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Abstract

Background: Protein function determination is a key challenge in the post-genomic era. Experimental
determination of protein functions is accurate, but time-consuming and resource-intensive. A cost-effective
alternative is to use the known information about sequence, structure, and functional properties of genes and
proteins to predict functions using statistical methods. In this paper, we describe the Multi-Source k-Nearest
Neighbor (MS-kNN) algorithm for function prediction, which finds k-nearest neighbors of a query protein based on
different types of similarity measures and predicts its function by weighted averaging of its neighbors’ functions.
Specifically, we used 3 data sources to calculate the similarity scores: sequence similarity, protein-protein
interactions, and gene expressions.

Results: We report the results in the context of 2011 Critical Assessment of Function Annotation (CAFA). Prior to
CAFA submission deadline, we evaluated our algorithm on 1,302 human test proteins that were represented in all
3 data sources. Using only the sequence similarity information, MS-kNN had term-based Area Under the Curve
(AUC) accuracy of Gene Ontology (GO) molecular function predictions of 0.728 when 7,412 human training
proteins were used, and 0.819 when 35,622 training proteins from multiple eukaryotic and prokaryotic organisms
were used. By aggregating predictions from all three sources, the AUC was further improved to 0.848. Similar result
was observed on prediction of GO biological processes. Testing on 595 proteins that were annotated after the
CAFA submission deadline showed that overall MS-kNN accuracy was higher than that of baseline algorithms
Gotcha and BLAST, which were based solely on sequence similarity information. Since only 10 of the 595 proteins
were represented by all 3 data sources, and 66 by two data sources, the difference between 3-source and one-
source MS-kNN was rather small.

Conclusions: Based on our results, we have several useful insights: (1) the k-nearest neighbor algorithm is an
efficient and effective model for protein function prediction; (2) it is beneficial to transfer functions across a wide
range of organisms; (3) it is helpful to integrate multiple sources of protein information.

Background
Determining biological functions of proteins is a key
challenge in the post-genomic era. The experimental
methods for protein function prediction are time-con-
suming and resource-intensive. It is infeasible to experi-
mentally determine the functions of all known proteins.
For that reason, computational methods that predict

biological functions of a protein using known informa-
tion about its sequence, structure, and functional beha-
viour, are becoming an attractive low-cost alternative.
During the recent couple of decades, many computa-
tional methods for predicting protein function have been
developed, and the 2011 Critical Assessment of Function
Annotations (CAFA) has been designed to establish a
state of the art in the field.
The sequence alignment-based function inference is

the most widely used form of computational function
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prediction [1]. These approaches use sequence compari-
son tools, such as BLAST [2], to search annotated data-
bases for the most similar proteins to the query protein
based on sequence and transfer their functions. The bio-
logical rationale for sequence comparison is that if two
sequences are similar, then they probably evolved from a
common ancestor and have similar functions. Gotcha [3]
is a similar method that takes sequence alignment scores
between a query protein and a database of functionally
annotated proteins, and overlays them on functional
ontology, cumulatively propagating the scores towards
the root of the ontology. Both the BLAST and Gotcha
approaches were used as baselines in 2011 CAFA.
Beyond sequence similarity, several computational

approaches have been proposed to utilize other types of
biological data, such as protein-protein interactions
(PPI) and gene expression data. The methods that use
PPI data to predict protein functions are based on a
simple premise: a protein does not perform its function
in isolation; instead, a group of proteins needs to inter-
act in order to perform a certain function. Therefore,
the functions of a querying protein can be inferred from
its interacting partners. Schwikowski et al. [4] used a
neighbor counting method, where a function is assigned
to the querying protein based on the number of its
neighbors in the PPI graph which have this function.
Hishigaki et al. [5] extended this method, by considering
proteins that could be reached via n links, instead of
considering only the direct neighbors.
Use of gene expression data for function prediction has

been motivated by an observation that co-expressed
genes are likely to be functionally related [6-8]. In the
seminal work by Eisen et al., [7] based on the co-expres-
sion data, genes were clustered into a number of groups
and the functions transferred to all genes in a cluster.
Machine learning-based approaches where function pre-
diction is studied as a multi-label classification problem
have also been popular. There, a function is predicted
from gene expression measurements across several
microarrays. For example, in an early work of this type,
Brown et al. [9] applied Support Vector Machines classi-
fier [10] to the task of learning functions from yeast gene
expression data.
Arguably, each data source captures only one aspect

about proteins’ properties. Thus, combining such hetero-
geneous data can bring a more complete picture about
protein function. Recently, several studies showed pro-
mising improvements in protein function prediction by
integrating multiple types of biological data. Troyanskaya
et al. [11] proposed a Bayesian network model to infer
the posterior probability functional linkage between two
genes given their functional relationship observed from
multiple data sources. Barutcuoglu et al. [12] integrated
different data sources by concatenating all feature vectors

from different data sources for a protein into a single fea-
ture vector. Mostafavi and Morris [13] assigned weights
to different data sources by solving a constrained linear
regression problem, which minimized the least square
error between the composite network and the target net-
work constructed from the label vector, on sets of related
functional categories. Despite these and related efforts,
how to effectively integrate different types of biological
data for protein function prediction remains a largely
open question.
There are several challenges that need to be addressed in

future research on multi-source function prediction. The
first is that different sources of information may have
vastly different coverage. For example, while sequence
similarity covers all known proteins, PPI data coverage is
significantly smaller, and gene expression similarities are
constrained by a specific microarray platform. The second
challenge is differences in data quality. For example, PPI
can be obtained by a variety of techniques that differ in
cost and reliability. A confounding issue is that functional
annotations have an uneven coverage biased towards cer-
tain types of proteins and functions, and that determina-
tion of protein functions, such as the one provided by
Gene Ontology [14], is a subjective and error-prone
process.
In an attempt to address some of the identified chal-

lenges and faced with the tight deadline of 2011 CAFA,
we focused our attention on the k-nearest neighbor
approach for function prediction proposed in [15]. This
is an easy to implement, intuitive, and relatively fast algo-
rithm that searches for k nearest neighbors of the query
sequence and transfers their functions by weighted aver-
aging, such that nearer neighbors have larger influence to
prediction than the farther ones. In this paper, we pro-
pose the Multi-Source kNN (MS-kNN) algorithm able to
use multiple sources of protein information. To provide
the final prediction, MS-kNN uses weighted averaging of
the source-specific prediction scores. In the algorithm
design, we explored several approaches to determine
weights, ranging from averaging to solving a constrained
optimization problem. We observe that a query protein
does not have to be present in all data sources. For exam-
ple, we might know the protein’s sequence and whether it
interacts with other proteins, but not its gene expression
(e.g., because its gene is not printed on a microarray, or
because microarray data are not available for the host
organism). Averaging of the source-specific scores pro-
vides a simple mechanism for dealing with potential
missing predictions.
In the following, we will discuss evaluation of several

prediction approaches prior to CAFA submission dead-
line, describe how we selected the predictor, summarize
and discuss results on CAFA proteins, and propose
some directions for the future research.
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Results
CAFA challenge
At the beginning of the challenge, 48,298 proteins were
released by CAFA organizers as the test proteins. In the
released test data, the protein names, Uniprot IDs, and
sequences were provided. A large majority of these pro-
teins did not have known functional assignments, as
defined by the Gene Ontology (GO) [14] annotations in
Swiss-Prot database. The organizers did not provide any
training data to the participants. Therefore, the partici-
pants were free to use any available information about
proteins and genes they found suitable. The objective of
the assessment was to predict functions of the test pro-
teins. The success was measured by evaluating the predic-
tion accuracy of GO annotations of the test proteins that
became available after the submission deadline.

Data sources
We considered integration of three different data sources
for protein function prediction. These three data sources
were: (1) protein sequence data; (2) microarray expres-
sion data; and (3) protein-protein interaction data. Parti-
cularly, prior to CAFA deadline we focused on human

proteins, in order to more easily evaluate and character-
ize our approaches. Visual summary of the data sets we
used is in Figure 1.
Protein sequence data
By courtesy of Dr. Predrag Radivojac from Indiana Univer-
sity we obtained a data set of GO annotations of 36,924
proteins, as well as their pair-wise sequence similarities
(expressed as percent identity), and pair-wise similarities
between these proteins and the 48,298 CAFA proteins.
These 36,924 proteins with their GO annotations and
sequences were used as the training set for function
prediction. We note that there were 474 proteins that were
present in both training and CAFA data set, as they were
already partially annotated. To simplify the experimental
design, these 474 proteins were excluded from the training
set during pre-CAFA evaluation. We still provided function
predictions for them, as they were in the CAFA data set.
Microarray Expression Data
We downloaded 392 Affymetrix GPL96 Platform microar-
ray datasets from GEO (http://www.ncbi.nlm.nih.gov/geo/).
The GPL96 is one of the most widely used human micro-
array platforms. We linked the Affymetrix probe IDs with
Uniprot IDs through Entrez. After ID mapping, the

Figure 1 Visual summary of the datasets.
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microarray data covered 7,372 human proteins in the train-
ing set, and 3,397 human proteins in CAFA set. These
datasets were already pre-processed by Affymetrix Micro-
array Suite Version 5.0 and we did not apply any additional
pre-processing.
Protein-protein interaction data
For PPI data source, we used physical interactions
between human proteins listed in OPHID database
(http://www.phenopred.org/). This data source includes
41,457 interactions between 9,141 proteins. After ID
mapping, the PPI data source covered 3,217 proteins in
the training set, and 737 proteins in CAFA set.
We summarize the information about each data source

in Table 1.

Empirical results before CAFA
There were 2,869 annotated human proteins in the train-
ing set that were represented by all 3 data sources. Among
them, we randomly selected 1,302 proteins as test set in
our pre-CAFA analysis. Given the prediction scores on the
1,302 test proteins for function f, the True Positive Rate
(TPR) and False Positive Rate (FPR) was calculated at dif-
ferent discrimination thresholds, creating the Receiver
Operating Characteristic (ROC) curve. The Area Under
the ROC Curve (AUC) was calculated by integrating the
ROC curve, which is corresponded to the TermAUC eva-
luation metric of CAFA. We only considered the GO
functions having more than 15 annotated proteins among
the 1,567 3-source human proteins left after removing the
1,302 test proteins. This resulted in 122 molecular func-
tion (MF) and 546 biological process (BP) GO terms. We
used k = 20 in all experiments in this section. In the fol-
lowing, we will discuss performance of several proposed
function prediction algorithms.
Baseline vs. lin-sim kNN classifier
In this section, we compare the accuracies of the two dif-
ferent prediction algorithms: baseline kNN classifier and
lin-sim incorporated kNN classifiers. The results for kNN
using sequence similarity were based on the training set of
1,567 3-source human proteins, remaining after exclusion
of 1,302 test proteins. While we had 392 different mi-
croarray datasets available for this experiment, due to the
tight deadline we used only the largest microarray data set
(having 221 microarrays) with GEO accession number
GSE4475.
The results in Table 2 show that the lin-sim kNN classi-

fier had slightly higher accuracy than the baseline kNN.

However, to estimate the lin-sim between all GO terms
and to use them during prediction time is very time-con-
suming. This includes a need to determine the lin-sim
function similarity threshold through cross-validation. As
a result, we reasoned that the accuracy improvement was
not large enough to justify use of lin-sim kNN predictor in
CAFA.
Paralogous vs. orthologous sequences
In this section, we explore how useful it is to transfer
functions from paralogous and orthologous proteins.
Paralogous proteins are similar proteins within the same
organism that are probably created by duplication and
functional divergence. Orthologous proteins are similar
proteins across different organisms that are related by
speciation. The test set was still the 1,302 human pro-
teins. We used 10 different training sets, after excluding
the 1,302 test proteins: (1) 1,567 human training proteins
represented by all 3 sources (as in Table 2); (2) 7,412
human proteins in training data; (3) all 16,442 proteins
from human, mouse, and rat in training data; (4) 16,754
proteins from all mammals in training data; (5) all 35,622
training proteins; (6) randomly selected 7,412 proteins
from set (3); (7) randomly selected 7,412 proteins from
set (4); (8) randomly selected 7,412 proteins from set (5);
(9) randomly selected 7,412 non-human mammal pro-
teins; (10) randomly selected 7,412 non-human proteins.
The baseline kNN classifier was used as the prediction
model and we used the same GO terms as in Table 2.
The average TermAUC accuracies for MF and BP

terms are shown in Tables 3 and 4. The results for
training set from (6) to (10) are averages of 5 random
selections. The results in Table 3 show that TermAUC
grew with the number of annotated sequences. Interest-
ingly, it was the largest when all available proteins were
used, which included evolutionary distant prokaryotes.
These results could be explained by the fact that as the
training set of sequences grows, it becomes more likely
that truly similar sequences are found among the k
nearest neighbors of the query sequence. In Table 4, we
show Term AUC for training sets of the same size. We
observe that the highest accuracy was obtained by using
non-human mammal proteins. The lowest accuracies
were obtained either by exclusively human training pro-
teins (set 2) or a sample including all proteins (sets 8 and
10). This indicates that the most useful proteins for

Table 1 Summary of different data sources

Data source Training size CAFA size

Protein sequence similarity 36,924 48,298

Microarray expression 7,372 3,397

Protein-protein interaction 3,217 737

Table 2 Comparison of average TermAUC of two
different prediction algorithms

Data sources 122 MF terms 546 BP terms

kNN lin-sim kNN kNN lin-sim kNN

Sequence Similarity 0.671 0.688 0.557 0.558

Microarray 0.555 0.561 0.563 0.578

PPI 0.574 0.592 0.580 0.611
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function prediction are orthologs from closely related
organisms. However, by comparing Tables 3 and 4, it is
evident that it is preferable to simply use all available
training proteins.
Integrating predictions from multiple data sources
In this section, we compare the results of single-source
kNN and the proposed multi-source kNN algorithms
described in the Methods section. We used the same
1,302 human test proteins for testing as in the previous
two subsections. For sequence similarity data, we used
training protein sequences from all organisms, because
that resulted in the highest accuracy according to Tables 3
and 4. For the microarray expression data, we used all 392
Affymetrix GPL96 microarray data sets. The prediction
score was calculated as the average score among the 392
microarray data sets.
The average TermAUC for single and multi-source kNN

are shown in the Table 5. At the level of the single-source
predictors, it could be seen that the prediction based on
sequence similarity was much more accurate than the
microarray and PPI-based predictors on both MF and BP
functions. By comparing the microarray-based predictor
based on 392 microarrays listed in Table 5 with the micro-
array predictor based on a single microarray data set listed
in Table 2, it can be concluded that it was beneficial to
combine predictions from multiple microarray data sets.
We observe that by averaging scores from all 3 data

sources using MS-kNN TermAUC increased by 0.03 on
MF and 0.06 on BP functions as compared to using
sequence similarity only. This result is very interesting

considering superiority kNN accuracy using sequence
similarity as compared to the ones using PPI and microar-
ray data. Such result clearly indicates that integration of
multiple data sources can be beneficial for protein func-
tion prediction. Accuracies of the weighted versions of
MS-kNN were not as high as its basic version. This was a
somewhat unexpected result. Upon a more careful study
of the optimization problem stated in (5), we concluded
that the issue lies in the interpretation of zero labels. For-
mulation (5) assumes that Yij = 0 means that i-th protein
does not have j-th function. However, Yij = 0 often means
that the function is not known and not accounting for this
results in reduced accuracy. We think that this is a valu-
able insight that might be helpful in design of future pre-
dictors of protein function.
It might be somewhat surprising that MS-kNN is able to

improve prediction scores using sequence similarity with
seemingly inferior prediction scores coming from PPI and
microarray data. In order to understand why two see-
mingly inferior predictors can help the superior one, in
Table 6 we show prediction scores and ranks of 7 test pro-
teins annotated with function GO:0044106 (cellular amine
metabolic process) obtained by 3 single-source predictors
and by their averaging. We note that the predicted scores
from each individual data source ranged from [0, 20]
because we set the parameter k in kNN to 20. We can see
that TermAUC obtained with sequence data (0.829) was
much larger than with microarray data (0.613) and PPI

Table 3 Average TermAUC based on 5 training sets of
different size.

Training Set (Training Size) 122 MF terms 546 BP terms

TermAUC TermAUC

(1) HUMAN (1,567) 0.671 0.557

(2) HUMAN (7,412) 0.728 0.609

(3) HUMAN + MOUSE + RAT (16,442) 0.807 0.692

(4) All Mammals (16,754) 0.812 0.696

(5) All Organisms (35,622) 0.819 0.707

Table 4 Average TermAUC based on 7 training sets with
same size

Training Set (Training Size) 122 MF
terms

546 BP
terms

TermAUC TermAUC

(2) HUMAN (7,412) 0.728 0.609

(6) HUMAN + MOUSE + RAT (7,412) 0.771 0.648

(7) All Mammals (7,412) 0.762 0.649

(8) All Organisms (7,412) 0.729 0.628

(9) All Mammals excluding Human(7,412) 0.779 0.659

(10) All Organisms excluding Human
(7,412)

0.721 0.623

Table 5 Comparison of AUCs of different methods

Data Source 122 MF terms 546 BP terms

TermAUC TermAUC

kNN: Sequence similarity 0.819 0.707

kNN: PPI 0.574 0.580

kNN: Microarray 0.635 0.642

MS-kNN 0.848 0.763

MS-W-kNN 0.829 0.758

MS-CW-kNN: root level 0.831 0.715

MS-CW-kNN: first level 0.851 0.702

Table 6 Prediction score and rank for test proteins
annotated by GO:0044106

Proteins Microarray PPI Sequence Average

(AUC:
0.6127)

(AUC:0.5641) (AUC:
0.8285)

(AUC:
0.9379)

SYK_HUMAN 0.14(1203) 0 (NaN) 2.17 (2) 0.77 (3)

NOS3_HUMAN 0.23 (212) 0 (NaN) 1.95 (3) 0.73 (6)

NOS1_HUMAN 0.29 (19) 0 (NaN) 1.92 (4) 0.74 (5)

OAZ2_HUMAN 0.17 (882) 0 (NaN) 1.80 (6) 0.66 (8)

OAZ1_HUMAN 0.18 (820) 0 (NaN) 1.63 (7) 0.60 (9)

PEPD_HUMAN 0.22 (340) 0 (NaN) 0 (NaN) 0.07 (544)

PON1_HUMAN 0.26 (66) 1 (3) 0 (NaN) 0.42 (18)
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data (0.564). However, integrating these 3 sources
improved the TermAUC to 0.938. For the first 5 proteins
listed in Table 6 (NOS1_HUMAN, NOS3_HUMAN,
OAZ1_HUMAN, OAZ2_HUMAN and SYK_HUMAN),
we can see that they were ranked very high by the
sequence similarity-based predictor. The addition of pre-
diction scores from other two sources resulted in a slight
decrease in their rank. For the last two proteins in Table 6,
the sequence similarity-based predictor gave score 0, indi-
cating that none of their k = 20 nearest neighbors were
annotated with GO:0044106. Microarray-based score of
PEPD_HUMAN was relatively small, but it was sufficient
to improve its ranking near the top one third. In case of
PON1_HUMAN, it had the top ranking based on PPI data
and a very high ranking based on microarray data, such
that it was ranked 18th in aggregate.

CAFA results
Algorithm selected for CAFA
By considering the results presented above, we observed
that lin-sim kNN classifier improves prediction perfor-
mance only slightly, while it is computationally costly and
sensitive to the lin-sim threshold choice. Therefore, due to
the time constraints of the competition, we decided not to
use the lin-sim approach for score calculation. We used
MS-kNN as our predictor because, as it can be seen from
Table 5, it was more accurate than single-source kNN and
both simpler and more accurate than other MS-kNN algo-
rithms we studied. A given CAFA protein could be repre-
sented in one, two or three sources. If a data source was
not available for a test protein, the score for that source in
MS-kNN was set to zero. In this way, scores of proteins
represented by multiple sources were biased upwards,
reflecting increased prediction confidence.
For CAFA assessment we provided predictions for all

48,298 CAFA proteins and for all GO terms (8,728 MF
terms and 18,982 BP terms). One of the rules of CAFA
was that, for the final submission, one protein cannot be
associated with more than 1,000 GO terms. Thus, we
sorted the prediction scores for each protein and sub-
mitted the top 1,000 GO terms with the corresponding
prediction scores. We note that for vast majority of CAFA
proteins (44,471 out of 48,298) we only had sequence
information available.
CAFA proteins used for testing
Only 595 of the CAFA proteins were experimentally anno-
tated after the submission deadline, and they were used to
evaluate the prediction accuracy. Of these 595 proteins,
366 proteins were associated with MF functions and 436
with BP functions. In the evaluation set, there were 2,786
new MF annotations and 11,075 new BP annotations.
Among the 595 proteins, only 10 were covered by all 3
data sources, while 66 were covered by 2 of the 3 data

sources. For the remaining 519 proteins we only had
sequence information.
Baseline predictors
The CAFA organizers used the following 3 baseline algo-
rithms for comparison with the submitted predictions.

(1) Priors. Prediction score of every protein for a
given GO term was the same and was calculated as the
probability of that GO term occurring in Swissprot.
This approach made it more likely for a protein to be
annotated with a more common GO term.
(2) BLAST. To obtain prediction score for annota-
tion of a target protein with a GO term, the protein’s
sequence was compared with all protein sequences
annotated with this GO term using BLAST. The
sequence identity of the most similar protein was
used as the prediction score.
(3) Gotcha [3]. Using the same BLAST output as (2),
Gotcha prediction score was calculated as the sum of
the negative logarithms of the E-value of the align-
ments between the target protein and all proteins
associated with the given term.

Evaluation measures
The CAFA organizers used 4 different evaluation meth-
ods; 3 of them were protein-centric and one was function-
centric. In this paper, we report only on the AUC results
for simplicity of analysis. In protein-centric evaluation
methods, the prediction scores of each protein across all
available GO functions are sorted. Then, AUC is calcu-
lated for each protein. In function-centric evaluation
method, for each function, the prediction scores of all
proteins associated with this particular function are
sorted and AUC is calculated for each GO term.
Threshold At each threshold, precision and recall are
calculated and reported as averages across all proteins. If
a particular score for a term/protein pair is above the
given threshold, then the annotation at that threshold is
propagated towards the root of the ontology.
Top N For a particular protein, the scores are first sorted.
Then, for the highest 20 scores, precision and recall are
calculated. If there is a tie between more than one term,
all such terms are used to calculate AUC.
Weighted threshold For each threshold, weighted preci-
sion and recall are calculated based on the information
content of each term. The information content of a GO
term is calculated from the January 2011 version of Swis-
sprot, as the negative log of the frequency of the term
among proteins annotated with at least one experimental
evidence code.
TermAUC If more than 25 of the 595 test proteins were
annotated by a GO term after the CAFA deadline, Term
AUC was calculated. For TermAUC, precision and recall
are calculated at each threshold after propagating
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annotations for testing proteins. We note that we used
TermAUC during the design of MS-kNN algorithm.
CAFA results
The AUC scores for MF terms based on different evalua-
tion methods are shown in Table 7. The AUC scores for
BP terms based on different evaluation methods are
shown in Table 8. The reported TermAUC accuracies are
average AUC accuracy on 11 MF and 25 BP GO terms.
We provide results for sequence-based kNN and MS-
kNN. The results over the 4 different AUC accuracies
show that MS-kNN worked the best overall on MF predic-
tion. Particularly, the improvements in Threshold and
Weighted threshold AUC were quite large. For the Ter-
mAUC, sequence-based kNN and MS-kNN had similar
results. This could be explained by the fact that for 519 of
the 595 test proteins we used only sequence information.
In BP predictions, MS-kNN was also overall the most
accurate, although in was not the most accurate on any of
the 4 accuracy measures. For a further insight, TermAUC
of the 11 MF terms based on different prediction methods
are compared in Figure 2. We can see that MS-kNN was
better than BLAST on all but one MF term. It was better
than Gotcha on 7 out of the 11 MF terms.
Post-CAFA analysis
We performed several additional experiments to get a bet-
ter insight into the proposed algorithms and to explore
some alternatives. Among the 595 test proteins, 66 pro-
teins were in 2 data sources, and only 10 proteins in all 3
data sources. Among these 10 proteins, 8 of them were
annotated with MF terms and 8 of them with BP terms.
We studied results on these 10 proteins in more detail.
While the results in Tables 9 and 10 should not be inter-
preted in terms of statistical significance due to small sam-
ple size (for that, we point a reader to Table 5), they
provide an insight into improved accuracy of MS-kNN as
compared to similarity-based kNN on 595 CAFA proteins.
Because we had only 8 proteins for evaluation for both
MF terms and BP terms, the TermAUC accuracies for GO
terms were not reliable and are not shown. As can be
seen, AUC of MS-kNN was much larger than that of simi-
larity-based kNN on all accuracies except Top n AUC on
BP terms. We note that these results are consistent with

those reported in Table 5, that were obtained on 1,302 test
proteins.

Conclusions
The protein function prediction is a complex problem. In
this paper, we focused on the question of how to integrate
multiple data sources to improve the prediction accuracy.
We discussed and evaluated several different integration
schemes in this paper. Our pre-CAFA and CAFA results
strongly indicate that integrating information from multi-
ple data sources could improve protein function prediction
accuracy. At the level of sequence similarity-based predic-
tions, we observed that it is beneficial to consider all avail-
able annotated proteins, regardless how evolutionary
distant they are from a query protein. Considering the
time limitations associated with the tight deadline for sub-
mission of the CAFA predictions, our strategy to use the
simple and efficient k-NN algorithm, coupled with simple
integration of prediction scores from multiple data
sources, proved to be reasonable.
There are certainly many avenues for future improve-

ments of function predictions. A straightforward one is to
include as many available sources of structural and func-
tional protein information. For example, in CAFA, we
used only microarray data from a single, albeit commonly
used, human microarray platform. Information beyond
microarray data and protein-protein interaction data, such
as chromosomal neighborhood of a gene, mutations, role
in various diseases, or protein structure, could certainly be
valuable. Based on our experience during CAFA, we think
that further advances in statistical approaches for function
prediction are needed. Particularly, we would like to point
to two open problems we believe could lead to significant
advances in protein function prediction. One is related
with the observation that a lack of a protein’s annotation
with a certain GO term should not be treated as negative
evidence, but rather as a missing label. As a consequence,
it would be advisable to treat function prediction problem
as a one class classification, instead of binary classification.
Another is the problem of sampling bias, created by the
fact that available annotations are not a random sample
from the protein/term space. Developing methods that are
robust to sampling bias or the ones that could correct its

Table 7 AUC scores for MF terms

Algorithm Threshold Top
n

Weighted
threshold

TermAUC

Prior 0.867 0.742 0.795 0.500

BLAST 0.794 0.779 0.734 0.634

Gotcha 0.786 0.774 0.728 0.665

kNN (1 source) 0.814 0.780 0.747 0.702

MS-kNN (3
sources)

0.883 0.784 0.819 0.701

Table 8 AUC scores for BP terms

Algorithm Threshold Top
n

Weighted
threshold

TermAUC

Prior 0.898 0.630 0.822 0.500

BLAST 0.771 0.633 0.697 0.648

Gotcha 0.748 0.637 0.677 0.666

kNN (1 source) 0.811 0.642 0.724 0.651

MS-kNN (3
sources)

0.893 0.636 0.818 0.650

Lan et al. BMC Bioinformatics 2013, 14(Suppl 3):S8
http://www.biomedcentral.com/1471-2105/14/S3/S8
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negative effects should be one of the priorities of future
research in the field.

Methods
Below, we describe k-nearest neighbor (kNN) classifiers
we evaluated and used during CAFA, as well as the
approaches for integration of predictions from multiple
data sources.

Baseline kNN classifier
To calculate a likelihood that protein p has function f, we
used a weighted variant of the kNN algorithm, as pro-
posed in (Pandey et al., 2009) [15]. The prediction score
of function f for protein p is calculated as

score(p, f ) =
∑

p′∈Nk(p)

sim(p, p′)I(f ∈ functions(p′)), (1)

where sim(p, p’) denotes the similarity score between
proteins p and p’, I is an indicator function that returns 1
if p’ is experimentally annotated with f and 0 otherwise,
and Nk(p) is the set of the k nearest neighbors of p accord-
ing to the metric sim. The similarity score between two
proteins sim(p, p’) on each of the three data sources we
considered was calculated in the following way. For pro-
tein sequence data, the similarity score was calculated as
percent identity divided by 100. For microarray data, Pear-
son correlation coefficient, a popular method for measur-
ing the similarity between gene expressions [16], was used

as the similarity score between two proteins. For protein-
protein interaction data, the similarity score was set to 1 if
two proteins interacted and 0 otherwise. We note that
more sophisticated similarity score could be used by con-
sidering reliability of PPI information, but we did not pur-
sue it due to the CAFA time limitations.

Lin-sim kNN classifier
In protein function prediction problem, a single protein
may have multiple functions, and the functions are orga-
nized in a hierarchy. Pandey et al [15] proposed a method
that incorporates contributions not only from the neigh-
boring proteins annotated with the same function, but
also from proteins annotated with similar functions.
Their proposed prediction model is

score(p, f ) =
∑

p′∈Nk(p)

sim(p, p′)

⎛
⎝ ∑

f ′∈functions(p′)

linsim(f ′, f )

⎞
⎠ , (2)

where linsim(f’, f) denotes the similarity score between
functions f and f’. The Lin’s similarity measure [17] is
used to compute the similarity between two concepts in
a hierarchy. It is calculated as

linsim(f , f ′) =
2 × [log pms(f , f ′)]
log p(f ) + log p(f ′)

, (3)

where f and f’ are the Gene Ontology terms. The p(f)
denotes the probability of a protein being annotated with

Figure 2 AUC comparison on 11 MF functions.

Table 9 Comparison of AUC scores on 8 test proteins
based on MF terms

Algorithm Threshold Top n Weighted threshold

kNN (1 source) 0.853 0.740 0.768

MS-kNN (3 sources) 0.949 0.845 0.910

Table 10 Comparison of AUC scores on 8 test proteins
based on BP terms

Algorithm Threshold Top n Weighted threshold

kNN (1 source) 0.798 0.526 0.696

MS-kNN (3 sources) 0.920 0.526 0.846

Lan et al. BMC Bioinformatics 2013, 14(Suppl 3):S8
http://www.biomedcentral.com/1471-2105/14/S3/S8
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function f, which is estimated from the available set of GO
annotations. The joint probability pms (f, f’) is calculated as
pms(f , f ′) = min

l∈S(f ,f ′)
p(l), where S(f, f’) is a set of common

ancestors of functions f and f’. It is easy to see that linsim
(f, f’) = 1 when f = f’, and limsim(f, f’) = 0 when their mini-
mum subsume is the root of the ontology. Thus, the lim-
sim score is always in the 0[1] range.

Integration of scores from multiple data sources
By using equations (1) or (2), we can obtain scores for
each protein/function pair (p, f). In particular, we can
obtain one score using sequence similarity and one using
PPI. Since we used J (= 392) microarray data sets, we had
one prediction score for each gene expression data set.
Given the J + 2 scores for each (p, f) pair, an open question
was what is the best way to integrate them into a final, sin-
gle score. We studied the following prediction score inte-
gration schemes: (1) averaging; (2) the same weighted
averaging for any (p, f) pair; (3) different weighted aver-
aging for different GO term clusters. In the schemes (2)
and (3), the weights for different data sources were
obtained by solving a convex optimization problem.

Averaging (MS-kNN)
Let us denote by scoreSEQ(p, f) the score obtained from
sequence similarity data, by scorePPI(p, f) the score
obtained from PPI data, and by scorejEXP(p, f) the score
obtained by the j-th microarray data set. By averaging, the
final score is obtained as

score(p, f ) =
1
3
scoreSEQ(p, f ) +

1
3
scorePPI(p, f ) +

1
3J

J∑
j=1

scoreEXPj (p, f ). (4)

We call the resulting algorithm the Multi-Source kNN
(MS-kNN), as this was the final algorithm we used in
CAFA.

Weighted averaging (MS-w-kNN)
MS-kNN assumes that each data source is equally infor-
mative, which might not hold in general. We thus consid-
ered using weighted averaging of the scores from different
sources. For MS-w-kNN we learned the weights from
training data using a large margin method as follows. Let
us assume that we are given m data sources, {Dj, j = 1..m},
and n proteins {xi, i = 1..n}. Each protein is assigned to
several functions from the set of k functions. Let Yi denote
the set of functions that protein xi is assigned to, and Ȳi
the set of functions that protein xi is not assigned to.
Furthermore, let f(x, y) be a vector of length m, whose j-th
element is the score of protein x for function y on the data
source Dj. Then, a weight vector w, used for averaging of
m prediction, is found by minimizing the following opti-
mization problem,

min
W,ξ

∑
i

∑

y∈Yi,ȳ∈Ȳi
ξi(y, ȳ)

s.t wT(f (xi, y) − f (xi, ȳ)) ≥ −ξi(y, ȳ),∀i, y ∈ Yi, ȳ ∈ Ȳi

ξi(y, ȳ) ≥ 0,∀i, y ∈ Yi, ȳ ∈ Ȳi

wTe = 1;w ≥ 0

(5)

where e is a vector of ones. The resulting convex opti-
mization problem can be solved using standard optimi-
zation tools, such as CVX (http://cvxr.com/cvx/). With
the trained weight vector w, the protein-function scores
from different data sources can be integrated by taking
their weighted average as wT·f(x, y).

Cluster-specific weighted averaging (MS-CW-kNN)
Instead of learning a single weight for all GO terms, we
can partition functions into clusters and assign cluster
specific weights. Since the Gene Ontology is already
organized in a hierarchical structure, we can directly use
it to cluster the GO terms. In MS-CW-kNN, we consid-
ered clustering of all GO terms at the root level to MF
and BP terms, and at the first level to 7 MF and 25 BP
functional clusters.
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