complete
sequences from all 11 proteins were included in the
training dataset. A total number of 3,272 positive
human samples and 3,923 negative avian samples were
used in the final training of a combined prediction
model as well as 799 positive samples and 989 negative
samples used as external testing dataset.

Transforming protein sequence into feature vectors
Composition of amino acids and amino acid physicochem-
ical properties were extracted from protein sequences as
feature vectors for the training of machine learning algo-
rithms. Composition of each of the 20 standard amino
acids was first computed, yielding 20 feature vectors. This
was performed by calculating the frequency of each amino
acid along the length of the entire protein sequence. These
feature vectors represent the composition of each indivi-
dual amino acid in the protein sequence.
The next step of transformation was performed using

a method developed by Dubchak et. al., in which three
descriptors: composition (C), transition (T), and distri-
bution (D), were calculated to globally describe amino
acid properties [27,28]. The original four amino acid
properties, hydrophobicity, normalized van der Waals
volume, polarity, and polarizability were included, along
with two other properties: charge and solvent accessibil-
ity. These amino acid properties divide amino acids into
three groups based on amino acid indices by Tomii and
Kanehisa [29]. The global descriptors, CTD, can be cal-
culated using the following equations:

C =
(
n1 × 100

N
,
n2 × 100

N
,
n3 × 100

N

)

T =
(
TG1G2 × 100

N − 1
,
TG1G3 × 100

N − 1
,
TG2G3 × 100

N − 1

)

D = (D1, D2, D3) ,

Di =
(
Pi0 × 100

N
,
Pi25 × 100

N
,
Pi50 × 100

N
,
Pi75 × 100

N
,
Pi100 × 100

N

)

Composition describes the percentage frequency of
amino acid property groups within the sequence, while
transition calculates the percentage of transits between
amino acids of differing property groups and distribu-
tion, on the other hand, represents the percentage at
which the first, 25%, 50%, 75% and 100% of amino acids
of a particular property group within the sequence
[30-32]. The composition calculated in this step refers
to the composition of each amino acid property group,
instead of the 20 standard amino acids. Based on these,
21 global descriptors were calculated for each amino
acid property. In full, 146 amino acid feature vectors
represent protein sequences in the training of individual
prediction models for the proteins.

Training machine learning classifiers
The first step of machine learning classification involves
selecting the best algorithm most suited to classifying
the datasets. Experiments on various machine learning
classifiers were performed on the WEKA platform and
machine learning algorithms taken into consideration
were random forest, k-nearest neighbor (kNN), Naïve
Bayes, support vector machines (SVM), and artificial
neural networks (ANN) [33]. Preliminary training
revealed random forest to be best suited for the training
of the dataset. Random forest is an ensemble learning
method containing a combination of decision tree classi-
fiers. Random trees in the forest are grown through
training of a bootstrapped sample in the dataset, and
then by splitting leaf nodes in the trees using only a

Table 1 Total number of positive and negative samples for protein datasets and combined dataset.

Dataset Training dataset Testing dataset

Positive samples Negative samples Total samples Positive samples Negative samples Total samples

HA 5449 5261 10710 1344 1357 2701

M1 547 908 1455 135 219 354

M2 644 1038 1682 178 268 446

NA 3945 4315 8260 963 1051 2014

NP 1148 2140 3288 282 537 819

NS1 1706 2940 4646 418 748 1166

NS2 475 1157 1632 133 246 379

PA 2135 4067 6202 573 997 1570

PB1 1995 3189 5184 504 797 1301

PB1-F2 722 2206 2928 167 588 755

PB2 2157 3327 5484 565 860 1425

Combined 3272 3923 7195 799 989 1788
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randomly selected subset of the entire feature space [34].
Random forest was chosen as the machine learning clas-
sifier to train all the prediction models.
All training of prediction models were conducted using

10-fold cross-validation. In 10-fold cross-validation, the
entire dataset is divided into 9 training subsets and 1 testing
subset. The training process would iterate 10 rounds using
the 9 training subsets while reserving the last subset for
testing. In this way, every sample in the dataset would be
tested exactly once, to prevent the problem of overfitting.

Parameter optimization
Parameter optimization is an important step in the
training of machine learning classifiers. To achieve the
best performance, parameters for the classifiers must be
fine-tuned so that the most appropriate parameters for
the training dataset are chosen. For each model, para-
meter optimization was first carried out using grid
search approach to select for the best parameters to
train the final model. The random forest parameters
tuned were number of trees and number of features
used in the training. Grid search exhaustively applies
every parameter in a manually specified subset to select
for parameters achieving the best performance. How-
ever, this poses another problem of defining the maxi-
mum threshold for grid search to scour. This is because
generally, as the number of tree grows, there would be
more features for the model to consider from, and thus
would be better for the classifier. Despite that, there is a
threshold with which the increasing number of trees
would bring no significant performance gain, but in fact
only serves to increase computational burden [35]. In
view of this, a maximum of 150 trees and 22 features
were specified for the grid search approach. Parameters
optimized for each prediction model is shown in Table
2, and prediction models were constructed with these
optimized number of trees and features. The optimized
parameters shown in Table 2 demonstrate that maxi-
mum number of trees and features are not necessary for
best performance of the prediction models.

Feature selection for combined model
In the combined prediction model comprising all 11 pro-
teins, dimensionality reduction was applied to reduce the
number of feature vectors for the training of machine
learning classifiers. This was achieved by feature selection
approach using variable importance method in random
forest. As the method was not available on WEKA, this
step was performed using the randomForest package
developed by Liaw and Wiener in the statistical software R
[36,37]. The variables were ranked using mean decrease in
Gini gain, which measures the quality of each variable split
in the tree [34,38]. The top 15 features for each protein

were selected for inclusion as feature vectors into the data-
set for the combined prediction model.

Performance model evaluation
Performance of prediction models were evaluated from a
number of measures including prediction accuracy, sen-
sitivity, specificity, area under the curve (AUC), as well
as Matthew’s correlation coefficient (MCC). Prediction
accuracy measures of the overall accuracy of the classi-
fier by calculating the number of correctly classified
avian and human samples over the total number of sam-
ples in the dataset. Sensitivity and specificity summarize
the accuracies of positive and negative predictions
respectively where sensitivity calculates the ratio of sam-
ples correctly predicted among all positive human sam-
ples in the dataset and specificity describes the ratio of
samples correctly predicted among all negative avian
samples in the dataset. AUC on the other hand, gives
the probability of correctly identified true positive sam-
ples over random noise in the dataset [39]. Lastly, MCC
measures the correlation between observed and
predicted samples of the binary classification.

Results
Comparison of machine learning algorithms
There are many machine learning algorithms capable of
classification problems, each with its own merits and lim-
itations, and each suited to different kinds of dataset. To
fully maximize prediction performance, a suite of machine
learning classifiers was tested on the WEKA machine
learning platform. Results in Table 3 show preliminary pre-
diction performance of various machine learning classifiers
trained on HA dataset, including random forest, Naïve
Bayes, kNN, SVM, and ANN. All classifiers performed
similarly well, suggesting clear demarcation between avian
and human HA proteins. This further affirms the distinct
receptor binding specificity of avian and human HA

Table 2 Random forest optimized parameters.

Model Number of trees Number of features

HA 150 21

M1 110 13

M2 140 17

NA 150 16

NP 40 15

NS1 50 20

NS2 100 14

PA 60 18

PB1 40 10

PB1-F2 150 13

PB2 40 16

Combined 40 22
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proteins. Nevertheless, random forest outcompeted all
other classifiers, achieving 98.58% prediction accuracy
(AUC = 0.996; MCC = 0.972), and hence was chosen as
the classifier to train the remaining prediction models for
individual proteins.

Performance evaluation of individual protein prediction
models
After optimizing the parameters for each protein dataset,
prediction models for 11 individual influenza proteins
were then constructed with random forest. The perfor-
mance results of 10-fold cross-validation training for
each individual protein prediction model can be found in
Table 4. All models were shown to achieve outstanding
predictive performance, the lowest being NS2 model with
96.57% accuracy (AUC = 0.980; MCC = 0.916), while HA
prediction model achieved the best predictive perfor-
mance of 98.62% accuracy (AUC = 0.998; MCC = 0.972).
The high performance of all cross-validation prediction
models constructed diminishes the likelihood of overfit-
ting which could decrease the models’ ability to predict
from novel protein sequences in the future.
The constructed prediction models were further inde-

pendently validated with separate testing datasets and like-
wise performed well, as seen from Table 5. The lowest
accuracy was that of M2 model at 97.09% (AUC = 0.993;
MCC = 0.939) while the highest was achieved by HA
model with 98.78% accuracy (AUC = 0.997; MCC = 0.976).

The results further demonstrated the high predictive accu-
racy of all individual protein models, which reaffirm the
models’ ability for future prediction of host tropism of
influenza proteins.

Selected features representing each protein dataset
In constructing the combined prediction model for pre-
diction of influenza virus host, feature vectors from all 11
proteins were used. The consolidation of all amino acid
physicochemical properties from each protein dataset
would result in a complex high-dimensional feature
space, possibly including redundant features. Thus,
dimensionality reduction was achieved by feature selec-
tion approach, selecting the most relevant feature vectors
for each protein. As such, a total of 165 feature vectors
represent sequences of all 11 proteins in a virus strain.
In the transformation of protein sequences into fea-

ture vectors, each amino acid physicochemical property
was represented by 11 global descriptors. Some amino
acid property stood out in which several of its descrip-
tors were selected in the top 15, signifying the impor-
tance of that property in determining host tropism for
the particular protein. Table 6 lists the top amino acid
properties for each protein dataset, with top properties
having high mean decrease in Gini gain shown. Several
proteins including HA, NA, NS1, PA, PB1 and PB2
seem to have dominant amino acid properties playing a
major role in the classification of avian or human
proteins.

Performance evaluation of combined proteins model
The combined prediction model was constructed from
top features representing each protein sequence. In con-
trast with previous models predicting individual protein
host tropism, the final prediction model was constructed
to predict influenza virus host given an assortment of
proteins of mixed origins.

Table 3 Comparison of machine learning classifiers.

Classifier Accuracy Sensitivity Specificity AUC MCC

Random forest 98.58 0.978 0.994 0.996 0.972

Naïve Bayes 96.42 0.942 0.988 0.970 0.930

kNN 98.24 0.982 0.983 0.983 0.965

SVM 97.38 0.953 0.996 0.974 0.948

ANN 98.40 0.977 0.991 0.993 0.968

Table 4 10-fold cross-validation performance on
optimized parameters for prediction models.

Model Accuracy Sensitivity Specificity AUC MCC

HA 98.62 0.986 0.993 0.998 0.972

M1 97.66 0.977 0.987 0.985 0.950

M2 96.73 0.967 0.973 0.989 0.931

NA 98.35 0.984 0.991 0.996 0.967

NP 97.51 0.975 0.979 0.992 0.945

NS1 97.48 0.975 0.981 0.992 0.946

NS2 96.57 0.966 0.971 0.980 0.916

PA 98.21 0.982 0.992 0.995 0.960

PB1 97.26 0.973 0.990 0.992 0.942

PB1-F2 97.99 0.980 0.987 0.992 0.945

PB2 98.29 0.983 0.992 0.995 0.964

Combined 99.72 0.997 0.999 0.999 0.994

Table 5 Performance evaluation with separate testing
dataset.

Model Accuracy Sensitivity Specificity AUC MCC

HA 98.78 0.988 0.992 0.997 0.976

M1 97.18 0.972 0.984 0.984 0.940

M2 97.09 0.971 0.971 0.993 0.939

NA 98.56 0.986 0.987 0.998 0.971

NP 97.56 0.976 0.965 0.991 0.946

NS1 97.86 0.979 0.976 0.994 0.953

NS2 97.63 0.976 1.000 0.976 0.948

PA 97.52 0.975 0.991 0.995 0.947

PB1 97.23 0.972 0.988 0.994 0.942

PB1-F2 98.54 0.985 0.988 0.994 0.957

PB2 97.89 0.979 0.991 0.996 0.956

Combined 99.83 0.998 1.000 0.998 0.997
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Performance of cross-validation training of the com-
bined model is also shown in Table 4. Surprisingly, pre-
diction accuracy of the final model surpassed all
individual protein models, achieving 99.72% accuracy
(AUC = 0.999; MCC = 0.994). A separate independent
testing dataset further validated the performance of the
model by correctly classifying 99.83% of test instances
(AUC = 0.998; MCC = 0.997), shown in Table 5. It is
therefore evident that the combined model incorporat-
ing features of all proteins resulted in an improved pre-
diction performance.

Discussion
All 11 influenza protein prediction models demonstrated
high predictive performance, capable of distinguishing
between avian and human influenza proteins. This sug-
gests that apart from HA and PB2, the remaining nine
influenza proteins also show clear distinctions in avian
and human host tropism. However, the roles these
remaining nine proteins play in determining host trop-
ism are yet unclear. What is further unknown is that
how many proteins it would take to tip the scale render-
ing an avian strain acquiring the capability to cross spe-
cies barrier and infect humans. Further research would
be needed to determine the role they play in host trop-
ism. But this first step in constructing individual protein
prediction models would come in useful for future work
in directly predicting interspecies transmission of influ-
enza virus.

Important amino acid physicochemical properties in host
tropism
In the long evolutionary history of influenza, virus trans-
fers between different host species allowed gene seg-
ments to be mixed, producing reassortant strains with

both avian and human segments. This process might
potentially enhance viral pathogenicity, allowing reassor-
tant strains to adapt to new host species. Three of the four
influenza pandemics that occurred since the 20th century
have been shown to be generated from reassortment
among avian and human strains [2,25,40,41]. As different
proteins may play a part in increasing or decreasing the
species barrier for novel strains to cross, it would be bene-
ficial to predict host tropism of each individual protein.
This would aid in further understanding the complex
interplay between various components in an influenza
strain.
The feature selection process might have revealed

important amino acid physicochemical properties deter-
mining host tropism of individual proteins. Interestingly,
the properties charge, normalized Van der Waals
volume and polarizability carry higher weightage com-
pared to other properties in the classification of HA
host tropism. The initial responsibility of overcoming
host species barrier falls on HA which determines entry
into host cells by binding to sialylated glycan receptors
on cell surface [42]. As mentioned, mutations can alter
receptor binding specificity which changes receptor pre-
ference. Studies looking into glycan receptor specificity
have found that electrostatic charge has a role in influ-
encing receptor binding dynamics between HA and
receptors on host cells [43]. In general, HA is positively
charged while glycan receptor on host cell is negatively
charged [44]. Thus increasing or decreasing net charge
of HA would alter electrostatic interactions which in
turn affect binding affinity. This was demonstrated by
studies which show that amino acid substitutions
increasing or decreasing charge respectively enhance or
reduce receptor binding affinity and avidity [45,46].
Another study looking into molecular dynamics between
HA and human receptor have found that mutations in
HA affects the binding free energy involving electro-
static and non-polar interactions [47]. Polarizability,
which concerns a molecule’s ability to be polarized,
would therefore play a part in determining the binding
interaction of HA and human receptor. Further, glycan
topology has also been thought to critically influence
receptor binding of avian and human strains. Interaction
between HA and glycan receptor were found to be influ-
enced by electrostatic charge and Van der Waals
volume, causing glycans to adopt distinct topological
profiles [48]. These changes no doubt affect the binding
of HA to glycan receptors on cell surface, demonstrating
the importance of these selected amino acid properties
in determining the switch in species-specificity.
Yet another heavily investigated influenza protein is PB2,

where the two top amino acid properties chosen, charge
and solvent accessibility, corroborate with previous mole-
cular and protein structure studies. The crystal structure

Table 6 Top amino acid physicochemical properties
identified using variable importance feature in random
forest.

Model Amino acid property AAIndex ID and reference
[29]

HA Charge KLEP940101 [53]

Normalized van der Waals
volume

FAUJ880103 [54]

Polarizability CHAM820101 [55]

NA Solvent accessibility JANJ780102/JAN780103 [56]

Polarity GRAR740102 [57]

NS1 Charge KLEP940101 [53]

PA Hydrophobicity ENGD860101 [58]

Polarity GRAR740102 [57]

PB1 Solvent accessibility JANJ780102/JAN780103 [56]

PB2 Charge KLEP940101 [53]

Solvent accessibility JANJ780102/JAN780103 [56]
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of an independently folded domain elucidated from PB2
revealed that the critical residue 627 is positioned in the
middle of a surface exposed to solvent [17,49]. The gluta-
mic acid preferred by avian strains forms a negatively
charged region which lysine disrupts and additionally
establishes a region of positive charge on the surface
[17,49]. Mutations in the region therefore appear to affect
polymerase activity. Evidently, both charge and solvent
accessibility features play an important part in classifica-
tion of host tropism by the PB2 prediction model.
While the roles other proteins play in determining

host tropism are less well characterized, and studies
looking into molecular dynamics of these proteins are
even fewer, differences in amino acid residues of avian
and human strains can be interpreted to changes in
these amino acid properties. For the other two viral
polymerases, PA and PB1, differences between avian and
human sequences would inadvertently affect polymerase
activity determining host range. How these changes play
a part in host range determination is still unknown, but
the amino acid properties hydrophobicity, polarity and
solvent accessibility seem to suggest involvement of
interaction with host proteins. Another protein is NS1,
which is known to function as a potent viral antagonist
of host interferon response [17,50]. Studies have increas-
ingly shown NS1 to be involved in host range determi-
nation, yet the mechanism remains unclear. However, it
has been hypothesized that NS1 proteins from different
strains have varying efficiency in interferon control,
which could contribute to restriction in host range
[50,51]. Functional or structural variations would there-
fore also translate to difference in the charge of the pro-
tein, distinguishing avian and human NS1 proteins.
Therefore, even minute change in protein structure and
function could tip the balance towards adaptation in
avian or human host. Further molecular studies are
therefore needed to investigate how these properties
play a part in host tropism of influenza viruses.

Computational prediction models of influenza host
The previous two computational prediction models by
Qiang and Kou [24] and Wang et. al. [25] were success-
ful in the classification of avian and human strains. One
drawback however, is the utilization of only six inner
proteins of influenza. This method disregards the impor-
tance of the two influenza glycoproteins, HA and NA
which unquestionably play a huge role in determining
host tropism. Removing them from consideration in the
prediction process would not represent an accurate
tropism of the entire strain. In contrast, the combined
prediction model constructed in this study applies infor-
mation from all 11 influenza proteins allowing a much
more balanced representation of the virus strain. While
the final prediction model is still short of directly

predicting interspecies transmission of influenza viruses,
it could provide an early insight into the host range a
virus strain might be adapted to. The prediction models
were implemented on a web server and are available for
prediction online at http://fluleap.bic.nus.edu.sg.

Protein prediction models as host tropism prediction
system
Together, all 11 protein prediction models can be used as
a host tropism prediction system. The prediction system is
demonstrated below with eight selected sample strains,
detailed in table 7. Four avian strains as well as four
human strains of various influenza subtypes were selected.
It should be noted that these strains were manually
selected and meticulously checked against the training and
testing datasets to ensure that they were not used in the
construction of the prediction models nor the independent
testing stage. Hence, the prediction results were not biased
in any way as all eight strains were novel and not pre-
viously encountered by the prediction models.
The host tropism prediction results for all eight strains

are illustrated in Figure 1. Predictions for two human
strains, A/New York/231/2003 and A/Guangdong/ST798/
2008 were made accurately for all 11 proteins. These two
strains are of influenza subtypes common to human,
periodically circulating worldwide and infecting humans
during annual flu season [4]. Hence, all of their proteins
have adapted well in humans and were correctly predicted
by the system. Likewise, accurate predictions for all 11
proteins were also made for two avian strains, A/turkey/
England/50-92/1991 and A/wild duck/Korea/SH19-50/
2010. The two avian strains of subtypes H5N1 and H7N9
were isolated from turkey and wild duck before the occur-
rence of these subtypes in humans. All 11 of their proteins
were clearly avian proteins which again, were correctly
predicted by the system. Prediction results for these two
avian and human strains demonstrate the high accuracy of
the host tropism prediction system, where despite making
each protein prediction independently and not being influ-
enced by other predictions, it is able to classify all proteins
in each strain correctly.
However, the prediction results for the remaining four

strains showed mixed avian and human prediction
results. This could be attributed to error made in the pre-
diction, or it could shed a whole new light on the capabil-
ity of the host tropism prediction system. In 1997, the
first human infection of influenza subtype H5N1
occurred in Hong Kong [52]. A/Hong Kong/542/92 was
one of the strains isolated from a human patient during
the outbreak. The prediction results showed most of its
proteins predicted correctly as human, except HA and
NA, which were predicted to be avian. This indicated
that the virus strain most probably originated from an
avian source as not all of its proteins have adapted to
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human. Prediction results of an avian strain, A/Chicken/
Hong Kong/220/97 isolated from chicken during the
same period also showed both avian and human proteins
in the strain. The prediction results suggest that three of
its proteins (NP, NA and M2) have either reassorted or
mutated sufficiently to have adapted to humans, and
more closely resemble human proteins.
In another case of novel human infection by an influenza

subtype previously only found in birds, the prediction
results for avian and human strains during the 2013 H7N9
outbreak in China also show similar mixed proteins host
tropism signature. An avian strain isolated from chicken
during the outbreak showed as many as six (PA, NA, M1,
M2, NS1 and NS2) out of 11 proteins predicted to be

human instead of the correct avian classification. It is more
likely for the six proteins to resemble more closely to
human proteins that the system was able to detect instead
of prediction error, especially considering that the strain
was isolated during the outbreak. A human strain from
Shanghai, A/Shanghai/01/2014 isolated during the out-
break had five of its proteins predicted to be avian (PB1,
PB1-F2, PA, HA, and NS1). This seem to suggest that only
five human proteins, PB1, PB1-F2, PA, HA and NS1 were
sufficient for the strain to have acquired the capability to
escape its primary avian host and successfully infect
humans. While it is still unclear which proteins are critical
for an avian strain to acquire zoonotic capability and infect
a new human host, this result could pave way for future

Table 7 Further information on sample strains used in the demonstration of host tropism prediction system.

No. Strain Subtype Country Collection Year Host

1. A/turkey/England/50-92/1991 H5N1 United Kingdom 1991 Turkey

2. A/wild duck/Korea/SH19-50/2010 H7N9 South Korea 2010 Duck

3. A/Chicken/Hong Kong/220/97 H5N1 Hong Kong 1997 Chicken

4. A/chicken/Shanghai/S1078/2013 H7N9 China 2013 Chicken

5. A/Hong Kong/542/97 H5N1 Hong Kong 1997 Human

6. A/Shanghai/01/2014 H7N9 China 2014 Human

7. A/New York/231/2003 H1N2 USA 2003 Human

8. A/Guangdong/ST798/2008 H3N2 China 2008 Human

Figure 1 Host tropism prediction results for sample strains. The results for four avian strains are shown at the top while the bottom half
shows results for four human strains. The prediction results were strung together illustrating an entire influenza A genome with eight segments
encoding 11 proteins. The proteins coded by the segment are listed at the bottom of the figure. Each protein prediction is independent and is
not influenced by prediction of other proteins. Blue bars represent a prediction of avian by the corresponding protein prediction model while
red bars represent a prediction result of human. Grey bars indicate that prediction was not made as the corresponding protein sequence was
not available or incomplete. Accurate predictions were made for all 11 proteins for the first two avian strains as well as the final two human
strains. However, prediction results for the remaining four strains from the 1997 H5N1 outbreak in Hong Kong and the 2013 H7N9 outbreak in
China show mixed predictions of avian and human proteins. The human strains isolated during the two outbreaks showing some of its proteins
predicted as avian indicate the source of infection as most likely avian. On the other hand, the avian strains from chickens during the two
outbreaks have several proteins that were predicted human and suggest that these proteins could have adapted to human host.
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work to perhaps answer the question as to how many pro-
teins are required for a zoonotic avian strain to infect
humans.
Ironically, the strength of this host tropism prediction

system lies not in its almost perfect prediction accuracy,
but rather when it makes a mistake in classifying avian or
human proteins. The different types of prediction results
shown above demonstrate the capability of the prediction
system to detect potential zoonotic avian strains. Prediction
results for strains isolated during the 1997 H5N1 Hong
Kong outbreak and 2013 H7N9 China outbreak showed
predictions of mixed avian and human proteins, having dis-
tinct host tropism protein signature that distinguishes them
from typical avian or human strains. The prediction system
is able to detect when individual proteins within a strain
differ from its primary host. This showed tremendous
potential of the prediction system in influenza surveillance
whereby influenza strains can be continuously monitored
to detect potentially zoonotic strains in avian that has yet
to emerge in humans.

Conclusion
The prediction models constructed for all influenza pro-
teins show that besides HA and PB2 which are thought to
be major determinants of host tropism, clear distinctions
distinguish avian and human tropism for the remaining
nine proteins. This study provides individual prediction
models for all 11 influenza proteins determining host trop-
ism and weighing the contribution of each protein in the
eventual judgment of a novel virus strain’s capability to
cross species barrier. The prediction model combining all
11 proteins provides a first insight into a virus strain’s host
tropism, which might be useful as an early warning of its
host range capability. When the prediction models are
used together as a host tropism prediction system, zoono-
tic strains displayed mixed avian and human protein pre-
diction results, distinct from typical avian or human
strains. Based on protein prediction results alone, the host
tropism prediction system might be able to identify zoono-
tic strains. Only by first understanding the underlying host
tropism can promiscuous virus strains having the capabil-
ity to cross species barrier be identified. With this founda-
tion of host tropism prediction models, future work can
be focused on building stronger computational models
predicting direct avian-to-human transmission of influ-
enza viruses. This would be a valuable tool in future sur-
veillance of potentially hazardous influenza virus strains.
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