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Abstract

Background: Accurate protein function annotation is a severe bottleneck when utilizing the deluge of high-
throughput, next generation sequencing data. Keeping database annotations up-to-date has become a major
scientific challenge that requires the development of reliable automatic predictors of protein function. The CAFA
experiment provided a unique opportunity to undertake comprehensive ‘blind testing’ of many diverse approaches
for automated function prediction. We report on the methodology we used for this challenge and on the lessons
we learnt.

Methods: Our method integrates into a single framework a wide variety of biological information sources,
encompassing sequence, gene expression and protein-protein interaction data, as well as annotations in UniProt
entries. The methodology transfers functional categories based on the results from complementary homology-
based and feature-based analyses. We generated the final molecular function and biological process assignments
by combining the initial predictions in a probabilistic manner, which takes into account the Gene Ontology
hierarchical structure.

Results: We propose a novel scoring function called COmbined Graph-Information Content similarity (COGIC) score
for the comparison of predicted functional categories and benchmark data. We demonstrate that our integrative
approach provides increased scope and accuracy over both the component methods and the naïve predictors. In
line with previous studies, we find that molecular function predictions are more accurate than biological process
assignments.

Conclusions: Overall, the results indicate that there is considerable room for improvement in the field. It still
remains for the community to invest a great deal of effort to make automated function prediction a useful and
routine component in the toolbox of life scientists. As already witnessed in other areas, community-wide blind
testing experiments will be pivotal in establishing standards for the evaluation of prediction accuracy, in fostering
advancements and new ideas, and ultimately in recording progress.

Background
Deriving useful knowledge from genomic data depends
critically on the ability to accurately assign biological
roles to genes and their products. The only conclusive

way of characterizing protein function is by experimen-
tal determination, although interpretation may still lead
to errors. Even with high-throughput screenings, func-
tional assays remain time consuming, expensive and
technically challenging. Additionally, experimental tech-
niques target known aspects of function, which may
provide a one-sided picture of otherwise multi-faceted
concepts.
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Currently, the ‘gold standard’ for high-quality database
annotation consists of manual curation by experts based
on literature searching and bioinformatics analyses [1,2].
However, this route is also time consuming and the
number of sequences manually annotated clearly lags
behind the exponential growth in the number of known
sequences [3]. Consequently, most entries in UniProt [4]
include electronically inferred annotations, often of
unknown reliability. Therefore, the development of reli-
able automatic function prediction tools is a major goal,
since it is the only way of keeping database annotations
updated as more and more sequence data pours in.
Simple function predictors implement annotation trans-

fer from well characterized proteins with high sequence
similarity to the target. However, they achieve rather lim-
ited performance [5], principally due to the challenges
posed by multi-domain proteins, and by paralogous and
analogous genetic relationships. More sophisticated meth-
ods aim at detecting local signatures indicative of function
such as sequence motifs, domains, or domain architectures
[6,7]. Previous work has also benefitted from considering
phylogenetic analyses [8], the hierarchical structure of GO
[9] and the co-occurrence of its terms in high-quality data-
base annotations [10].
Neural networks [11] and support vector machines [12]

have been successfully trained to recognize sequence-
derived patterns indicative of generic functional roles. The
requirement of sufficient training examples for robust
modelling often restricts such methods to making broad
functional assignments. While such predictions do not
help design specific experiments, they can be valuable for
proteins with distant or no detectable sequence relatives.
Other homology-free methods assume that functionally
associated genes are co-expressed and their products
interact with each other in some capacity. Usually these
supervised or unsupervised approaches exploit high-
throughput gene expression or protein-protein interaction
data largely to assign proteins to known biological pro-
cesses [13-15].
Additionally, large-scale screening data have also

become available, and genomic data integration is a pro-
mising avenue with the potential to overcome the intrinsic
limitations of techniques utilizing individual information
sources. Integrative strategies can provide both increased
coverage of the protein universe and more confident func-
tional assignments when supporting evidence can be gath-
ered from different studies [16]. A wide array of machine
learning and computational statistics tools have been
applied to effectively combine heterogeneous data types,
including those mentioned, as well as information about
gene co-localization, transcription factor binding, pheno-
type annotations, disease associations and biomedical lit-
erature. Interested readers are referred to [17] and
citations therein.

As in other research areas of computational biology, the
need to critically test and compare so many approaches
has recently prompted the establishment of community-
wide experiments. The MouseFunc experiment blindly
tested independent integrative methods by providing com-
mon M. musculus datasets with limited homology infor-
mation for both training and internal benchmarking
purposes [18]. The CAFA challenge provided a more rea-
listic setting to comprehensively undertake blind testing of
generic function prediction methods. The key task was to
predict Gene Ontology (GO) [19] terms for 48,298 target
proteins from a diverse range of species including seven
eukaryotes and eleven prokaryotes. Prior to the experi-
ment start, UniProtKB/Swiss-Prot curators had reviewed
most of the corresponding entries, but approximately 30%
had no GO terms for the Molecular Function (MF) or Bio-
logical Process (BP) categories. The remaining targets were
principally annotated with electronically inferred annota-
tions which were rarely specific (i.e. terms associated with
nodes at the lowest level of the GO hierarchy).
Here we first detail the integrative approach we used

for this annotation challenge, which combines into a sin-
gle framework a wide variety of tools and biological infor-
mation sources encompassing sequence, gene expression
and protein-protein interaction data. We then bench-
mark the overall methodology and its components using
a novel scoring scheme to measure the information over-
lap between predicted and reference GO terms. Finally,
we discuss the lessons we learnt from the first round of
CAFA.

Methods
Our approach to predicting function is based around
combining a broad range of large scale function annota-
tion methods and data sources. Unless otherwise noted,
each component method was calibrated against a bench-
mark set, with the estimated precision used to determine
the “confidence” of each method. The performance of all
methods was independently evaluated on 595 CAFA tar-
gets that received experimental functional annotations
between January and July 2011.

Benchmarking and estimation of prediction accuracy
A set of 1,546 well characterized proteins from Uni-
ProtKB/Swiss-Prot was selected for internal benchmark-
ing and calibration purposes. We defined the set of
reference functional annotations as the reported GO
terms for the Molecular Function (MF) and Biological
Process (BP) categories along with all those more general
descriptions linked by “is a” (parental) relationships in
the ontology. Each method described below was then run
independently on this benchmark set and the predicted
GO terms were collated. We then independently binned
the predictions into equally sized groups based on their
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raw scores - e.g. bit scores from PSI-BLAST [20] or raw
SVM scores from FFPRED [12] - and calculated the num-
ber of true and false positives - TP and FP respectively -
for each group. From these statistics we derived precision

values (Prec =
TP

TP + FP
) that we subsequently fitted to the

raw scores, assuming a standard logistic function

(Pt =
a

1 + be−ct). We used these regression models (one

model per method) to estimate the precision of each pre-
diction given a particular raw score.
With the above benchmark in hand, a range of differ-

ent component methods were evaluated. We preselected
only methods which had significantly better than ran-
dom performance on the benchmark set, and the final
component methods are as follows.

GO term prediction using PSI-BLAST
The most basic method employed in this work was a stan-
dard PSI-BLAST search against the UniRef90 [21] data-
base, using 3 iterations, and an E-value threshold of 1x10-3

for both hit selection and profile inclusion. Then, for each
target sequence we report the MF and BP GO terms asso-
ciated with any matches with alignment coverage of at
least 85% of its length. In order to estimate the accuracy of
the predictions, we selected the highest bit score of the
alignments between the target and those sequences anno-
tated with that term and converted this bit score into a
value in [0.00, 1.00] given the logistic regression model
obtained during the benchmark.

GO term prediction from UniProtKB/Swiss-Prot text-
mining
For targets which already had descriptive text, keywords
or comments in UniProtKB/Swiss-Prot, GO terms were
assigned using a naïve Bayes text-mining approach [22].
To start with, the relative frequencies of occurrence of
single words and consecutive pairs of words were com-
puted for all records where a GO term appears
( f (word|GO)), along with the equivalent frequency in
records where the GO term is absent ( f (word| ∼ GO)) in
the data bank. To avoid zero counts, a pseudocount of 1
was used for all probability estimates. From this raw data,
the conditional probability of each GO term based on the
occurrence of each word group was estimated as follows:

p(GO|word) ≈ f (word|GO)
f (word|GO) + f (word| ∼ GO)

By combining these probabilities (by converting to log
likelihood scores and summing), naive Bayes classification
was carried out on the raw text from a particular Uni-
ProtKB/Swiss-Prot entry and likely GO terms predicted.
To further extend the scope of the textual analysis,

words occurring in the different UniProtKB/Swiss-Prot

record types were recorded, and some simple pre-par-
sing of feature (FT) records was also carried out. Specifi-
cally, in cases where the FT records specified residue
numbers or residue number ranges, these residue num-
bers were placed into bins of width 50 and converted
into word tokens (NUMVAL0...NUMVALn). This
allowed a simple form of feature-based function predic-
tion to be carried out. For example, the following Uni-
ProtKB/Swiss-Prot FT record:

TOPO_DOM 25 308 Extracellular (Potential)

would be parsed into the following five tokens:

FT:TOPO_DOM FT:NUMVAL0 FT:NUMVAL6 FT:
Extracellular FT:Potential

These tokens are treated in exactly the same way as
words found in other record types.

GO term prediction from amino acid trigram mining
The same naïve Bayes classification approach that was
used to relate GO terms to descriptive statements in the
UniProtKB/Swiss-Prot records was also applied to the
amino acid sequences. In this case, rather than words in
description lines, trigrams of amino acids were counted
across the whole sequence database. From this raw data,
the conditional probability of each GO term based on
the occurrence of each trigram was estimated in the
form of log likelihood scores. For all trigrams in the tar-
get sequence, log likelihood scores for particular GO
terms were calculated by summing the individual log
likelihood scores for all referenced GO terms in the
training data.

GO term prediction from sequence features (FFPRED)
FFPRED [12] was also used to make GO term predic-
tions for eukaryotic targets. FFPRED starts by predicting
a diverse range of sequence features, which include sec-
ondary structure elements, disordered regions, signal
peptides, glycosylation sites, and several others. These
features are then analysed by a series of Support Vector
Machines (SVMs) to assign GO terms from a subset
of 197.

GO term prediction from orthologous groups
In addition to pairwise close homologues, more distant
evolutionary relationships were obtained from the egg-
NOG (v2.0) collection of orthologous groups [23]. For
each target that could be assigned to an orthologous
group, all GO terms found in GOA [24] for all members
of the same group were assigned with an estimated preci-
sion being calculated as the fraction of group members
that shared the given GO term.
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GO term prediction from profile-profile comparison
In addition to pairwise close homologues, very distant
evolutionary relationships were obtained from the use of
profile-profile comparisons. PSI-BLAST was used to
compute Position Specific Scoring Matrices (PSSMs) for
each entry in UniProtKB/Swiss-Prot along with every tar-
get sequence. Each target PSSM was then compared
against the set of UniProtKB/Swiss-Prot PSSMs accord-
ing to the following scoring scheme based on the dot
products of the two PSSM vectors X (from the target
sequence PSSM) and Y (from the UniProtKB/Swiss-Prot
entry PSSM):

S (X,Y) =

∑20
i=1 X

TF
i Yi

∑20
i=1 X

TF
i

+

∑20
i=1 Y

TF
i Xi

∑20
i=1 Y

TF
i

where XTF and YTF are the respective target frequencies.
A simple affine gap penalty was used with an opening pen-
alty of 11 and an extension penalty of 1.
To predict GO terms, the profile-profile alignments

were evaluated using a neural network with 4 input units,
4 hidden units and a single output unit. The 4 inputs
were the profile-profile alignment score, the percentage
sequence identity, the percentage alignment coverage of
sequence 1 and the percentage alignment coverage of
sequence 2. The single output represented the presence
or absence of common GO terms between the two pro-
teins. The neural network was then trained using the
benchmark GO data set to distinguish alignments sharing
common GO terms from those that do not. Training vec-
tors were generated per GO term rather than per align-
ment, such that a pair of profiles having 5 common GO
terms and say 3 mismatching GO terms would result in 8
separate training vectors (5 positive cases and 3 negative
cases). This ensured that the posterior probabilities
extracted from the trained neural network would more
accurately represent probabilities of GO term occurrence.
After training, the neural network output was calibrated
to produce precision estimates using the procedure
described above. Rather than using a separate data set,
the same benchmark set used to train the network was
used to calibrate the output. This was acceptable here
because the eventual evaluation of the method would be
carried out on “blinded” data not available at the time the
neural network training took place.

GO term prediction from high-throughput data sources
(FunctionSpace)
For human proteins (and any closely related eukaryotic
homologues) medium-to-low-confidence predictions of
protein function were generated by an SVM regression
method called FunctionSpace [25]. Human proteins are
assigned coordinates in an 11-dimensional feature space
and GO terms assigned from annotated close neighbours

in this space. The 11 dimensions represent pairwise
sequence similarity, predicted cellular localization, sec-
ondary structure similarity, transmembrane topology,
disordered segment features, sequence-derived domain
architecture, structure-based domain architecture,
sequence domain fusion patterns, structural domain
fusion patterns, protein-protein interactions and microar-
ray data. The microarray features were derived from bi-
clustering of 81 publicly available experimental microar-
ray datasets in order to identify which experiments and
genes had maximal predictive value for specific GO cate-
gories. In total, over 49,231 features were combined to
train the 11 SVM regression models and their outputs
are integrated using a further second layer regression
SVM.

Integration of methods and post-processing
To produce a final consensus set of predictions, separate
prediction files were generated for each of the component
methods described above, and these predictions were
combined using a network propagation algorithm based
on the GO graph structure. We start by defining Dij as the
difference in depth between two GO terms i and j. For
this to be defined, a direct path between the two terms
must exist that does not include the root node. For pairs
of terms that have no direct connecting path, Dij is left
undefined, and in programming terms is given a NULL
value to flag this situation. Where the sign of Dij is posi-
tive, this indicates that term i is deeper (more specific)
than term j and vice versa for negative values.
As a first step, all predicted terms from each compo-

nent method are collated into a single set of terms. This
set is not extended further e.g. by adding higher level or
intermediate terms. For cases where n methods predict
the same term, the combined precision for the common
term (P′) is estimated as follows:

P′ = 1 − ∏n
i=1(1 − αPi)

where aÎ[0, 1] is a constant attenuation parameter (set
to 0.9 in this case) and Pi the estimated precision for pre-
diction i. The use of this attenuation parameter is to pre-
vent the final estimated precision values from reaching a
maximum of 1.0 due to a single ‘vote’ from just one of the
methods.
For each target, all lower level term scores were pro-

pagated up to higher level terms on the same path to
root according to the following procedure:

FOREACH GO term i
FOREACH GO term j≠i
IF Dij ≠ NULL AND Dij < 0 THEN

P′
i ← 1 − (1 − Pi)(1 − Pj)

END IF
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The final list of terms was produced by first ranking the
terms according to the final chained precision estimates
calculated as described above. To exclude mutually incom-
patible term pairs from the final list, each pair of predicted
GO terms was checked for co-occurrence in UniprotKB.
For any pairs of terms for which Dij ≠ NULL and which
were not seen to co-occur in UniProtKB, the term with
lowest estimated precision was deleted from the list.
Where a pair of such terms had equal precision values,
both were kept.

COGIC scores
In the light of the reference experimental data released by
the assessors, we analysed our own predictions using a
novel scoring scheme that takes into account each term
specificity and confidence value. We propose to calculate
different Graph-Information Content (simGIC) similarity
scores [26] for overlapping subsets of GO term predictions
compared to their reference annotations, and to combine
them such that the final measure lies in [0.0, 1.0].

simGIC(A,B) =

∑
t∈A∩B IC(t)∑
t∈A∪B IC(t)

where IC(t) is the Information Content of t - an
empirical measure of its specificity. For each term t,
we first counted its occurrence n(t) in UniProtKB/
Swiss-Prot functional assignments. We chose to use
only experimentally supported evidence codes; this
reduces the size of the reference corpus, but also helps
minimize assessment bias towards homology-based
annotations [27]. The initial counts were then propa-
gated to the ancestral nodes and IC values computed

as IC (t) = −log
n(t)
n(r)

where r is the root of the ontology.

For each target, four overlapping subsets of predicted
GO terms are calculated based on confidence scores ≥
0.75, 0.5, 0.25 and 0, and denoted as P1, P2, P3 and P4
respectively. These sets as well as the set R of reference
GO terms are expanded by adding all ancestral nodes. The
simGIC scores S1, S2, S3, and S4 are then calculated by
comparing R with P1, P2, P3 and P4 respectively and the
final COmbined simGIC (COGIC) score for a given pro-
tein target is given by

COGIC(P,R) =
S1 + S2 + S3 + S4

4
,

thus ensuring that correct predictions with higher con-
fidence scores are rewarded more. The COGIC score
equals 1 when R = P1 = P2 = P3 = P4, i.e. all predicted
GO terms are validated and their confidence scores
are greater than or equal to 0.75. Its value is 0 if
R∩ P1 = R∩ P2 = R∩ P3 = R∩ P4 = {r}, where r is the
root of the ontology (that is the root node is the only

common element between the predicted and reference
annotations).

Baseline predictions of GO terms
We compare the performance of our integrative
approach with two independent naïve predictors that the
assessors had run against the same test set. The Priors
algorithm determines the most frequent 10,000 GO
terms in UniprotKB/Swiss-Prot and assigns them to each
target using their frequencies as confidence values. The
BLAST method transfers GO terms from the hits of a
BLAST [28] search against a database of experimentally
characterized proteins with default parameters; the confi-
dence values is the scaled sequence identity between the
target and the most similar hit bringing the annotation.

Results
Role of the component methods
The organizers initially released 48,298 target proteins at
the beginning of the experiment. At the Automated Func-
tion Prediction meeting in July 2011, method performance
was benchmarked against 595 proteins that had been
experimentally characterized in the intervening months.
This set comprises of 366 proteins with annotated Mole-
cular Function terms (MF subset), and 436 proteins with
Biological Process terms (BP subset). We use these data
provided by the organizers as a blind test set for the ana-
lyses below.
Table 1 shows the extent to which the component

methods contributed to the submissions of the team
Jones-UCL, as well as to the data officially evaluated by
the assessors. Profile-based and text mining approaches
were able to assign functional classes to most targets, but
only in combination could the entire test set be completely
covered. As expected, FunctionSpace produced GO term
assignments for lower numbers of targets; as it had been

Table 1 Coverage statistics of the CAFA test set.

Method Coverage of Targets

Released Assessed MF BP

Orthologous Groups 49.15% 60.84% 61.75% 61.01%

PSI-BLAST 83.83% 90.42% 89.89% 89.45%

Profile-Profile Comparison 99.87% 99.50% 99.73% 99.31%

Amino Acid Trigram
Mining

49.64% 47.73% 50.00% 47.25%

Swiss-Prot Text Mining 89.19% 94.96% 95.08% 94.50%

FFPRED 72.40% 56.30% 50.82% 56.65%

FunctionSpace 11.27% 7.56% 6.83% 8.03%

Jones-UCL 100.00% 100.00% 100.00% 100.00%

For each method, the columns report the percent of targets that were
assigned GO terms relative to the entire benchmark (Released), the subset
officially evaluated (Assessed), the evaluated molecular function predictions
(MF), and the assessed biological process assignments (BP).
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originally designed for annotation of human proteins, it
could only be applied to eukaryotic sequences. Unfortu-
nately, the extremely limited overlap between predicted
and assessed targets prevents us from drawing any general
and sound conclusions about this method’s contribution
and performance. The corresponding data are therefore
omitted from the following analyses and discussion.
We performed target-by-target numerical evaluation of

the remaining predictions using the COGIC similarity
score and plotted the results in Figure 1. The performance
of homology-based methods displays an expected pattern
both within and across the MF and BP data sets. Ortholo-
gous Groups generally scores higher than PSI-BLAST and
Profile-Profile Alignment, which in contrast provide
higher coverage. In line with previous findings, the shift of
the score distributions towards the top end is larger for
molecular function predictions rather than the biological
process ones [5,26]. The amino acid trigram mining classi-
fier appears very competitive with the other homology-
based approaches on the MF benchmark. Yet, the picture
does not take into account the data in Table 1 and a more
detailed comparison (see additional file 1) would suggest
that amino acid trigram mining only made predictions for
“easy” targets in MF. The scores for FFPRED are unsur-
prisingly low: this machine-learning tool had been trained
to predict a restricted set of general functional classes

specifically for human proteins with distant or no detect-
able sequence relatives.
In order to investigate the usefulness of each compo-

nent method, we initially tried to measure their exclusive
scope with regard to the numbers of targets and GO
terms officially evaluated. Unfortunately, we couldn’t
achieve conclusive results due to the large overlap among
the sets of predicted targets (only 5 proteins were anno-
tated by a single method). Furthermore, no method out-
put GO term assignments that (i) were not explicitly
predicted or implied by the annotations made by other
components, and that (ii) were reference annotations
used for assessment or one of their ancestors. Conse-
quently, we were unable to identify any single component
method which was pivotal for the success of the overall
strategy.

Overall performance of the team Jones-UCL
Figure 2 shows the performance of the final integrative
strategy with attenuation parameter a = 0.9 in compari-
son to that of the naïve predictors from the assessors. In
this case, we plot the average precision and recall values
across the whole set of 595 targets as provided in the offi-
cial assessment. Our approach clearly outperforms the
baseline methods for both molecular function and biolo-
gical process predictions beyond a recall of 0.5 and 0.3

Figure 1 Performance of Jones-UCL in comparison with the component methods. Comparison of the COGIC score distributions achieved
by the individual predictors on the MF (upper panel) and BP (lower panel) benchmark sets. Each box spans from the first to the third quartile of
the corresponding distribution; the median value is highlighted as a thick line, while putative outliers are plotted as empty circles. The width of
each box is proportional to the number of targets predicted and officially assessed. Some names have been shortened ("Orthologues” for
Orthologous Groups, “Prof-Prof Aln” for Profile-Profile Alignment, “AA 3-gram Mining” for amino acid trigram mining and “Text Mining” for Swiss-
Prot Text Mining).
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respectively. After the official assessment data were
released, we investigated how the method would perform
as the attenuation parameter a varies. While the resulting
statistics and plots did not exhibit drastic changes, we
note that decreasing a tends to generate predictions with
lower average recall and higher average precision.

We calculated the distributions of COGIC scores for
the group Jones-UCL and compared them with the other
data in Figure 1. The final integrative and post-processing
steps affect the GO term lists and their confidence scores
in interesting ways. On the one hand, Jones-UCL does
not consistently improve over all components - e.g.

Figure 2 Average precision against average recall for the Jones-UCL and the baseline methods. The graph shows the performance of our
aggregate method in comparison with the simple annotation strategies calculated by the CAFA assessors Priors and BLAST. Each data point
represents the average precision and recall across the entire set of 595 targets with functional annotations as of July 2011.
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orthologues and text mining tend to achieve slightly
higher prediction accuracy scores. On the other hand, it
records a COGIC score of 0 for fewer targets than the
component methods. Overall, no single component
yielded significantly more accurate predictions than the
aggregate method.
Next, we compared the performance of our aggregate

method with the two baseline predictors Priors and
BLAST. The plots in Figure 3 clearly show that Jones-
UCL scores are higher than the others on both ontologies.
We also tested the null hypothesis that the performance of
Jones-UCL is not statistically different from that of the
naïve approaches using two-sided pair-wise Wilcoxon
rank sum tests and Table 2 gives the resulting p-values. At
a p-value cut-off of 10-5, our approach significantly outper-
forms both BLAST and Priors in assigning molecular
function and biological process terms.
An inverse relationship exists between the specificity of

the predicted GO terms and their confidence scores, as a
result of the back-propagation algorithm used. However,
it is not immediately clear whether our method tends to
be more or less specific than the target annotations. To
investigate this, we analysed how the difference in specifi-
city between predicted and reference GO terms varies as
a function of the predicted confidence scores. To this
end, we considered pairs (x, y) of predicted and experi-
mental GO terms where (i) x and y lie on the same path
to root, and (ii) there are no descendants of x predicted
for the same target. For such pairs, we calculated
IC (x) − IC(y) and in Figure 4 we plot the average of
these values across all targets against the confidence

scores assigned to x. The plot shows the expected inverse
correlation between our confidence scores and the aver-
age semantic distance from experimental annotations.
At lower confidence values, the team Jones-UCL

assigned more specific GO terms than those found in
UniprotKB/Swiss-Prot annotations. Further studies and
additional experimental data will be necessary to deter-
mine whether these predictions should be regarded as
false positives or not. Conversely, the most confident
predictions typically consist of more general terms
than those experimentally validated. This trend stems
essentially from homology-based annotation transfers:
specific functional annotations can only be made
between very close homologues. As evolutionary dis-
tance increases, more general terms can be assigned
confidently, because distinguishing between paralogues
and orthologues becomes harder and harder due to
limited data available.

Discussion
This study confirms that combining the strengths of differ-
ent approaches provides increased coverage of the protein
sequence space and more accurate function predictions. To
make our integrative strategy available to the community as
a reliable and fast fully automated system, we need to
address a few interrelated methodological questions. These
relate to the identification of the most valuable component
methods and to their effective combination.
The preliminary analysis presented here did not help

estimate properly the individual contributions made by
each component. In future studies, we propose to identify

Figure 3 Performance comparison based on COGIC scores. The boxplot recapitulates the target-based distributions for the Jones-UCL
prediction team as well as for the naïve algorithms Priors and BLAST.
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pivotal components by contrasting the performance of
the current approach with its “leave-one-out” variants.
More refined statistical analyses may also be required to
account for the relatedness between separate compo-
nents (e.g. the homology-based ones).
The final GO term predictions and their confidence

scores were generated using heuristic methods. It will be
interesting to explore alternatives that do not weight all
the components evenly. This may be implemented by tai-
loring the attenuation parameters to the specific data
sources and tools or - more flexibly - by training high-
level classifiers such as SVMs or naïve Bayes approaches.
Of course, this choice may affect the way we will be able

to select the subset of components that maximizes pre-
diction scope and accuracy.
The proposed COGIC score builds on previous efforts

to numerically evaluate the semantic similarity between
functional annotations. It represents an initial attempt to
provide a normalized measure of information overlap
between the predicted and benchmark annotations for a
protein target, which explicitly accounts for prediction
confidence values. The critical evaluation of protein func-
tion predictions is not a standard procedure yet, but it is
drawing more and more attention. We hope that this
work will contribute to further discussions and new ideas
in the future.

Table 2 Statistical comparisons of prediction performance.

Method Method Set n p-value

Jones-UCL Priors MF 366 7.75E-06

Jones-UCL BLAST MF 351 3.37E-23

Jones-UCL Priors BP 436 3.43E-15

Jones-UCL BLAST BP 387 6.62E-12

The performance of pairs of methods was compared separately on the two benchmark subsets MF and BP. We tested the null hypothesis that the distributions
of the COGIC scores over the set of common targets were indistinguishable with a paired two-sided Wilcoxon sum rank test. The table reports the number n of
common targets and the p-value.

Figure 4 Relationship between confidence scores and GO term specificity. Positive values indicate that on average the assignments made
by the team Jones-UCL at a given confidence level were more specific than the corresponding experimental annotations. Negative values
indicate the converse. Molecular Function (MF) and Biological Process (BP) data were analysed and plotted separately.
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Conclusions
Methods for gene function predictions are continuously
being devised and improved to account for the ever
increasing size of public databases and the broad range of
data sources at hand. Evaluating their scope and useful-
ness has always been difficult due to a lack of suitable
test sets, evaluation metrics and additional experimental
settings. The CAFA experiment has provided a unique
opportunity and a real high-throughput use-case scenario
where biologists need as much detailed, accurate and
extensive functional annotations as possible.
Here we have detailed our integrative prediction

approach entered at CAFA and have provided a comple-
mentary assessment of its performance. Our results are
encouraging but overall highlight considerable room for
improvement in the field. In line with previous findings
the accuracy of molecular function predictions is higher
than for biological process annotations. This applies to
simple homology-based predictors and to more complex
methodologies like the one described here, though as yet
neither can be said to perform adequately.
Computational biologists evidently need to invest a great

deal of effort to bring these methods up to an acceptable
performance level. As already witnessed in other areas of
bioinformatics, community-wide blind experiments will be
pivotal in establishing standards for the evaluation of pre-
diction accuracy and in fostering advancements and new
ideas.

Additional material

Additional file 1: Boxplots of the COGIC score distributions on the
benchmarks that were targeted by the amino acid trigram mining
classifier. figure with legend.
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