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Abstract

Background: The majority of genetic biomarkers for human cancers are defined by statistical screening of high-
throughput genomics data. While a large number of genetic biomarkers have been proposed for diagnostic and
prognostic applications, only a small number have been applied in the clinic. Similarly, the use of proteomics
methods for the discovery of cancer biomarkers is increasing. The emerging field of proteogenomics seeks to
enrich the value of genomics and proteomics approaches by studying the intersection of genomics and
proteomics data. This task is challenging due to the complex nature of transcriptional and translation regulatory
mechanisms and the disparities between genomic and proteomic data from the same samples. In this study, we
have examined tumor antigens as potential biomarkers for breast cancer using genomics and proteomics data
from previously reported laser capture microdissected ER+ tumor samples.

Results: We applied proteogenomic analyses to study the genetic aberrations of 32 tumor antigens determined in
the proteomic data. We found that tumor antigens that are aberrantly expressed at the genetic level and
expressed at the protein level, are likely involved in perturbing pathways directly linked to the hallmarks of cancer.
The results found by proteogenomic analysis of the 32 tumor antigens studied here, capture largely the same
pathway irregularities as those elucidated from large-scale screening of genomics analyses, where several
thousands of genes are often found to be perturbed.

Conclusion: Tumor antigens are a group of proteins recognized by the cells of the immune system. Specifically, they
are recognized in tumor cells where they are present in larger than usual amounts, or are physiochemically altered to a
degree at which they no longer resemble native human proteins. This proteogenomic analysis of 32 tumor antigens
suggests that tumor antigens have the potential to be highly specific biomarkers for different cancers.

Background
Cancer cells differ from normal cells by genetic and epi-
genetic aberrations in a number of cellular functions.
The genetic hallmarks of cancer include self-sufficiency
in growth signals, insensitivity to growth-inhibition sig-
nals, unlimited replicative potential, resistance to apop-
tosis, sustained angiogenesis, and local tissue invasion
and metastasis [1]. In addition, cancer cells display
deregulated cell energetics, instability and mutation of

the genome, avoidance of immune destruction, and
tumor-promoting inflammation [2]. Epigenetic changes
include DNA methylation, histone modifications,
nucleosome positioning, and miRNA expression [3].
Furthermore, carcinogenesis could be explained by
interactions between cancer cells and surrounding tis-
sues [4]. These hallmarks define functional profiles and
aberrations that distinguish cancer from normal tissue.
Immune evasion employed by tumors involves multi-

ple cellular and molecular mechanisms. Examples
include blocking of the STAT-3 signaling pathway [5],
toll-like receptor activation [6], production of immuno-
suppressive cytokines [7], infiltration of myeloid
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suppressor cells or regulatory T cells [8,9], activation of
immunosuppressive networks [10], and down-regulation
of human leukocyte antigen or impairment of antigen
processing and presentation [11,12]. Inflammation pro-
motes multiple hallmark capabilities through a spectrum
of bioactive molecules that are supplied to the tumor
microenvironment in support of the hallmarks of cancer
[13-18]. These include growth factors that support pro-
liferative signaling, and survival factors that reduce cell
death. Inflammation also promotes the transformation
of epithelial cells that enables cancer cells to invade, to
resist apoptosis, and to spread to other tissues. Inflam-
mation also promotes factors that stimulate angiogen-
esis, local tissue invasion, and metastasis.
Tumor antigens (TAs) are tumor proteins that, when

expressed in tumors, are recognized by the host immune
system. They represent markers that are either specific for
individual tumors or are generally overexpressed in
tumors as compared to normal tissues [19]. TAs can be
neoantigens (tumor-specific antigens) that arise from
mutation or RNA splicing. Neoantigens are expressed only
by cancer cells and not by normal tissue [20]. Tumor-asso-
ciated antigens show increase in expression in cancer tis-
sue as compared to normal tissue (e.g. IDO1 [21], HER2
[22], or survivin [23]). Tissue-specific antigens that are
recruited and expressed by cancers in specific tissues (e.g.
cyclin-A1 [24] or Cancer/Testis Antigen 1B [25]). TAs are
targets for cancer diagnostic and therapy that have been
studied extensively - more than 1400 clinical trials focus-
ing on TAs have been reported in clinicaltrials.gov as of
October 2013 www.clinicaltrials.gov.
Most common biomarkers are based on patterns in

expression of genes, RNA, proteins, or epigenetic patterns
[26]. Examples of cancer biomarkers routinely used in the
clinic include a-fetoprotein (AFP) for diagnostics and
management of testicular cancer [27], MUC16 (cancer
antigen 125 or CA-125) for ovarian cancer [28], ERBB2
(HER2) protein for breast cancer [29], and prostate speci-
fic antigen for prostate cancer [30].
The progression of a normal cell towards a neoplastic

state comprises a cascade of events that are responsible
for inducing tumorigenesis [31]. The conditions of the
tumor microenvironment may also contribute to the cel-
lular characteristics of tumor cells, as this microenviron-
ment may induce genetic instability in tumor cells [32].
The advent of high-throughput genomics methods has

facilitated a dramatic increase in the number of candi-
date genetic biomarkers [33]. However, very few new
genetic biomarkers have been added to the clinical tool-
box in recent years [34]. Approximately 95% of human
protein coding genes produce splice variant transcripts
increasing the number of potential gene expression bio-
marker candidates [35]. Individual genetic biomarkers

are rarely informative as genetic redundancy provides
for high genetic flexibility without necessarily affecting the
biological phenotype [36]. The expression of many genes
correlate with disease progression in individual patients,
but the analyses of large data sets consistently show that
only a small subset of these is consistently observed in lar-
ger cohorts. The expression of genes may also prove incon-
sistent over time, since cells respond to changes in
environment and undergo transcriptomic changes in differ-
ent stages of development. While transcriptomic differ-
ences are apparent between normal and cancerous tissues,
the expression of TAs remains relatively constant through
different cancer stages, suggesting that most defining
genetic alterations conferring a cancerous potential occur
at the early stages of tumorigenesis [37]. In contrast, similar
studies of the tumor microenvironment reveal extensive
gene expression changes in tumor stromal tissue during
cancer progression [38].
The number of protein biomarkers has been growing,

owing largely to the advances in mass spectrometry techni-
ques [39]. However, protein biomarkers, similar to genetic
biomarkers, are rarely uniquely expressed (or overex-
pressed) in malignant tissues [34]. At the same time, more
than 260,000 protein variants resulting from alternative
splicing have been annotated to date [40]. Additionally, a
variety of post-translational modifications (PTMs) can alter
the structure and function of proteins [41]. Most of the
proposed protein biomarkers are not commonly used in
clinical application as they do not hold up statistically in
large populations, or the cost of assays outweighs their
prognostic value [42]. Protein expression profiling has pro-
ven useful for stratification of cancer versus normal tissues
for invasive ductal carcinoma. Differentially expressed pro-
teins or protein sets can be used as candidate biomarkers
for carcinogenesis [43].
Relative to the research effort, the number of verified

useful biomarkers is vanishingly small [44] and we need
new and improved approaches. The emerging field of pro-
teogenomics seeks to synergistically enrich the value of
genomics and proteomics by studying the intersection of
the two data sets [45]. True integrative analysis of geno-
mics and proteomics data is a non-trivial task, as the
expression of mRNA typically does not always correlate
well with the expression of corresponding proteins [46].
The mechanisms of transcriptional and translational regu-
lation have been extensively studied, but are not yet fully
understood. However, when the expression of individual
genes or pathways correlate with protein expression, this
may provide insights into transcriptional effects and the
mechanistic basis of statistically derived biomarkers [47].
Proteogenomic profiling has been applied to the study of
invasive ductal carcinomas (IDCs) to reveal potential bio-
logical events not previously associated with this cancer
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type. The study of biological networks of differentially
expressed proteins and differentially expressed genes
revealed patterns that correlate with clinical relapse [48].
In addition to their potential diagnostic and prognostic

value as biomarkers, tumor associated antigens (TAAs)
and tumor specific antigens (TSAs) have therapeutic
potential as targets of cancer immunotherapies [49,50].
In this study, we have combined the analysis of protein
and mRNA expression of a selection of well-described
TAAs [51,52] to evaluate their proteogenomic potential
as biomarkers for IDCs.

Results and discussion
Translation of mRNA in IDC tissue
The central dogma of molecular biology states that
DNA is transcribed into RNA, which is in turn trans-
lated into protein. From this general rule, it is often
assumed that a certain amount of DNA makes an equal,
or at least proportional, amount of RNA, which in turn
makes an equal or proportional amount of protein.
However, it is increasing clear that a plethora of tran-
scriptional and translational regulatory mechanisms
affect the dynamics of the central dogma. Examples of
transcriptional regulation include: miRNA interference
[53]; epigenetic factors, such as methylation [54]; and
alternative splicing [55]. Translational regulation affects
the rates of degradation for different proteins [56], as
well as PTMs [57]. Many of these regulatory mechan-
isms have been used in efforts to characterize new bio-
markers for various cancers [58-61]. Although most of
these mechanisms are not yet fully understood, they
modulate transcription and translation in all cells.
The correlation of expression between 1066 gene/product

pairs from 23 human cancer cell lines of various origins
and cancer types was examined [62]. This study reported
169 genes for which mRNA and protein expression corre-
lated (at threshold of r > 0.455). The study, involving the
analysis of biological function ontologies, found that within
the set of 169 genes, ontologies relating to the cytoskeleton
and adherent junctions in the cellular compartment, cellu-
lar motility, and other maintenance-related categories were
significantly enriched [62].
Dysregulation of cellular processes is a feature of cells

undergoing tumorigenesis, and transcriptional and trans-
lational mechanisms are likely to be dysregulated as well.
Given the heterogeneous nature of cancer, it is unlikely
that transcription and translation modulation is homoge-
nous in different cancers. This prompted us to examine
the correlation between gene expression and protein
expression in the Cancer Genome Atlas (TCGA) consor-
tium IDC tissues, to provide an IDC specific context for
our analysis of the unpaired sets of mRNA and protein
expression data between normal, preinvasive and invasive
breast cancer tissue.

Our results are consistent with the notion that it is
insufficient to study only the expression of mRNA when
searching for TAs as potential immunotherapy targets,
but protein expression also needs to be considered. We
calculated Spearman’s r for the mRNA/protein expres-
sion pairs of the 86 genes examined by TCGA. Twenty-
nine genes were found to have a r > 0.455, six of which
are TAs (Figure 1, top panel). Although the number of
examined proteins is too small to draw global conclu-
sions (global patterns of translation in IDC tissue still
remain to be elucidated in comprehensive analyses), we
found that of 13 examined TAs, mRNA and protein
expressions only correlate in six. This observation is
consistent with the results reported in [62,63].
The mean correlation of expression of the 86 mRNA/

protein IDC pairs was calculated to be 0.35. Randomly
paired mRNA and protein expressions yield a mean cor-
relation of approximately zero, indicating no apparent
bias in the data. Distributions of correlation coefficients
in the normal and randomized data set are shown in
Figure 1 (bottom panel).

Expression of tumor antigens on protein level
Although not paired like tissue samples used for the
analysis of gene expression, the protein expression data
offer valuable information for prescreening and filtering
of TA genes for further analysis. With the exception of
OAS3, BST2, and SCRN1, all TAs were expressed in at
least one of the normal tissue samples [43]. Not all TAs
were expressed in the IDC tissue, and only a fraction
was consistently expressed in all nine patient samples
(Figure 2). These results were not unexpected, since dif-
ferent expression patterns are often observed in different
cells of the same tumor [64]. Within the small cohort
examined here, 30 of 32 TAs were expressed as proteins
in at least two of nine patients. The two TAs, MYO1B
and SART3, found to not be expressed in the IDC
patient cohort were removed from the list and the
remaining 30 TAs were further analyzed.

Tumor antigen gene expression patterns of normal,
preinvasive and invasive IDC tissues
We examined differential expression of TA mRNAs
between normal and preinvasive IDC tissue for the TAs
expressed as proteins in the IDC tissue. Of the 30 TAs
expressed in IDC tissue (excluding MYO1B and SART3),
mRNA expression data was measured for 28 TAs (not
measured for RPSA and HSPA1B). Five TAs displayed
consistent down regulation between the normal and prein-
vasive tissues, nine TAs displayed up regulation and
16 showed no significant difference between the two types
of tissue (p < 0.05). Fold change to median expression of
significantly differentially expressed TAs is shown in
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Figure 3 (left panel). A comparison of TA expression
between normal and invasive tumor tissues revealed ten
up regulated TAs and two down regulated TAs (Figure 3,
right panel).
The cytoplasmic ribosomal subunits RPS2 and

RPL10A were down regulated in both preinvasive and
invasive tissues (Figure 3). These patterns, although not
consistent with the increased protein synthesis by tumor
cells, have been observed previously in breast cancer
and colorectal cancer studies [38,65]. The gene expres-
sion of these TAs is typically up regulated in cancer, but
it was down regulated in the IDC tissue. Sgroi and col-
leagues noted that the mechanisms by which ribosomal
proteins contribute to tumorigenesis are relatively
poorly understood [38] but it is known that changes in
components of translational mechanism increase cancer
risk [66]. The down regulation of these particular ribo-
somal subunits may be indicative of qualitative rearran-
gement of the ribosomal proteins as a whole, meaning
that one should be careful in interpreting these observa-
tion points as potentially causal.
Seven TA genes were up regulated in both preinvasive

and invasive tissues as compared to the normal tissue.
The genes of the STAT protein family encode a series
of signal transducers and transcription activators.
STAT1 is up regulated in both preinvasive and invasive

IDC tissues, as compared with the normal tissue. This
pattern has been associated with the faster progression
from ductal carcinoma in situ to invasive carcinoma,
most likely by inducing immunosuppression in the
tumor microenvironment [67]. STAT1, which is typically
dormant in normal tissue, is also associated with aggres-
sive growth and chemotherapy resistance [68]. Interest-
ingly, there is very little difference between fold changes
of STAT1 expression between preinvasive and invasive
tissues compared with the normal samples, indicating
that the effects of STAT1 are already present in the pre-
invasive tissue.
Likewise, the bone marrow stromal cell antigen 2

(BST2) is up regulated in the IDC. The up regulated
BST2 gene has been proposed as a biomarker for bone
metastasis of breast cancer [69]. Similar patterns have
been observed in tamoxifen resistant breast cancer cells,
where up regulation of BST2 gene expression correlated
to increased invasiveness and metastasis, regulated and
activated by STAT3 [70].
Increased expression of phosphoglycerate kinase 1

(PGK1) was also observed in both preinvasive and inva-
sive tissues. PGK1 is a major enzyme in glycolysis and
facilitates ATP production under hypoxic conditions
[71]. The elevated levels of PGK1 have previously been
associated with an increased invasiveness of gastric

Figure 1 Top panel: Spearman’s rank correlation between mRNA expression and protein expression of 86 genes in 404 IDC patients.
The TAs are highlighted in red. Bottom panel: density distribution of correlation coefficients of mRNA vs protein expression (pink) and density
distribution of correlation coefficients of randomized mRNA vs protein expression (aqua). The dashed red lines mark the mean correlation in
each distribution.
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cancer [72]. PGK1 was reported to facilitate the release
of the anti-angiogenic enzyme, angiostatin [73].
Mucin 1 (MUC1) is an oncoprotein that is overex-

pressed in 90% of breast cancer patients and its gene is

amplified in 40% of the patients. Overexpression of this
protein has been linked to tamoxifen resistance [74].
The activities of MUC1 leading to tamoxifen resistance
are many: it contributes to the activation of the PI3K-
AKT pathway known to be involved in apoptosis [75]. It
activates the MEK/ERK pathway, a regulator of cellular
growth and apoptosis in breast cancer [76]. It also acti-
vates the Wnt/b-catenin pathway involved in cell prolif-
eration and migration as well as formation and
maintenance of cancer stem cells [77], and it activates
STAT pathways associated with cellular growth and
inflammation [78].
We also found the cytoskeleton regulatory protein,

ENAH, to be overexpressed in both preinvasive and
invasive tissues. EHAH is non-detectable in normal tis-
sues, but was found to be weakly expressed in the low
risk benign lesions, and was overexpressed in the high-
risk benign breast lesions [79].
ATIC, the product of the purH gene, is involved in the

final steps of de novo synthesis of purine [80]. Imbal-
ances in the biosynthesis and metabolism of purine is
linked with progression of a number of cancer types
[81]. ATIC inhibition has been explored as a therapeutic
strategy in breast cancer patients [82], as has the poten-
tial of ATIC as a TA [83].
The function of B-cell receptor-associated protein

31 (BCAP31) is relatively unknown. It has been pro-
posed to be involved in CASP8-mediated apoptosis,
where its cleavage product is a strong inducer
of apoptosis. However, caspase resistant types of
BCAP31 have been observed and the lack of cleavage
during apoptosis leads to reduced apoptotic potential
[84]. BCAP31 has previously been reported to be up
regulated in the breast cancer tissue as compared to
normal tissue [85].

Individual expression profiles
Although there are similarities between TA genes differ-
entially expressed in preinvasive and invasive tissues,
there were also discrepancies between patients, even in
this small cohort. The analysis of four patients for
whom expression was measured in normal, preinvasive,
and invasive tissues revealed that there are only a few
clear patterns of expression (Figure 4). Only four TA
genes, ANXA2, ENAH, ATIC, and STAT1, were consis-
tently up regulated in both IDC tissue types in all four
patients. Two TA genes, CTNBB1 and RPL10, were con-
sistently down regulated in both IDC tissues in all four
patients. No complex patterns, i.e. genes up regulated in
one IDC tissue type and down regulated in the other, or
vice versa, were observed. However, the expression of
some TA genes were consistent across tissue types, but
not across patients; for example, LGALS3BP is strongly
expressed in patient 1, but down regulated in patient 4.

Figure 2 Ratio of protein expression in IDC tissue to mean
expression in normal tissue of 32 measured TAs.
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Pathway-based assessment of expression patterns
To evaluate the potential biological impact of aberrantly
expressed TAs, we examined their involvement in cano-
nical pathways [86]. From the analyses of differential
mRNA expression in the four individual expression pro-
files, it is clear that heterogeneity of mRNA expression
exists even when examining a very limited number of
proteins. Although only approximately half of the TA
genes were significantly differentially expressed in the
full cohort, all 30 TAs were aberrantly expressed in at
least one of the four individual profiles, and all 30 were
expressed at protein level. Of these 28 have entries in
the STRING database.
The functional relationship between the 28 TAs was

examined using the STRING database. An interaction
confidence threshold of 0.5 yielded four functionally
related groups as well as nine non-related TAs (Figure 5).
The four functional groups were further examined for

their involvement in the canonical pathways related to
the hallmarks of cancer. One cycle of expansion to
include related proteins was applied to each of the four
groups to yield four functional modules (Figure 6).
Further examination of each of the four functional mod-
ules and their direct interactants, using MSigDB [87],
reveals dysregulation of canonical pathways related to
the hallmarks of cancer.
Module 1
Expansion of group 1 (Figure 5A) yielded 10 direct func-
tional neighbors at a confidence score of 0.5 (Figure 6A).
The resulting PPI is heavily interconnected indicating
tight functional homology within the module.

The proteins of functional module 1 overlap in two
canonical pathways: PGK1, TPI1, GAPDH, and GAPDHS
overlap in the glycolysis pathway, and expression of
twelve of the eighteen proteins are known to be positively
correlated with BRCA1 expression in BRCA1mut tumors
[88]. Both pathways have been extensively studied as
potential therapeutic targets in cancer.
Aerobic glycolysis has profound effects on proliferating

cells [89]. Abnormal cellular metabolism is a defining fea-
ture of cancer [1], and proteins involved in metabolic
pathways have both diagnostic and therapeutic potential
[90,91]. Numerous enzymes are involved in maintaining
elevated rates of glycolysis, making them potential targets
of therapeutic agents [92].
Mutations in the BRCA1 gene are associated with faster

progression of breast cancer and other cancers [93].
BRCA1 plays a role in DNA repair and genomic stability
maintenance. It is a known tumor suppressor, which, when
mutated, is linked with the early onset of breast cancer.
Network modeling strategies revolving around BRCA1mut

revealed a number of genes associated with centrosome
dysfunction and thereby increased cancer aggressiveness
[88]. Twelve genes in module 1 (six of these are TAs) were
involved in the network functionally associated with
BRCA1 mutations and centrosome dysfunctions.
Module 2
Module 2 consists of seven TAs (Figure 5B), which when
expanded by one cycle in the STRING database has ten
interaction partners in a highly connected PPI (Figure 6B).
Seven proteins (CTNNB1, APC, GSK3B, AXIN1, LEF1,
TCF7L2, PSEN1, CTNNBIP1) overlap in the Wnt pathway,

Figure 3 The heat map based on log2 transformed fold change from median expression of TA mRNA. Shown in these heat maps are TAs
that are significantly differentially expressed between normal tissue and preinvasive tissue (left) and between normal tissue and invasive tissue
(right) (p < 0.05). Red corresponds to up regulated and blue corresponds to down regulated transcripts.
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and a subset of these additionally overlaps in the b-catenin
pathway. A smaller subgroup consisting of TAs ACTN4,
ENAH, and FN1 overlaps in an actin cytoskeleton regula-
tion pathway. Both these pathways are generally regarded
to play a role in cancer, and are known to be connected
through shared regulators [94].
The Wnt pathway is involved in a number of cancer-

relevant cellular processes such as cell division and
migration, and cell fate decisions [95]. Elevated levels of
b-catenin in the nucleus or cytoplasm of cells, indicates
activation of the Wnt pathway, which correlates with
poor prognosis in breast cancer patients [96], and

Figure 4 Heat map based on log2 transformed fold change of
gene expression in preinvasive and invasive IDC tissue
compared with expression in normal tissue in four individual
patients.

Figure 5 Confidence view of protein-protein interactions
within the 28 examined TAs, generated using STRING
database. Nodes correspond to TAs and edges correspond to
functional interactions. Thicker edges signify higher confidence in
the interaction. Only interactions with a confidence score higher
than 0.5 were included.

Figure 6 Confidence view of expanded protein-protein
interactions within the four functional groups of TAs
(highlighted in gray) generated using STRING database.
Interacting proteins were added to the TAs using one cycle of
expansion. Nodes correspond to the proteins and edges correspond
to their functional interactions. The thicker edges signify higher
confidence in the interaction. Interactions with a confidence score
higher than 0.5 are shown.
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detection of b-catenin levels using immunohistochemical
staining is an important diagnostic tool [97]. Molecules of
the Wnt pathway have been extensively targeted in antican-
cer treatment modalities, involving small interfering mole-
cules, blocking antibodies, and peptide-based therapies [98].
Module 3
Module 3 (Figure 6C, generated by expansion of the
TAs in Figure 5E) is centered on proteins relating to the
immune response, as ten of the proteins in this module
overlap in immune system related pathways. The predo-
minant immune system pathways in this module are
cytokine signaling (specifically IL-6), interferon signaling,
and JAK/STAT signaling.
All three pathways have been associated with cancer

development. The JAK/STAT pathway is recognized as
a modulator of cytokine signaling, and has therefore
been associated with a large number of malignancies
[99]. In cancer, the JAKs and STATs (particularly
STAT3) are often observed to be constitutively acti-
vated, which is thought to induce cell proliferation and
prevent apoptosis [100]. Additionally, the STATs are
known to induce pro-oncogenic inflammation in the
tumor microenvironment by promoting pathways such
as NF-�B and IL-6-GP130-JAK pathways [101]. A num-
ber of NF-�B encoded inflammatory factors, such as IL-
6, are activators of STAT3, in turn creating a positive
feedback loop, leads to dysregulated action of immune
modulating pathways [102].
Another commonly observed immune deficiency

observed in cancer cells, is impaired interferon-signaling.
Interferons are important modulators of immune
response, and defects in interferon signaling are highly
detrimental to immune control of cancer cells [103].
Cytokine secretion is critically modulated by JAK/STAT
activity [104].
Module 4
Finally, module 4 (Figure 6D) consists of the TAs EFTUD2
and SNRPD1 (Figure 5D), and their ten closest interaction
partners. Seven of these proteins overlap in the spliceo-
some pathway, which plays a central role in pre-mRNA
processing and splicing. Splicing in tightly regulated in dif-
ferent tissues and different stages of development, and
dysregulation of the spliceosome function may lead to
incorrect assembly of exons and nonfunctional translation.
As such, alternative splicing plays a significant role in can-
cer and other malignancies [105]. The spliceosome has
therefore been examined for its potential as a therapy tar-
get [106]. Spliceosome-related therapy can be directed
towards the products of alternative splicing [107] or the
spliceosome modulators [108].

Non-interacting TAs
In addition to the four modules, we also observed 9 TAs
that do not connect with any other TAs (Figure 5C).

These are not necessarily less valuable as targets, but the
analyses performed here are much less comprehensive for
these TAs. Their interactants and involvement in molecu-
lar pathways relating to cancer is summarized in Addi-
tional file 1.

Conclusions
Statistical testing for patterns in high throughput mRNA
expression data has long been the primary method for
defining biomarkers in human cancers. The analyses are
constantly refined with inclusion of data from epigenetic
experimentation, measurements of ncRNAs, and protein
expression, and are expanded with ontology enrichment
analyses, pathway analyses, and co-analyses of different
data types. Additionally, as experimental methods
increase in efficiency and resolution, the bodies of data
examined keep growing. A large number of diagnostic
and prognostic biomarkers have been reported, and a
small number are utilized in clinics, but it is believed by
some that the majority of reported biomarker candidates
are the result of stochastic noise within data sets [109].
TAs are a group of proteins against which the

immune system has been recorded to autologously
react. Specifically, they are recognized in cells where
they are present in larger than usual amounts, or phy-
siochemically altered to a degree at which they no
longer resemble native human proteins. As such, their
presence or abundance in cancer cells is often unique
and their roles and functions are, in many cases, studied
extensively. Proteins that are frequently observed (and
autologously recognized by the immune system) in
tumor cells can be hypothesized to play a significant
role in tumorigenesis. They therefore hold the potential
to be highly specific biomarkers for the cancers in
which they are observed.
The challenges pertaining to the utility of TA biomar-

kers are similar to those we face when we statistically
filter out potential biomarkers from vast amounts of
high throughput genomics data: our understanding of
their function and role in cancer must be elevated to a
degree where we can account for outliers and exceptions
to the general rules known from clinical observations.
To achieve this, we analyzed the mRNA and protein
expression of 30 TAs in normal tissue versus IDC tissue.
We found that all but two TAs were expressed in IDC
on the protein level, and a subset of these was aber-
rantly expressed on mRNA level. We examined their
known and proposed roles in cancer by analyzing the
TAs and their closest functional counterparts for over-
lapping participation in canonical pathways. With this
approach, we defined four functional modules of TAs
and interactants, which overlapped in canonical path-
ways. The perturbation of these pathways were readily
linked to the hallmarks of cancer by querying relevant
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literature. A previous study of genetic biomarkers in
IDC tissue resulted in the identification of approxi-
mately 2,000 differentially expressed genes involved in a
large number of biological pathways [37]. Among these
pathways were those related to the hallmarks of cancer
that we have found from analyzing only 30 TA genes.
Currently, 258 TAs are catalogued and annotated in

the TANTIGEN database of TAs. Expanding the analy-
sis performed here to the full set of TAs is highly likely
to provide additional insights. RNA sequencing is
another desirable follow-up study of TAs found to be
expressed in a given cancer tissue, as this may reveal
known or novel splice isoforms, mutations, or other
genetic aberrations. In addition to the diagnostic and
prognostic potential of such a study, a catalogue of
expressed TAs and variants in a given tumor can be
further analyzed for their potential as therapeutic tar-
gets and directly applied in personalized treatment
modalities.

Methods
Data
Protein expression data
Nine samples of estrogen receptor positive ER+ IDC tissue
were analyzed for expression of 1623 proteins using liquid
chromatography coupled with mass spectrometry [43].
The tissue samples were obtained using laser capture
microdissection from biopsies collected at the Massachu-
setts General Hospital. In addition to the nine IDC sam-
ples, nine (non-paired) normal tissue samples were
analyzed for protein expression.
mRNA expression data
The mRNA expression data were extracted from breast
cancer biopsies, again collected at the Massachusetts
General Hospital [37]. Three different types of samples
were collected: normal tissue, preinvasive tissue, and
invasive tissue of ER+ IDC. The tissue consisted of cells
from the epithelial and stromal compartments of the
normal terminal ductal lobular unit. The following sam-
ples were paired: nine samples of normal and preinva-
sive cancer, nine samples of normal and invasive tissue,
and four samples for all three tissue types. Tissue sam-
ples were obtained using laser capture microdissection
and were analyzed for mRNA expression using the Affy-
metrix whole genome array U133X3P [38].
Tumor antigen data
A list of known TAs was extracted from the TANTI-
GEN database of TAs http://cvc.dfci.harvard.edu/tadb/.
TANTIGEN contains 4245 T cell epitopes found in
258 unique protein TAs (November 2013) collected
from the literature. Protein expression was measured
for 32 of these TAs in [45]. Of these, gene expression
was meassured for 30 TAs [38]. We further analyzed
these 30 TAs by proteogenomics.

mRNA and protein expression in IDC tissue
For the analysis of correlation between gene expression
and protein expression, we examined 404 IDC tissue sam-
ples collected by The Cancer Genome Atlas (TCGA) con-
sortium. Paired mRNA expression and protein expression
data was available for 86 gene/protein pairs, of which 13
are known TAs. mRNA expression was extracted using
Agilent mRNA expression microarrays, and protein expres-
sion was extracted using Reverse Phase Protein Arrays [63].

Analyses
Protein expression analysis
The TAs were extracted from the protein expression data.
The nine normal samples were averaged and compared
with expression in the nine invasive tissue samples. Log2
ratios of expression of each protein compared with the
normal tissue average (normalized to 1 if expressed, or
kept at 0 if not expressed) were calculated for each patient.
mRNA expression analysis
Raw probe intensities were background corrected using
rma, quantile normalized [110,111], and the probe sets
were indexed relative to the median. Fold changes were
calculated as individual mRNA expression compared to
the median mRNA expression and log2 transformed.
TA genes were extracted from the expression data. Fold

changes were calculated between the three types of cancer
tissue (normal, preinvasive, and invasive). Genes were
examined for consistently differentially expressed genes in
the patient cohort using a paired t test. Additionally, gene
expression dynamics in the three cancer tissue types were
examined in each individual patient.
Annotation
Each TA was characterized for its potential functions
in tumorigenesis in each patient to gain an insight into
the underlying biology of the observed expression pro-
files. Information about protein function and role in
disease were extracted from OMIM [112], UniProt
[113], GeneCards [114], the Human Protein Atlas [115]
and UniGene http://www.ncbi.nlm.nih.gov/unigene.
Pathway analysis
Functional neighbors to aberrantly regulated TAs were
extracted from the STRING database of protein-protein
interactions (version 9.05) [116]. Interactions with > 0.5
confidence score were considered and the resulting pro-
tein groups were analyzed for their overlapping involve-
ment in canonical pathways using the molecular
signatures database, MSigDB [87]. The confidence score
in STRING database is calculated from combined and
corrected probabilities using different evidence channels
for protein-protein interaction, described in [117].
Correlating mRNA and protein expression
To determine correlation between mRNA expression
and protein expression, we calculated Spearman’s rank
correlation coefficient. The threshold for correlation was
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set at r > 0.455 to compare results with a previous study
of correlation between the mRNA and protein expression
[62]. The authors used the r > 0.455 threshold by deter-
mining that the average correlation coefficient of expres-
sion in 1000 randomly chosen gene/product pairs from
23 cancer cell lines was 0.001, and that the selected value
of r of 0.455 provided the 95% confidence interval of the
r distribution.

Additional material

Additional File 1: TA, their interactants and involvement in molecular
pathways relating to cancer.
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